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Abstract: We consider three different systems in a heat flow: an ideal gas, a van der Waals gas, and
a binary mixture of ideal gases. We divide each system internally into two subsystems by a movable
wall. We show that the direction of the motion of the wall, after release, under constant boundary
conditions, is determined by the same inequality as in equilibrium thermodynamics dU − d̄Q ≤ 0.
The only difference between the equilibrium and non-equilibrium laws is the dependence of the
net heat change, d̄Q, on the state parameters of the system. We show that the same inequality is
valid when introducing the gravitational field in the case of both the ideal gas and the van der Waals
gas in the heat flow. It remains true when we consider a thick wall permeable to gas particles and
derive Archimedes’ principle in the heat flow. Finally, we consider the Couette (shear) flow of the
ideal gas. In this system, the direction of the motion of the internal wall follows from the inequality
dE − d̄Q − d̄Ws ≤ 0, where dE is the infinitesimal change in total energy (internal plus kinetic) and
d̄Ws is the infinitesimal work exchanged with the environment due to the shear force imposed on the
flowing gas. Ultimately, we synthesize all these cases within a general framework of the second law
of non-equilibrium thermodynamics.

Keywords: thermodynamics; non-equilibrium thermodynamics; gravity; stationary state; steady
state; entropy

1. Introduction

The direction of spontaneous processes follows the second law of equilibrium thermo-
dynamics [1]. It states that isolated systems reaching equilibrium increase their entropy.
The second law is practical. It allows us to predict which chemical reactions occur sponta-
neously, under what thermodynamic conditions liquids evaporate or freeze, and how to
design efficient engines. However, such a law, although needed, has yet to be discovered
for out-of-equilibrium systems characterized by the continuous flux of energy flowing
across them. This remains true despite large efforts [2–28], and sucesses are limited to either
isothermal situations or small temperature differences [21–28]. Promising results have been
obtained in small-scale systems allowing for a discrete description [29,30], and they pave
the way for a trajectory-based approach to macroscopic stochastic thermodynamics [31].

Non-equilibrium thermodynamics today (called the thermodynamics of irreversible
processes) is a set of non-linear differential equations. Depending on the specific system
under consideration, these equations include the conservation of mass, momentum, and
energy [32–34], as well as charge conservation with Maxwell’s equations in the case of
magnetohydrodynamics or the Poisson–Nernst–Planck equations for electrokinetics, among
others. The conservation laws are typically accompanied by closing relations like the
ideal gas equation of state. This paper will present preliminary observations for a few
systems without macroscopic motion and for a single system with macroscopic motion.
These results may provide insights toward formulating a general second law of non-
equilibrium thermodynamics.
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Non-equilibrium states involve macroscopic energy fluxes flowing across the system [33].
These fluxes are sustained within the system by non-vanishing gradients of temperature (in
the case of heat flow), pressure (in the case of mass flow), or chemical potential (in the case
of particle diffusion). Thus, a non-equilibrium state has non-uniform temperature, pressure,
chemical potential, and velocity. The local equations of state, relating internal energy and
pressure to density and temperature, and the spatial profiles of density, temperature, and
concentrations fully characterize non-equilibrium states. In our recent papers, we formu-
lated the first law of global thermodynamics for various non-equilibrium systems [35–37],
including cases involving gravity [36] or Couette flow [38]. We represented internal en-
ergy as a function of a few global state parameters. These parameters were obtained by
mapping a non-equilibrium, and by definition, non-uniform system into a uniform one.
We averaged local equations of state over the system’s volume. This averaging resulted in
global equations of state, which we wrote in the same form as at equilibrium. These global
non-equilibrium equations of state included new state parameters. For example, the inter-
nal energy of the van der Waals gas subjected to continuous heat flux U(S∗, V, N, a∗, b∗) is
a function of five state parameters, where S∗ is the non-equilibrium entropy, V is the vol-
ume, N is the number of particles, and a∗ and b∗are new state parameters—renormalized
van der Waals interaction parameters. The net heat that flows in/out of the system to
change the internal energy of the van der Waals gas is given by:

d̄Q = T∗dS∗ − N2

V
da∗ + NkBT∗

(
V
N

− b∗
)−1

db∗. (1)

The a∗ and b∗ state parameters appear in the net heat differential because, in a non-uniform
system, the change in the density profile leads to the local absorption or release of heat. In
general, under the mapping construction of global thermodynamics, all material parameters
in the equilibrium equations of states become state parameters of the non-equilibrium state.

In a system kept at a constant temperature at equilibrium, energy is exchanged with
the environment as heat only. The second law of equilibrium thermodynamics states [1,39]
that the Helmholtz free energy, F(T, V, N, x), is minimized with respect to x (the variable
describing the internal constraint) at constant T, V, and N (temperature, volume, and
number of particles, respectively). The minimization defines the equilibrium value of x.
The change in F as a function of x is negative if the initial x does not correspond to the
equilibrium state. Thus, the change in F when we move the system from the initial to the
final x is given by ∆F ≤ 0. Rewriting this equation using internal energy and entropy yields
∆U − T∆S ≤ 0. In the infinitesimal form, we obtain dU − TdS ≤ 0. Finally, the net heat
(the heat that enters or leaves the system and changes the internal energy) is d̄Q = TdS. In
general, the second law states that in spontaneous processes,

dU − d̄Q ≤ 0. (2)

Thus, the system minimizes part of its internal energy. This part does not account for the
energy, which, at equilibrium, is continuously exchanged with the environment (here, the
net heat).

In this paper, we elucidate non-equilibrium systems in a continuous heat flow. Out
of equilibrium, net heat becomes the amount of energy that enters or leaves the system in
the form of heat and changes the internal energy. We show the consequences of applying
dU − d̄Q ≤ 0 in the systems’ stationary (steady) states. Section 2 discusses the ideal
gas, van der Walls gas, and binary mixture of ideal gases enclosed by two fixed walls at
different temperatures. We cite the functional forms of dU and d̄Q as functions of the state
parameters for a single compartment [35–37] and point out that d̄Q differs from what we
know from equilibrium. Next, as is done at equilibrium, we divide the enclosed gas with
an internal diathermic wall and verify that (2) determines the spontaneous motion of the
wall toward the stationary position. Section 3 extends the problem to account for gravity
and heat flow. We present the energy differential and the fundamental relation for a single
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compartment in the case of the ideal gas [36] and expand them to the case of the van der
Waals gas. Then, we introduce the internal diathermic wall between two compartments
and verify that (2) holds during the spontaneous motion of the wall. Finally, we assume
that the wall has a finite thickness and is permeable (porous). This leads to the derivation
of Archimedes’ principle from the second law of thermodynamics. Section 4 demonstrates
that the relative stability of multiple stable states can be compared within the proposed
framework. We cite a system where the ideal gas is heated volumetrically [16] and calculate
the integral of external work necessary to switch between the states. In Section 5, using
the example of the ideal gas in shear flow [38], we introduce a further generalization of
the proposed second law to the case where, in addition to heat, the system also exchanges
energy in the form of work. The work originates from the shear forces imposed on the gas
flow. We conclude this paper by generalizing the second law in the discussion section.

2. The Ideal Gas, Gas Mixtures, and van der Waals Gas in Heat Flow

Ideal gas. The model geometry is defined by two parallel walls at z1 = 0 and z2 = L,
as shown in Figure 1. For now, let us focus on the arrangement that does not include the
inner wall.

Figure 1. Schematic of a gas confined between two parallel walls with area A. The system is assumed
to be translationally invariant in the x and y directions. The thin interior wall at zw is treated as an
internal constraint. We assume that the internal wall is diathermic, impenetrable, and can move
freely. The inner wall divides the system into two compartments containing N1 and N2 gas particles
(N1 + N2 = N). The outer wall placed at z1 = 0 has a fixed temperature T1, and the outer wall placed
at z2 = L is kept at a fixed temperature T2 > T1. The resulting linear temperature profile is indicated
by the dash-dot line.

The area of each wall, A, is large enough so that the system is translationally invariant
in the x and y directions. The walls are in contact with thermostats, which are maintained
at different temperatures, T1 < T2. In the presence of a heat flux, quantities specifying
equilibrium thermodynamic states, such as number density n = N/V, pressure p, or tem-
perature T, become space-dependent. The profiles n(z), p(z), and T(z) of these quantities
can be determined using, for example, the irreversible thermo-hydrodynamics approach,
which relies on the local equilibrium assumption and represents the conservation of mass,
momentum, and energy, supplemented with the equations of states and relations between
fluxes and thermodynamic forces. For a stationary state with a vanishing velocity field, the
thermo-hydrodynamics problem reduces to the constant pressure condition p(z) = p.

The construction of global thermodynamics describing the non-equilibrium steady
state is achieved by mapping it to a uniform system characterized by a finite number of
state parameters. Mapping involves averaging the local pressure and energy over the
system’s volume so that, when averaged, the global equations of state have the same form
as in equilibrium. For an ideal gas with f degrees of freedom, this procedure gives, for
a steady state with no mass flow,
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p =
1
L

∫ L

0
n(z)kBT(z)dz = nkBT∗,

U =
f
2

A
∫ L

0
n(z)kBT(z)dz =

f
2

VnkBT∗,
(3)

where n = N/V = (1/L)
∫ L

0 n(z)dz is the average number density and T∗ is given by

T∗ =
A
∫ L

0 dz n(z)T(z)

A
∫ L

0 dz n(z)
. (4)

The new state parameter T∗ can be interpreted as the average temperature of the uniform
system onto which we have mapped the original, non-equilibrium one. The explicit
expression for T∗ depends on the specific temperature and number density profile. In the
case of constant pressure [35], the equations of irreversible thermo-hydrodynamics yield
T(z) = T1 + (T2 − T1)(z/L), n(z) = n(T2 − T1)/[log(T2/T1)T(z)], and as a result,

T∗ = (T2 − T1)/ ln(T2/T1). (5)

Because mapping gives us the same formal structure as we know from equilibrium, the
variable S∗ conjugate to T∗ is given by

S∗(U, V, N)/kB = N log

[(
U

( f /2)kBN

) f /2 V
N

]
+ Ns0/kB, (6)

where the constant s0 is chosen such that S∗ for T2 = T1 gives the equilibrium expression
for entropy [1]. The internal energy of a non-equilibrium steady state is thus a function of
three state parameters U(S∗, V, N), with the thermodynamic relations(

∂S∗

∂U

)
V,N

=
1

T∗ , (7)(
∂S∗

∂V

)
U,N

=
p

T∗ .

Binary mixture. Mixing two ideal gases, a and b, with fa and fb degrees of freedom,
respectively, adds to the temperature and density profile the concentration profile induced
by a heat flux. As a result, the mapping procedure leads to a uniform system with two
new state parameters. In addition to T∗, we have two effective degrees of freedom f ∗a and
f ∗b , which, however, are not independent. These parameters allow us to write the internal
energy and pressure in the same form as in equilibrium:

p = nakBT∗ + nbkBT∗,

U =
f ∗a
2

VnakBT∗ +
f ∗b
2

VnbkBT∗,
(8)

where na = Na/V and nb = Nb/V are the average number densities of the first and second
components of the mixture, respectively. The effective degrees of freedom are obtained as

f ∗i =
fi
xi

1
L

∫ L

0
xi(z)dz, i = a, b, (9)

where xi = ni/n is the average number fraction of the i component and xi(z) is its profile;
xa + xb = 1 in the absence of chemical reactions. f ∗a and f ∗b are related via ( f ∗a / fa)xa +(

f ∗b / fb
)

xb = 1. The non-equilibrium entropy S∗ has the same form as in equilibrium but
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with T replaced with T∗ and fi with f ∗i . It is the sum of the entropy of the two components
of the mixture considered separately and the entropy of mixing:

S∗(U, V, Na, Nb, f ∗a )/kB = Na

[
f ∗a
2

+ 1 + ln
V
Na

(
2U

kB(Na f ∗a + Nb f ∗b )

) f ∗a /2
]

+ Nb

[
f ∗b
2

+ 1 + ln
V
Nb

(
2U

kB(Na f ∗a + Nb f ∗b )

) f ∗b /2
]

− Na ln
Na

N
− Nb ln

Nb
N

+ S0/kB.

(10)

Here, S0 may depend on Na and Nb. Again, we choose S0 such that S∗ reduces to the
equilibrium entropy of a binary mixture in the absence of heat flux. Thus, the internal
energy of a binary mixture of ideal gases in the non-equilibrium steady state is a function
of five state parameters: U(S∗, V, Na, Nb, f ∗a ).

Van der Waals gas. A gas of interacting particles obeying the van der Waals equations
of state is described with two additional interaction parameters, a and b. As a result of the
mapping procedure, we obtain

p =
nkBT∗

1 − nb∗
− a∗n2,

U =
f
2

VnkBT∗ − a∗Vn2.
(11)

Three new state parameters describe the van der Waals gas in the steady state. Besides the
effective temperature T∗, defined by the same expression (4) as for the ideal gas, we have
the effective interaction parameter a∗ given by

a∗ =
1
L

∫ L

0

a n(z)2

n2 dz, (12)

and b∗ defined by the formula

nkBT∗

1 − nb∗
=

1
L

∫ L

0

n(z)kBT(z)
1 − bn(z)

dz. (13)

Because Equation (11) has the same structure as in equilibrium, the non-equilibrium entropy
S∗ has the same form as in equilibrium but with T replaced with T∗, a with a∗, and b with
b∗. Specifically,

S∗(U, V, N, a∗, b∗)/kB = N log

( U + a∗N2

V
( f /2)kBN

) f /2
V − Nb∗

N

+ Ns0/kB. (14)

Thus, the internal energy of the van der Waals gas in the non-equilibrium steady state is
a function of five state parameters: U(S∗, V, N, a∗, b∗).

Note that for all systems discussed above, the non-equilibrium entropy S∗ is part of
the total entropy Stot, defined as the integral of the volume entropy density s(z) over the
system volume. It contains information about the heat absorbed/released in the system in
addition to the dissipative background (temperature profile).

Net heat. In the case of a very slow transition between stationary states, e.g., by a
slight change in temperature T2 or a change in the distance between the confining walls L,
the energy changes only through mechanical work and heat flow:

dU = d̄Q + d̄W, with d̄W = −pdV, (15)
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where d̄Q is the net heat transferred to the system during a small change between two
non-equilibrium stationary states. Thus, the above equation can be considered as the first
law of non-equilibrium thermodynamics. Using the fundamental relations for each of the
above examples (Equations (6), (10) and (14)), we can determine the net heat from the
energy balance dU = d̄Q − pdV. For an ideal gas, we have

dU = T∗dS∗ − pdV, and d̄Q = T∗dS∗, (16)

which has the same formal structure as in equilibrium.
This is different for a binary mixture of ideal gases, where the net heat acquires

additional terms. In general,

dU = T∗dS∗ − pdV + µ∗
adNa + µ∗

bdNb +Fad f ∗a +Fbd f ∗b , (17)

and for a fixed number of components Na and Nb, we have

d̄Q = T∗dS∗ +Fad f ∗a +Fbd f ∗b , (18)

where d f ∗b = − xb fa
xa fb

d f ∗a and Fi
T∗ = −

(
∂S∗
∂ f ∗i

)
U,V,Na ,Nb , f ∗j ̸=i

, with S∗ given by Equation (10).

Additional terms in the net heat also occur for the van der Waals gas, where

dU = T∗dS∗ − pdV − N2

V
da∗ + nkBT∗

(
V
N

− b∗
)−1

db∗, (19)

so that

d̄Q = T∗dS∗ − N2

V
da∗ + nkBT∗

(
V
N

− b∗
)−1

db∗. (20)

Movable internal wall. We introduce into the considered systems an internal con-
straint in the form of a wall parallel to the bounding walls (Figure 1). We assume the
wall is thin, freely movable, diathermal, and impenetrable. The internal constraint di-
vides the system into two subsystems, 1 and 2, each with a fixed number of particles, N1
and N2, and volumes, V1 and V2. We choose the volume of one subsystem, V1, as the
parameter representing the constraint. The total energy is the sum of the energies of the
two subsystems:

U(S∗
1 , V1, N1, S∗

2 , V − V1, N2, . . .) = U1(S∗
1 , V1, N1, . . .) + U2(S∗

2 , V − V1, N2, . . .), (21)

where . . . denotes possible other new state variables, such as f ∗a for the binary mixture of
ideal gases or a∗ and b∗ for the van der Waals gas. The steady position of the wall, which
moves without friction, is determined by the equality of the pressures exerted by each
subsystem: p1 = p2.

In the case of a monoatomic ideal gas, the effective temperatures of both subsystems
are [35]

T∗
1 =

V1
V (T2 − T1)

log
(

T1+
V1
V (T2−T1)

T1

) , T∗
2 =

(
1 − V1

V

)
(T2 − T1)

log
[

T2

T1+
V1
V (T2−T1)

] . (22)

Using the explicit forms of dU1, dU2 and d̄Q1, d̄Q2, we can see that this condition can be
obtained from the following minimum principle:

dU1 + dU2 − d̄Q1 − d̄Q1 = −(p1 − p2)dV1 ≤ 0 , (23)

which we call the second law of non-equilibrium thermodynamics. Thus, the difference
between the total energy of the system and the heat exchanged with the environment is
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minimized while the internal wall moves to the new position. The equality defines the
condition of the stationary position of the wall, given by the equality of pressures p1 = p2
in the two subsystems. For the specific case of an ideal gas, we have

p1 = kB
N1

V
T2 − T1

ln
[

T1+(T2−T1)
V1
V

T1

] , p2 = kB
N2

V
T2 − T1

ln
[

T2

T1+(T2−T1)
V1
V

] . (24)

Demanding p1 = p2 and solving for V1 gives us the position of the internal wall at the
stationary state for given temperatures T2 and T1:

V1

V
=

(
T2
T1

)N2/N
− 1

T2
T1

− 1
. (25)

We note that for the diathermal internal wall, there is only a single solution for V1 for
all possible values of T2 > T1. In Section 4, we consider an adiabatic internal wall with
volumetric heating and show that, in this case, there might be more solutions for V1,
among which we can compare stability.

3. Gravitational Field: Ideal Gas, van der Waals Gas, and Archimedes’ Principle

Ideal gas in gravity. We insert the gas column into a constant, external gravitational
field −êzg that acts in the direction of the heat flux (see Figure 2). Here, the situation of
interest is without macroscopic fluid motion, which means there is no Rayleigh–Benard
convection [40–42]. The meanings of symbols from previous sections remain valid. The
non-equilibrium entropy of a single gas column of an ideal gas is [36]

S∗ =
3
2

NkB ln
U − NM∗gL

2 − NMgz1

U0 − NM0gL0
2 − NMgz1,0

+ NkB ln
V
V0

+ S0, (26)

where L = z2 − z1 is the height of the gas column; z1 is the coordinate of the column base; z2
is the coordinate of the column top; V = LA is the volume of the column, with A being the
surface area of the column base; and M denotes the molecular mass of the gas. The lower
index 0 indicates reference values. In the above, the state parameter M∗ is the renormalized
mass defined with the help of the potential gravitational energy of the gas [36]

Epot =
NM∗gL

2
⇔ M∗ =

2Epot

NgL
, (27)

which is contained inside the column

Epot = gAL2
∫ z2/L

z1/L
ρz′dz′. (28)

The state parameter M∗ is coupled to the gravitational field and informs about the system’s
potential energy with respect to the position of the column base. To account for all effects
of gravity, we also need to include the potential energy of the base of the column

Epot,0 = NMgz1. (29)

The total internal energy of the gas column

U =
3
2

NkBT∗ +
NM∗gL

2
+ NMgz1, (30a)
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consists of thermal and gravitational contributions. The thermal contribution (through the
mapping procedure) defines the renormalized temperature T∗

ET =
3
2

NkBT∗ = AL
∫ z2/L

z1/L

3kB
2M

ρTdz′ ⇔ T∗ =
V

NM

∫ z2/L

z1/L
ρTdz′. (30b)

The average pressure inside the column is the same as in the case without gravity (3)

p∗ =
NkBT∗

V
. (30c)

This is because changing the surface area of the column base does not affect the gravitational
energy, and all work is done against the thermal motion of gas particles. However, the
presence of an external field introduces anisotropy in the pressure profile. The pressures at
the top

p(z2) =
NkBT∗

V
− NM∗gL

2V
, (30d)

and bottom
p(z1) = p(z2) +

NMgL
V

(30e)

of the column are different. The presented formulas are consistent with the functional form
of S∗ (26) and the internal energy differential

dU =T∗dS∗ + N
gL
2

dM∗ −
(

NkBT∗

V
− NM∗gL

2V

)
V
L

dL − NkBT∗

V
dV + NMgdz1

=T∗dS∗ + N
gL
2

dM∗ + d̄W = d̄Q + d̄W. (31)

In the above, we distinguish two separate ways of changing the internal energy. The first is
through heat,

d̄Q = T∗dS∗ + N
gL
2

dM∗, (32a)

which includes entropic components and gravitational interactions between the external
field and the mass inside the column. The second is through mechanical interactions
exerted on the system boundaries through mechanical work

d̄W = −
(

NkBT∗

V
− NM∗gL

2V

)
V
L

dL − NkBT∗

V
dV + NMgdz1. (32b)

We deliberately wrote the work differential to distinguish between the column elongation,
changes in the column volume, and changes in the column base position. The column
elongation is coupled to the pressure at its top, while volume changes affect the aver-
age pressure.

In the two-compartment system (Figure 2a), the bottom part contains N1 particles, and
the top part contains N2 particles of an ideal gas. We separate the compartments with a thin,
diathermal wall at z = zw. We assume there are no changes in the column cross-sectional
area (dA = 0) and set this contribution to the energy differential to 0. We rewrite the
energy balances for the bottom (U1) and top (U2) segments explicitly to account for the
displacement of the separating wall

dU1 =T∗
1 dS∗

1 + N1
g(zw − z1)

2
dM∗

1 −
(

N1kBT∗
1

V1
−

N1 M∗
1 g(zw − z1)

2V1

)
V1

(zw − z1)
dzw

=T∗
1 dS∗

1 + N1
g(zw − z1)

2
dM∗

1 − p1(zw)A dzw = d̄Q1 + d̄W1, (33a)

dU2 =T∗
2 dS∗

2 − N2
g(z2 − zw)

2
dM∗

2 +

(
N2kBT∗

2
V2

− N2 M∗
2 g(z2 − zw)

2v2

)
V2

(z2 − zw)
dzw + N2 Mgdzw

=T∗
2 dS∗

2 + N2
g(z2 − zw)

2
dM∗

2 + p2(z2)A dzw + N2 Mgdzw = d̄Q2 + d̄W2. (33b)
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The sign in front of p2 is consistent with the direction of changes in dzw. Following the
second law of thermodynamics, we check whether the change in internal energies, when
subtracted from all energies exchanged with the environment during the process, leads
to the proper spontaneous state of the system, even beyond equilibrium. For the column
subject to gravity with a fixed base and top, this is represented by the heat balance

dU1 + dU2 − d̄Q1 − d̄Q2 = (A (p2(z2)− p1(zw)) + N2Mg)dzw ≤ 0. (34)

We find that the wall will position itself where the force necessary to expand the bottom
part of the column balances the sum of the forces required to compress the top part of the
column and, additionally, to raise its weight.

Figure 2. Gas column in gravity. A column of height L contains N moles of gas particles. The base
(z1) and top (z2) are in contact with temperature reservoirs kept at two different temperatures: T1

at the base, and T2 at the top. The column’s base and top surface area equal A, and the system is
translationally invariant in the x and y directions. (a) Impermeable and diathermal wall at zw separates
the bottom and top sections with N1 and N2 particles of gas (N1 + N2 = N). (b) Permeable, thick (Lw)
diathermal wall at zw separates sections containing N1 and N2 particles of gas (N1 + N2 = N).

Van der Waals gas in gravity. We combine the results from the previous sections and
construct an analogous description of the van der Waals gas in a gravitational field. For the
single compartment, the stationary entropy is

S∗ =
3
2

NkB ln
U − NM∗gL

2 − NMgz1 + a∗ N2

V

U0 − N0 M0gL0
2 − N0Mgz1,0 + a∗0

N2
0

V0

+ NkB ln
V − Nb∗

V0 − N0b∗0
+ S0. (35)

The internal energy of the van der Waals gas in a gravitational field is given by

U =
3
2

NkBT∗ +
NM∗gL

2
+ NMgz1 − a∗

N2

V
. (36a)

The pressures are as follows:

pav =
NkBT∗

V − Nb∗
− a∗

N2

V2 (36b)

is the average pressure,

p(z2) =
NkBT∗

V − Nb∗
− a∗

N2

V2 − NM∗gL
2V

(36c)
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is the pressure at the top of the column, and

p(z1) = p(z2) +
NMgL

V
(36d)

is the pressure at the bottom of the column. The energy differential has the form

dU =T∗dS∗ + N
gL
2

dM∗ −
(

NkBT∗

V − Nb∗
− a∗

N2

V2 − NM∗gL
2V

)
V
L

dL

−
(

NkBT∗

A(V − Nb∗)
− a∗

N2

V2

)
dV − N2

V
da∗ + NkBT∗

(
V
N

− b∗
)−1

db∗

+ NMgdz1

=T∗dS∗ + N
gL
2

dM∗ − N2

V
da∗ + NkBT∗

(
V
N

− b∗
)−1

db∗ + d̄W

= d̄Q + d̄W, (37)

where we distinguish the heat differential, including the gravitational effects,

d̄Q = T∗dS∗ + N
gL
2

dM∗ − N2

V
da∗ + NkBT∗

(
V
N

− b∗
)−1

db∗, (38a)

and the mechanical work

d̄W = −
(

NkBT∗

V − Nb∗
− a∗

N2

V2 − NM∗gL
2V

)
V
L

dL −
(

NkBT∗

A(V − Nb∗)
− a∗

N2

V2

)
dV + NMgdz1. (38b)

Likewise, for the ideal gas, we write the second law of stationary thermodynamics as

dU1 + dU2 − d̄Q1 − d̄Q2 = (A (p2(z2)− p1(zw)) + N2Mg)dzw ≤ 0. (39)

Again, it reads that the wall will rest where the force necessary to extend the bottom
compartment matches the force necessary to compress the top compartment plus the force
to lift its weight.

Archimedes’ principle. Novel phenomena appear when the wall separating compart-
ments is permeable. Assume that the wall has a finite thickness Lw with its own mass Mb
and is pierced with small channels (pores) of negligible volume that allow for the passage
of gas molecules (Figure 2b). We parametrize the position of the bottom of the wall at zw.
The porous wall separating the two compartments constitutes a separate thermodynamic
system. We make additional assumptions regarding the wall: the gas that fills the pores
inside the wall has a volume V3 ≪ V2, V1, but each pore is large enough so that the gas
is in the thermal (not Knudsen) regime, and the wall is an excellent thermal conductor
(temperature is constant inside the wall).

Each compartment containing a perfect gas is described by the fundamental rela-
tion (35). Since we allow for particle exchange, the energy balance (37) has to account
for the resulting changes in energy ∂U

∂N dN = µ∗dN. We do not elucidate this term and
treat it formally because it will cancel out during further derivation. The amended energy
differential is

dU =T∗dS∗ +
NgL

2
dM∗ −

(
NkBT∗

V
− NM∗gL

2V

)
V
L

dL + NMgdz1 + µ∗dN

=T∗dS∗ + N
gL
2

dM∗ + d̄W + µ∗dN = d̄Q + d̄W + µ∗dN. (40)
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We rewrite the energy differential explicitly for both compartments. Compartment 1 is at
the bottom, so its z1 stays fixed while z1 = zw + Lw of the upper compartment 2 is subject
to change:

dU1 =T∗
1 dS∗

1 + N1
gL1

2
dM∗

1 −
(

N1kBT∗
1

V1
−

N1 M∗
1 gL1

2V1

)
V1

zw − z1
dzw + µ∗

1dN, (41a)

dU2 =T∗
2 dS∗

2 + N2
gL2

2
dM∗

2 +

(
N2kBT∗

2
V2

− N2 M∗
2 gL2

2V2

)
V1

z2 − zw − Lw
dzw + N2 Mgdzw − µ∗

2dN. (41b)

Here, we set dL = dzw and dN = dN1 = −dN2, which results from the direction of motion
of the platform and the flux of the gas.

This case is different from the previous situations because, apart from the motion of
the wall, we also allow for the exchange of particles, which introduces an additional degree
of freedom. As previously guided by the second law of equilibrium thermodynamics, we
sought to subtract from the total energy contributions exchanged with the environment.
We perform the following heuristic consideration to elucidate the structure of the emerging
second law of steady-state thermodynamics.

To write the total energy balance during the process of wall motion, we need to
calculate the energetic cost of a passage of a particle batch dN from compartment 1 to
compartment 2 through the porous wall. One way to achieve this is to use the metaphor
of an external agent, similar to Maxwell’s demon. We calculate the energy the demon has
to spend to displace dN particles from the bottom to the top compartment. The passage
starts when dN particles leave compartment 1, which generates an energy gain in the
demon’s account:

d̄Eb1w = −µ∗
1dN. (42)

Inserting dN particles into the pore end at temperature T(zw) requires, in addition to the
volumetric work, the thermal energy

d̄Ew1p = −3
2

kBT(zw)dN, (43)

which the demon has to subtract from the account. Transition through the region border
is accompanied by the volumetric work performed on both sides of the border. When a
batch of dN leaves compartment 1, the remaining gas has to fill the space. Inside the pore,
space for the incoming batch has to be accommodated. Both processes—expansion and
compression—happen under the same temperature and pressure, which are continuous
over the border. Therefore, having the same magnitude with opposite signs, they cancel
out in the demon’s account. Next, the batch is pushed through the pore, and during that
process, it changes the potential energy,

d̄Ew,pot = −MgLwdN, (44)

and undergoes decompression, performing work

d̄Ww = −

∫ zw+Lw

zw
p(z)

∂
(

V
N (z)

)
∂z

dz

dN. (45)

Both quantities need to be supplied by the demon and thus subtracted from the account.
Once the end of the pore is reached, thermal energy

d̄Ew2p =
3
2

kBT(zw + Lw)dN (46)

is released and added to the demon’s account. Simultaneously, the particle needs to
equilibrate to the bulk conditions by taking energy

d̄Eb2w = µ∗
2dN, (47)
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which has to be paid by the demon. During passage through the region border, again, space
has to be emptied and filled on both sides of the pore end at T(zw + Lw), which does not
influence the demon’s account. The final state of the account and, thus, the energetic cost
of the passage results from summing all the listed effects:

d̄Epass = (µ∗
2 − µ∗

1 + MgLw)dN +
3
2

kB(T(zw + Lw)− T(zw))dN + WwdN. (48)

To complete the energy balance, we also need to account for the potential energy change
due to the motion of the mass of the wall Mw in the gravitational field:

d̄Ew,pot = Mwgdzw. (49)

With the use of d̄Epass and d̄Ew,pot, we can write the second law of stationary thermodynamics:

dU1 + dU2 + d̄Ew,pot − d̄Q1 − d̄Q2 + d̄Epass

= (A (p2(zw + Lw)− p1(zw)) + Mwg)dzw

+

(
3
2

kB(T(zw + Lw)− T(zw))− MgLw + Ww

)
dN ≤ 0. (50)

The first three terms represent the changes in the system. The following two terms represent
the fluxes of energies that can be exchanged with the environment, and the last term
accounts for the additional energetic costs to pass through the obstacle. We stress that all
terms involving the chemical potential µ are canceled out.

To calculate Ww, we use the assumption that the wall is an excellent heat conductor
so that T(zw + Lw) = T(zw). This means that the demon had to support the cost of the
isothermal expansion

Ww = −kBT(zw) ln
p2(zw + Lw)

p1(zw)
, (51)

which we can explicitly insert into the second law of stationary thermodynamics:

dU1 + dU2 + d̄Ew,pot − d̄Q1 − d̄Q2 + d̄Epass

= (A (p2(zw + Lw)− p1(zw)) + Mwg)dzw − kBT(zw)

(
ln

p2(zw + Lw)

p1(zw)
+

MgLw

kBT(zw)

)
dN ≤ 0.

(52)

From the first bracket, one can see that the wall will move until the pressure at the top of
the bottom compartment (1) matches the pressure at the bottom of the top compartment (2)
plus the weight of the wall divided by its surface area:

p1(zw)− p2(zw + Lw) =
Mwg

A
. (53)

This is the same as saying that the wall will move until the force necessary to expand
the bottom compartment matches the force necessary to compress the top compartment
plus the weight of the top compartment (p2(zw + Lw) = p2(z2) +

N2 Mg
A ; see (36d)) plus

the weight of the wall. The second bracket informs about the conditions for the gas flow
through the pores. The stationary state is reached when

p2(zw + Lw) = p1(zw)e
− MgLw

kBT(zw) . (54)

This means that the pressures on both sides of the wall satisfy the jump given by the
hydrostatic pressure drop inside the column of gas in the wall. When the expressions in
the first and second brackets vanish, we find the condition for the position of the cylinder
inside the whole column:

p1(zw) =
Mwg

A
(

1 − e
− MgLw

kBT(zw)

) . (55)
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The above equation, for the stationary state, binds the mass of the wall, its thickness,
temperature, and height above the ground through the pressure at p1(zw). We see that the
pressure needed to squeeze an appropriate amount of gas into the pore depends on the
wall’s temperature. A warm wall requires more gas.

Finally, we expand the fraction in (55) assuming that MgLw
kBT(zw)

≪ 1 and substitute

p1(zw) = ρ1(zw)
kBT(zw)

M to find

p1(zw) = ρ1(zw)
kBT(zw)

M
=

Mwg

A
(

1 − e
− MgLw

kBT(zw)

) =
Mwg

A
kBT(zw)

MgLw
+ . . . (56)

and Archimedes’ principle emerges:

ρ1(zw)Lw A = Mw. (57)

It states that a body submerged in water will rest exactly where the weight of the displaced
fluid is equal to that of the submerged body. Here, equivalently, punching another pore
through the wall will not make it move.

4. Volumetric Heating of an Ideal Gas Separated by an Adiabatic Wall

Volumetric heating. We consider a system similar to the one in Section 2 but with
volumetric heating, [16] and start by describing a single compartment. The additional
energy supplied uniformly throughout the volume is λ per unit of time and unit of volume.
It extends the set of parameters controlling the non-equilibrium steady state of this system
to (T1, T2, λ, V, N). In the steady state, the pressure p and, consequently, the energy density
ϵ = ( f /2)p are constant, similar to the systems discussed in Section 2. For volumetric
heating, the outflow of the heat is balanced by the absorption of heat throughout the
system. Therefore, the temperature profile is obtained from the following local energy
continuity equation:

−κ∇2T(⃗r) = λ, (58)

which assumes Fourier’s law of heat conduction. The coefficient κ is the thermal con-
ductivity, which we assume to be temperature-independent. We apply the mapping of
a non-equilibrium steady-state system to a homogeneous equilibrium system. Solving
Equation (58) for the temperature profile with the boundary conditions T(z = 0) = T1 and
T(z = L) = T2, we find

T(z) = − λ

2κ
z2 +

(
T2 − T1

L
+

λL
2κ

)
z + T1. (59)

After the mapping procedure given by Equation (3), we obtain the effective temperature

T∗ = T1F
(

T2

T1
,

λL2

κT1

)
, (60)

where F (u, w) is a dimensionless function given by

F (u, w) =

√
(u − 1 + w/2)2 + 2w

2
(

tanh−1 u−1+w/2√
(u−1+w/2)2+2w

− tanh−1 u−1−w/2√
(u−1+w/2)2+2w

) . (61)

In the limit λ → 0, the effective temperature T∗ reduces to the value given by Equation (5) for
an ideal gas in the heat flux induced by the temperature gradient T2 − T1 (This can be seen
by using the definition of inverse hyperbolic tangent in terms of logarithms). On the other
hand, if the temperatures on both outer walls are equal (i.e., T2 = T1), the system reduces to
that described in our previous article [16]. The entropy S∗(U, V, N) is given by Equation (14)
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with U(S∗, V, N) = ( f /2)NkBT∗ = ( f /2)pV. For a fixed number of molecules N, the
energy change is determined by the control parameters (T1, T2, λ, V) through Equation (60).
For an incremental and slow change between steady states that does not disturb the pressure
uniformity in the system, we have [35]

dU = d̄Q − pdV and d̄Q = T∗dS∗. (62)

Movable wall. We introduce a constraint into the system in the form of a movable
adiabatic wall parallel to the bounding walls located at z = zw (see Figure 3). The adiabatic
wall does not conduct heat, yet it allows for momentum transport [1]. In the microscopic
picture, both are tied to molecular motion, and the mechanism of the position equilibration
of the wall depends on the statistics of the thermal collisions on both sides of the wall. In
the case of infinite compartments with equal pressure p but different temperatures, the
wall surprisingly moves toward the hotter region [43]. The molecular collision mechanism
is crucial in the case of an array of compartments separated by moving adiabatic walls
that fill the space between two fixed walls kept at different temperatures. As a result of its
existence, we obtain Fourier’s law [44]. Here, although it moves, we treat the adiabatic wall
according to the macroscopic picture. The stable position is set by pressure equality on both
sides, and the temperature profile has an additional boundary condition, i.e., ∂T(z)/∂z = 0,
at the internal wall. Such a wall does not allow for energy transport between compartments
as a result of molecular collisions.

Figure 3. Schematic of a gas confined between two parallel walls of large area A subjected to
a homogeneous external energy input of density λ. The external wall located at z1 = 0 is maintained
at a temperature T1, while the external wall located at z2 = L is maintained at a temperature T2 > T1.
The mobile, thin internal wall is adiabatic, resulting in a jump in the temperature profile.

The temperature profiles T(1)(z) and T(2)(z) for subsystems (1) and (2) with N1 and
N2 molecules, respectively, are

T(1)(z) = − λ

2κ
(z − zw)

2 +
λ

2κ
z2

w + T1,

T(2)(z) = − λ

2κ
(z − zw)

2 +
λ

2κ
(L − zw)

2 + T2.
(63)

The mapping procedure yields

T∗
1 = T1G

(
λz2

w
κT1

)
,

T∗
2 = T2G

(
λ(L − zw)2

κT2

)
,

(64)

where

G(w) =

√
w(w + 2)

2 tanh−1
√

w
w+2

. (65)
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Thus, the energy of the subsystems of N1 and N2 particles under the constraint is

U = U1 + U2 =
f
2

N1kBT1G
(

λz2
w

κT1

)
+

f
2

N2kBT2G
(

λ(L − zw)2

κT2

)
, (66)

with N1 + N2 = N.
Our second law of non-equilibrium thermodynamics states that

dU1 + dU2 − d̄̄Q1 − d̄̄Q1 = −(p1 − p2)dV1 ≤ 0 , (67)

and, therefore, the condition for the whole system to reach a steady state is that the pressure
exerted by each subsystem is equal. This condition is equivalent to

1
zw

G
(

λ∗ z̃2
w

)
= r

N2

N1

1
1 − z̃w

G
(

λ∗

r
(1 − z̃w)

2
)

, (68)

where z̃w = zw/L, r is the temperature ratio r = T2/T1, and λ∗ = λ/(κT1). At equilibrium,
i.e., for r = 1 and λ∗ = 0, the internal wall is located precisely in the middle of the system
at zw = 0. For λ∗ = 0 but r > 1, the position of the internal wall is given by Equation (25).

An analysis of Equation (68) shows that the number of solutions for zw varies from one
to three depending on the values of λ∗ and r. A typical course of the variability of the func-
tion p1(zw)− p2(zw) is shown in Figure 4, compared to the case of no temperature gradient
(r = 1). For r = 1 and small values of λ∗, the curve p1(zw)− p2(zw) is a monotonically
decreasing function with a single zero-crossing point at the midpoint of the system. A local
stability analysis shows that this is a stable position of the internal wall. Upon increasing
the volumetric heating, the function develops a minimum and a maximum but remains
symmetrical with respect to zw = 1/2 with three zero-crossing points at z(1)w = 0, z(2)w = z∗w,
and z(3)w = L − z∗w, as illustrated in Figure 4a. Among these three solutions, further analysis
shows that locally, both z(2)w and z(3)w are stable, whereas z(1)w is unstable. Moreover, the
work required to change the position of the wall from z∗w to L − z∗w

W
z(2)w −>z(3)w

= −
∫ z(3)w

z(2)w
(p1(z)− p2(z))dz (69)

is equal to zero (W
z(2)w −>z(3)w

= 0). This, in turn, means that these two stable steady states coexist.

Figure 4. The difference between the pressures in the two subsystems, normalized by the equilibrium
pressure p0 = NkbT1/V, where T1 is the temperature of the external wall located at z1 = 0, as
a function of zw for three values of λ. In (a), the temperatures at both external walls are equal
(r = T2/T1 = 1). In (b), the temperatures at both external walls are different (r = T2/T1 = 1.5). The

vertical lines mark the positions of the steady states. In (a), these are z(1)w for λ∗ = 1, and z(1)w , z(2)w , and

z(3)w for λ∗ = 40 and 300. In (b), they are z(1)w for λ∗ = 1 and 40, and z(1)w , z(2)w , and z(3)w for λ∗ = 300.
Here, λ∗ = λL2/(κT1).
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In the case of a non-zero temperature gradient, symmetry is broken, and the situation
changes qualitatively. The single solution that exists for smaller values of λ∗ shifts away
from the midpoint toward the lower temperature wall, as might be expected. The difference
p1(z)− p2(z) becomes non-monotonic as λ∗ increases, similar to the behavior observed
in the absence of a temperature gradient. Initially, the extremes of the function develop
below the y = 0 axis. Above the critical value λ∗

c (r), at which the maximum of the function
p1(z)− p2(z) touches the y = 0 axis, three zero crossing points z(1)w < z(2)w < z(3)w appear, as
shown in Figure 4b. These correspond to three non-equilibrium steady states. To evaluate
their stability, we assume that the internal wall is displaced from a specific steady state
in both directions. The pressure difference will push the inner wall toward z(1)w or z(3)w

but push it away from z(2)w . Thus, the middle position is locally unstable, whereas both
positions close to the external walls are locally stable. Considering the work needed to
move the wall from position z(1)w to position z(3)w allows us to determine which steady state
is globally stable. If the work W

z(1)w −>z(3)w
done on the system during this process is negative,

the final position z(3)w corresponds to a globally stable steady state. If this work is positive,
the initial position z(1)w is globally stable. We calculate this work numerically up to machine
accuracy. We find that for r > 1, due to the asymmetry, the work is positive for all values
of λ. Therefore, z(1)w is always the globally stable steady-state position of the internal wall.
Thus, the internal wall is globally stable when moved closer to the colder external wall.

5. Couette Flow of an Ideal Gas

The last example is the Couette flow of an ideal gas [38]. The gas flows between two
walls, as shown in Figure 5. The wall at z2 = L moves at a constant speed v2 in the direction
of the imposed shear force. The wall at z1 = 0 is fixed. The velocity profile is linear:
v(z) = v2z/L. Inside the system there is an adiabatic massless wall at location zw, which
moves at the local speed of the fluid vw = v2zw/L in the same direction as the upper wall.
The wall divides the system into two parts: 1 and 2. The location of the wall is an internal
constraint in the system. We ask the following question: if we allow the wall to move along
the z direction, what will be the final stationary location of this internal wall? This system
differs from the previous ones in two ways. Firstly, the total energy includes both internal
energy and kinetic energy. The latter was absent in the cases discussed in the previous
paragraphs. Secondly, the system exchanges energy with the external world in the form of
heat and work. Continuous input of work maintains a constant flow and constant kinetic
energy despite dissipation due to shear. In the steady state, with the internal wall fixed in
place, the work dissipates as heat within the system. When we release the internal wall,
it starts moving in the z direction. During its motion, the external machine must perform
extra work to overcome extra shear (the constant velocity of the upper wall) and dissipation.

Figure 5. Schematic of a gas confined between two parallel moving walls of large area A. The external
wall located at z1 = 0 is fixed and is kept at a temperature T1, while the external wall located at
z2 = L is moving with velocity v2 and kept at a temperature T2 > T1. The mobile, thin internal wall
is adiabatic, resulting in the temperature profile jump.
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The internal wall divides the system into two subsystems: 1 and 2. According to the
equations of irreversible thermodynamics [38], the change in internal energy dUi for
subsystem i(i = 1, 2) is given by

dUi = d̄Qi + d̄Wi + d̄Di, (70)

where d̄Qi is the excess heat in subsystem i (i = 1, 2), d̄Di is the excess dissipation in
subsystem i, and d̄Wi = −pidVi is the volumetric work performed during the transition
in subsystem i. In this non-equilibrium case, we have T∗dS∗ = d̄Q + d̄D. Thus, the
entropy change is due to both excess heat exchange and dissipation due to shear within
the system. dVi is the change in volume in subsystem i. From the equation of irreversible
thermodynamics [38], it follows that the change in kinetic energy, Ek,i in subsystem i
(i = 1, 2) has the following form:

dEk,i = d̄Ww,i − d̄Di. (71)

The excess work performed by the surface forces, d̄Ww,i, during the motion of the internal
wall in the z direction maintains a constant velocity profile in the system despite changes
in the shear forces at the walls. Again, motivated by the second law of equilibrium
thermodynamics, we generalize the second law as follows: From the sum of the total energy
of the two subsystems, we subtract the heat and work exchanged with the environment
during the processes and require that the difference be non-positive:

dU1 + dU2 + dEk,1 + dEk,2 − d̄Q1 − d̄Q2

− d̄Ww,1 − d̄Ww,2 ≤ 0.
(72)

From this equation, we obtain the expected form of the second law:

−(p1 − p2)dV ≤ 0. (73)

The equality in the above expresion defines the condition for the stationary position of the
wall, given by the equality of pressures p1 = p2 in the two subsystems.

6. Discussion

The system at equilibrium, which exchanges heat with the environment, satisfies the
inequality dU − d̄Q ≤ 0 at a constant temperature. In this contribution, we showed that
the same inequality holds for non-equilibrium states with constant boundary conditions,
including boundary temperature. This inequality is the second law of non-equilibrium
thermodynamics for systems coupled to the environment via heat flux.

In equilibrium thermodynamics, at constant temperature T and pressure p, the sec-
ond law states that dU − TdS − pdV ≤ 0. We can write it in a more general form as
dU − d̄Q − d̄W ≤ 0. In the example of the Couette flow, a similar inequality sets the
direction of spontaneous processes in the system. In general, in a system that exchanges
energy via heat d̄Q and different forms of work d̄Wj, the following inequality should
govern spontaneous processes:

dE − d̄Q − ∑
j

d̄Wj ≤ 0. (74)

E is the system’s total energy, including internal, potential, and kinetic energy. The most
challenging part of our study was identifying the various terms in this equation and
calculating the net heat and work performed during the process.

We are now in a position to discuss the second law in more detail, including all
its subtleties. The second law of equilibrium thermodynamics states that the entropy
of an isolated system reaches its maximum value at equilibrium. However, S(U, V, N)
has a well-defined value for fixed U, V, N. Therefore, we need to compare the entropy
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of the system in its equilibrium state to the entropy of the system in states that are not
reached simply by changing the state parameters U, V, N. We introduce an extra parameter
x, usually in the form of a constraint in the system (like a movable wall), and state that
S(U, V, N, x) is maximized as a function of x for fixed state parameters U, V, N (internal
energy, volume, and number of particles, respectively). Similarly, when the system has
a constant temperature, the Helmholtz free energy F(T, V, N, x) is minimized as a function
of x (the variable describing the internal constraint) at constant T, V, N (temperature,
volume, and number of particles, respectively). We treat this extra parameter as arising
from an external device, i.e., an external device that performs work on the system by
coupling to this internal parameter x and moving the system in a reversible manner
(i.e., via a sequence of equilibrium states) between states that are not accessible by simply
changing T, V, N. Let us define the work performed on the system by this external device
as d̄Wz. In the process of transitioning between states, the first law of thermodynamics
must be obeyed (conservation of energy). Thus, we have dU = d̄Q + d̄Wz. the second
law states that if we move a system from a stable state to a less stable state, the external
device will perform work on our system, i.e., d̄Wz > 0. On the other hand, if we move
from a less stable state to a more stable state, the system will perform work on the device,
and d̄Wz ≤ 0. This inequality is yet another statement of the second law. For example,
in the case of the movable wall, we can apply an external force to the wall and move the
system between states, where the pressures on both sides of the internal wall are different
and satisfy the equality p1 − p2 = F/A, where A is the area of the wall and F is the
external force. Now, we can rewrite the first law of thermodynamics in the following
form: dU − d̄Q = d̄Wz ≤ 0, and thus obtain dU − d̄Q ≤ 0. This form is more convenient
than d̄Wz ≤ 0 because we do not need to create a new device for each case or introduce
new parameters. Everything can be calculated from the system’s state if we know dU and
d̄Q. However, the form dU − d̄Q compares neighboring states and is therefore local. In
non-equilibrium states, this form is insufficient for predicting the direction of spontaneous
processes. In many non-equilibrium situations, there may be many stable local states. For
example, in Section IV, we described the volumetric heating of a gas. There, we identified
three different states that satisfied dU − d̄Q = 0. The question is how to compare these
states and determine which is the most stable. We propose in this paper to calculate the
total work performed along the path, i.e.,

∫
d̄Wz. If the total work is negative, it means

that we have moved from a less stable state to a more stable state. Thus, the second law
would be

∫
(dU − d̄Q) ≤ 0. Because work depends on the chosen path, we additionally

require that this work be maximal, i.e., max
∫
(dU − dQ) ≤ 0. The calculations must be

performed under constant boundary conditions. In simple terms, the second law states that
the direction of a spontaneous process involves removing some energy from the system by
performing work on an external device that keeps the system in a less stable state.

This contribution, together with our previous works on the first law of non-equilibrium
thermodynamics, constitutes a good starting point for applying the presented second law
of non-equilibrium thermodynamics to systems undergoing chemical reactions in photo-
reactors and flow reactors, Rayleigh-Benard convection, thermoosmosis, and, finally, lift
force in hydrodynamic flows.
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