A van der Waals Model of Solvation Thermodynamics
Abstract
:1. Introduction
2. A van der Waals Binary Solution
3. Solvation Thermodynamics
4. Some Calculations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blokzijl, W.; Engberts, J.B.F.N. Hydrophobic Effects. Opinions and Facts. Angew. Chem. Int. Ed. Engl. 1993, 32, 1545–1579. [Google Scholar] [CrossRef]
- Ball, P. Water as an Active Constituent in Cell Biology. Chem. Rev. 2008, 108, 74–108. [Google Scholar] [CrossRef] [PubMed]
- Merlino, A.; Pontillo, N.; Graziano, G. A Driving Force for Polypeptide and Protein Collapse. Phys. Chem. Chem. Phys. 2016, 19, 751–756. [Google Scholar] [CrossRef]
- Ben-Naim, A. Water and Aqueous Solutions; Springer: Boston, MA, USA, 1974; ISBN 978-1-4615-8704-0. [Google Scholar]
- Ben-Naim, A. Hydrophobic Interactions; Springer: Boston, MA, USA, 1980; ISBN 978-1-4684-3547-4. [Google Scholar]
- Ben-Naim, A. Solvation Thermodynamics; Springer: Boston, MA, USA, 1987; ISBN 978-1-4757-6552-6. [Google Scholar]
- Lee, B. Solvent Reorganization Contribution to the Transfer Thermodynamics of Small Nonpolar Molecules. Biopolymers 1991, 31, 993–1008. [Google Scholar] [CrossRef] [PubMed]
- Lee, B. Analyzing Solvent Reorganization and Hydrophobicity. In Methods in Enzymology; Energetics of Biological Macromolecules; Academic Press: Cambridge, MA, USA, 1995; Volume 259, pp. 555–576. [Google Scholar]
- Sharp, K.A.; Nicholls, A.; Fine, R.F.; Honig, B. Reconciling the Magnitude of the Microscopic and Macroscopic Hydrophobic Effects. Science 1991, 252, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Sharp, K.A.; Kumar, S.; Rossky, P.J.; Friedman, R.A.; Honig, B. Size Dependence of Transfer Free Energies. 2. Hard Sphere Models. J. Phys. Chem. 1996, 100, 14166–14177. [Google Scholar] [CrossRef]
- De Young, L.R.; Dill, K.A. Partitioning of Nonpolar Solutes into Bilayers and Amorphous N-Alkanes. J. Phys. Chem. 1990, 94, 801–809. [Google Scholar] [CrossRef]
- Chan, H.S.; Dill, K.A. Solvation: Effects of Molecular Size and Shape. J. Chem. Phys. 1994, 101, 7007–7026. [Google Scholar] [CrossRef]
- Ben-Naim, A.; Mazo, R.M. Size Dependence of the Solvation Free Energies of Large Solutes. J. Phys. Chem. 1993, 97, 10829–10834. [Google Scholar] [CrossRef]
- Ben-Naim, A. Solvation of Large Molecules: Some Exact Results on the Dependence on Volume and Surface Area of the Solute. Biophys. Chem. 1994, 51, 203–216. [Google Scholar] [CrossRef]
- Ben-Naim, A.; Mazo, R. Size Dependence of Solvation Gibbs Energies: A Critique and a Rebuttal of Some Recent Publications. J. Phys. Chem. B 1997, 101, 11221–11225. [Google Scholar] [CrossRef]
- Graziano, G. On the Partitioning of Benzene between Water and n-Alkanes. Chem. Phys. Lett. 2010, 486, 44–47. [Google Scholar] [CrossRef]
- van der Waals, J.D. On the Continuity of the Gaseous and Liquid States. Ph.D. Thesis, Leiden University, Leiden, The Netherlands, 1873. [Google Scholar]
- Hill, T.H. Introduction to Statistical Thermodynamics; Addison-Wesley: Reading, MA, USA, 1960. [Google Scholar]
- McQuarrie, D. Statistical Mechanics; Harper & Row: New York, NY, USA, 1976. [Google Scholar]
- Ashbaugh, H.S.; Truskett, T.M.; Debenedetti, P.G. A Simple Molecular Thermodynamic Theory of Hydrophobic Hydration. J. Chem. Phys. 2002, 116, 2907–2921. [Google Scholar] [CrossRef]
- Graziano, G. Solvation Thermodynamics in a van Der Waals Liquid. Thermochim. Acta 2003, 399, 181–187. [Google Scholar] [CrossRef]
- Graziano, G. A van Der Waals Approach to the Entropy Convergence Phenomenon. Phys. Chem. Chem. Phys. 2004, 6, 406. [Google Scholar] [CrossRef]
- Lee, B. Relation between Volume Correction and the Standard State. Biophys. Chem. 1994, 51, 263–269. [Google Scholar] [CrossRef]
- Reiss, H. Scaled Particle Methods in the Statistical Thermodynamics of Fluids. In Advances in Chemical Physics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1965; pp. 1–84. ISBN 978-0-470-14355-1. [Google Scholar]
- Pierotti, R.A. A Scaled Particle Theory of Aqueous and Nonaqueous Solutions. Chem. Rev. 1976, 76, 717–726. [Google Scholar] [CrossRef]
- Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Graziano, G. Shedding Light on the Hydrophobicity Puzzle. Pure Appl. Chem. 2016, 88, 177–188. [Google Scholar] [CrossRef]
- Graziano, G. Contrasting the Hydration Thermodynamics of Methane and Methanol. Phys. Chem. Chem. Phys. 2019, 21, 21418–21430. [Google Scholar] [CrossRef]
- Silverstein, T.P. The Hydrophobic Effect: Is Water Afraid, or Just Not That Interested? ChemTexts 2020, 6, 26. [Google Scholar] [CrossRef]
- Qian, H.; Hopfield, J.J. Entropy-enthalpy Compensation: Perturbation and Relaxation in Thermodynamic Systems. J. Chem. Phys. 1996, 105, 9292–9298. [Google Scholar] [CrossRef]
- Torquato, S.; Truskett, T.M.; Debenedetti, P.G. Is Random Close Packing of Spheres Well Defined? Phys. Rev. Lett. 2000, 84, 2064–2067. [Google Scholar] [CrossRef]
- Graziano, G. Scaled Particle Theory Study of the Length Scale Dependence of Cavity Thermodynamics in Different Liquids. J. Phys. Chem. B 2006, 110, 11421–11426. [Google Scholar] [CrossRef]
- Graziano, G. Solvation Thermodynamics of Xenon in n-Alkanes, n-Alcohols and Water. Biophys. Chem. 2003, 105, 371–382. [Google Scholar] [CrossRef]
- Widom, B. Intermolecular Forces and the Nature of the Liquid State. Science 1967, 157, 375–382. [Google Scholar] [CrossRef]
- Chandler, D.; Weeks, J.D.; Andersen, H.C. Van Der Waals Picture of Liquids, Solids, and Phase Transformations. Science 1983, 220, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.E.S.; Bloomfield, V.A. Excluded Volume in Solvation: Sensitivity of Scaled-Particle Theory to Solvent Size and Density. Biophys. J. 2000, 79, 2222–2234. [Google Scholar] [CrossRef]
σ1 Å | v1 cm3 mol−1 | αP,1·103 K−1 | b1 Å3 | ΔGc kJ mol−1 | ΔHc kJ mol−1 | ΔSc J K−1mol−1 | ΔSx J K−1mol−1 | ΔHc/T J K−1mol−1 | |
---|---|---|---|---|---|---|---|---|---|
water | 2.80 | 18.07 | 0.257 | 18.0 | 13.0 | 2.3 | −35.9 | −43.6 | 7.7 |
methanol | 3.83 | 40.73 | 1.189 | 46.0 | 8.8 | 8.5 | −1.0 | −29.5 | 28.5 |
ethanol | 4.44 | 58.68 | 1.089 | 71.6 | 8.3 | 8.4 | 0.4 | −27.8 | 28.2 |
CCl4 | 5.37 | 97.09 | 1.226 | 126.7 | 7.6 | 9.7 | 7.0 | −25.5 | 32.5 |
n-hexane | 5.92 | 131.62 | 1.390 | 169.7 | 6.5 | 8.8 | 7.7 | −21.8 | 29.5 |
n-decane | 7.08 | 195.94 | 1.020 | 290.3 | 9.2 | 16.5 | 24.4 | −30.9 | 55.3 |
c-hexane | 5.63 | 108.75 | 1.214 | 146.0 | 7.9 | 10.9 | 10.1 | −26.5 | 36.6 |
benzene | 5.26 | 89.40 | 1.240 | 119.1 | 8.5 | 12.0 | 11.7 | −28.5 | 40.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tortorella, A.; Graziano, G. A van der Waals Model of Solvation Thermodynamics. Entropy 2024, 26, 714. https://doi.org/10.3390/e26080714
Tortorella A, Graziano G. A van der Waals Model of Solvation Thermodynamics. Entropy. 2024; 26(8):714. https://doi.org/10.3390/e26080714
Chicago/Turabian StyleTortorella, Attila, and Giuseppe Graziano. 2024. "A van der Waals Model of Solvation Thermodynamics" Entropy 26, no. 8: 714. https://doi.org/10.3390/e26080714
APA StyleTortorella, A., & Graziano, G. (2024). A van der Waals Model of Solvation Thermodynamics. Entropy, 26(8), 714. https://doi.org/10.3390/e26080714