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Abstract: We developed a novel machine learning (ML) algorithm with the goal of producing
transparent models (i.e., understandable by humans) while also flexibly accounting for nonlinearity
and interactions. Our method is based on ranked sparsity, and it allows for flexibility and user
control in varying the shade of the opacity of black box machine learning methods. The main tenet
of ranked sparsity is that an algorithm should be more skeptical of higher-order polynomials and
interactions a priori compared to main effects, and hence, the inclusion of these more complex terms
should require a higher level of evidence. In this work, we put our new ranked sparsity algorithm
(as implemented in the open source R package, sparseR) to the test in a predictive model “bakeoff”
(i.e., a benchmarking study of ML algorithms applied “out of the box”, that is, with no special tuning).
Algorithms were trained on a large set of simulated and real-world data sets from the Penn Machine
Learning Benchmarks database, addressing both regression and binary classification problems. We
evaluated the extent to which our human-centered algorithm can attain predictive accuracy that rivals
popular black box approaches such as neural networks, random forests, and support vector machines,
while also producing more interpretable models. Using out-of-bag error as a meta-outcome, we
describe the properties of data sets in which human-centered approaches can perform as well as
or better than black box approaches. We found that interpretable approaches predicted optimally
or within 5% of the optimal method in most real-world data sets. We provide a more in-depth
comparison of the performances of random forests to interpretable methods for several case studies,
including exemplars in which algorithms performed similarly, and several cases when interpretable
methods underperformed. This work provides a strong rationale for including human-centered
transparent algorithms such as ours in predictive modeling applications.

Keywords: model selection; feature selection; lasso; explainable machine learning

1. Introduction

If accurate prediction is the goal, it is a commonly held thought that a model need not
be traditionally interpretable. On the contrary, if it helps prediction, the predictors should
be allowed to interact freely and associate with the outcome nonlinearly in unfathomable
ways. After all, who are we humans to impart our will that a predictive model’s inner
workings be understandable?

Since Breiman’s 2001 tale of two cultures [1], the dichotomy between black box predic-
tion and “transparent” statistical models has been the topic of much debate in data science.
Black box models are thought to mirror the truly ethereal data-generating mechanisms
present in nature; Box’s “all models are wrong” aphorism incarnated into the modeling
algorithm itself. These opaque approaches are not traditionally interpretable. Transparent
models, on the other hand, we define as traditional statistical models expressed in terms of
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a linear combination of a maximally parsimonious set of meaningful features. Transparency
is reduced as more features are added, especially features that are difficult to interpret (like
interactions and polynomials), or those involving complex transformations. Under this def-
inition, transparency is a spectrum where the most transparent model is the “null” model
(where new predictions are all set to the expected outcome in the population), followed
by single-predictor models, which are often called “unadjusted” models. Our definition
resembles that for typical applications of Occam’s Razor in model selection, where the
number of parameters in the model translates directly to its simplicity, except that we
consider some parameters (interactions, for instance) less transparent than others.

This paper challenges the notion that less transparency actually leads to improvements
in predictive accuracy. We have developed an algorithm called the sparsity-ranked lasso
(SRL), which prefers transparent statistical models, and we have shown that it outperforms
other methods for sifting through derived variables such as polynomials and interactions
(when both such relationships truly have signal and more so when they do not) [2]. In this
work, we benchmark the performance of the SRL on 110 data sets from the Penn Machine
Learning Benchmarking (PMLB) Database [3,4], measuring the extent to which a resulting
model’s predictive performance suffers (if it does at all) relative to a set of black box methods.
We hypothesize that in many cases, transparent modeling algorithms actually produce
better models, and in most cases, they perform comparably to black box alternatives.

Our paper is organized as follows. We first provide a brief overview of the SRL
and related methodologies, as well as a description of the black box methods we will
use for comparison. We then describe the benefits of transparent approaches over black
box approaches from a variety of perspectives, and we set the stage for the experimental
comparison of all algorithms applied to 110 data sets from the PMLB, which contain a mix
of numeric outcomes (regression tasks) and binary outcomes (classification tasks). In our
results section, we describe the data set characteristics and present our model performance
both overall and then diving deeper into several illustrative case studies. We conclude
with a discussion of our findings in context, describing limitations and suggestions for
future work.

2. Materials and Methods
2.1. Sparsity-Ranked Lasso

Opening Pandora’s box of derived variables, also known as feature engineering, can
turn any medium-dimensional problem into an exceptionally high-dimensional one. Even
if we restrict these derived variables to include only pairwise interactions or polynomials
of existing features, the number of candidate variables grows combinatorically with the
number of features p. Therefore, we developed a high-dimensional solution to this problem:
the sparsity-ranked lasso (SRL).

The SRL was developed as an algorithm based on the Bayesian interpretation of the
lasso [5] to favor transparent models (i.e., models with fewer interactions and polynomials).
The SRL is based on optimizing the following function with respect to the parameters β,
which measure the associations between an outcome y and the columns of a covariate
matrix X:

||y − Xβ||2 + λ
p

∑
j=1

wj|β j|

The hyperparameter λ represents the extent of overall shrinkage toward zero, and the
nature of the discontinuity in the penalization renders some estimated coefficients exactly
zero, inherently deselecting them from the model. The lasso and the SRL are both typically
tuned using model selection criteria or cross-validation.

The SRL initially resembles the adaptive lasso [6], using penalty weights wj to increase
the penalization (in other words, skepticism) for some columns of X and to decrease it
for others. In the SRL’s default implementation, the set of supplied covariates (denoted
as A and henceforth considered “main effects”) becomes supplemented with all of the
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pairwise interactions (B) and second-order polynomials (C) as additional columns such
that X = [A B C]. Without special attention to the relative differences in the size and
complexity of these interactions and polynomials in the penalization, the lasso selects
too many interactions and polynomials (which renders the model unnecessarily opaque).
We have shown that setting wj =

√pj for all j, where pj represents the size of the set of
covariates to which covariate j belongs, calibrates the prior information contributed by
the collection of interactions to be equal to that of the collection of main effects, naturally
inducing skepticism (higher penalties) on interactions without having to tune additional
hyperparameters. For polynomial penalization, a slightly modified penalty weight is
used based on the cumulative dimension size; see Peterson and Cavanaugh [2] for further
details. The SRL is currently implemented in the sparseR R package available on the
Comprehensive R Archive Network (CRAN). The SRL can successfully sift through a
large, high-dimensional set of possible interactions and polynomials while still preferring
transparency, which is in contrast to alternative methods that tend to over-select interactions
and higher-order polynomials [2,7]. The k and poly arguments to the sparseR function
allow the user to tune the maximum order interaction and polynomial, respectively; these
values default to k = 1 (all pairwise interactions) and poly = 2 for up-to-second-order
polynomials. The log-likelihood loss function replaces the least squares term in the above
equation when the outcome is non-Gaussian.

In Peterson and Cavanaugh [2], we used extensive simulation studies to characterize
the properties of the SRL, comparing SRL to state-of-the-art competitors for the selection of
interactions and polynomials, focusing on predictive accuracy and false discovery rates
in the context of generating models that have varying numbers of “true” nonlinear effects
(polynomials/interactions). Our results indicated the SRL was superlative in settings
where true models were sparse in terms of nonlinear/interacting effects, and especially
when no such effects existed. In the high-dimensional setting, where we expect many null
relationships, this property is highly advantageous. Furthermore, the strong performance
of the SRL was found to hold under varied settings with respect to the correlation structure
of the covariates. However, comparing SRL to smoothing splines in lower-dimensional
settings, we found the performance to be less favorable when the nonlinear effects could
not be well-approximated by polynomials, as well as when the covariates were highly
skewed in distribution (though the normalization of skewed covariates partially mitigated
the latter issue). In related work, we extended the SRL to time series data, showing via
extensive simulations that the SRL could outperform alternatives in settings with com-
plex autoregressive structures or high-dimensional exogenous features [8]. An additional
contribution of these simulations was to show that, in addition to finding well-predicting
transparent models, the SRL is often computationally quicker than alternatives.

2.2. Black Box Algorithms

In this work, we primarily utilize the black box supervised learning algorithms briefly
described in this section. Random forest algorithms [9] are an ensemble-based learning
method for continuous and categorical endpoints. They operate by constructing many
candidate decision trees using bootstrapped and sub-sampled training data, predicting
the outcome as the mode of the classes (classification) or mean prediction (regression) of
the individual trees. Whereas individual trees (weak learners) may over- or under-fit the
training data, using an ensemble improves predictions by averaging multiple decision
trees. Support Vector Machines (SVMs) [10] work by finding the hyperplane that best
separates observations in the feature space. SVMs are effective in high-dimensional spaces
and are particularly useful for cases where the number of features exceeds the number of
observations. Extreme Gradient Boosting (XGBoost) [11] is an efficient implementation of
the gradient boosting framework. Similarly to random forests, XGboost builds an ensemble
of trees, except it does so in a sequential manner, where each tree tries to correct the errors of
the previous one. XGBoost also incorporates regularization to prevent overfitting. Neural
networks are a set of algorithms inspired by the structure and function of the human brain,
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designed to recognize patterns [12]. They consist of layers of nodes (neurons) that process
input data and pass them through successive layers. Each node assigns weights to its inputs
and passes them through an activation function to determine the output. This extremely
flexible setup makes neural networks capable of modeling complex, nonlinear relationships.
They work particularly well at text, image, and speech recognition. Moreover, a number
of different types of architectures have been built for different types of problems, thereby
expanding the array of potential applications of the method [13].

2.3. Issues with Black Box Algorithms

In classical statistical modeling, the overarching objective is often delineated as either
descriptive or predictive. Descriptive modeling focuses on providing a succinct, inter-
pretable characterization of how a set of explanatory variables is jointly associated with
the outcome, with the primary inferential goal centered on the estimation and inference
of effects (i.e., regression parameters). Predictive modeling focuses on the accurate ap-
proximation of new outcomes. A commonly held perspective is that transparency is only
an important consideration with descriptive modeling. With large samples, predictive
accuracy generally improves as more nuanced and subtle effects are added to the model,
leading to a less parsimonious and less interpretable model structure. Black box algorithms
are built upon the philosophy that reality is too complex to succinctly encapsulate with a
transparent model structure and that optimal prediction is best accomplished by sacrificing
interpretability in order to mirror the intricacies and sophistication of reality.

However, in many modeling applications, even if prediction is the primary goal,
description is still an important secondary objective. Investigators are generally not only
concerned with the quality of the predictions but also with the manner in which they are
derived. Without knowing which features are especially important in driving a prediction,
or how different variables interact with each other, it becomes difficult to build stakeholder
trust in a model. Further, as predictive models are becoming more ubiquitous in society, it
is becoming increasingly clear that by hiding biases under the veil of the black box, opaque
modeling methods can facilitate unfair systematic discrimination. Outside of biomedical
settings, such issues have been described in predictive policing, credit scoring systems,
hiring tools, and many more applications [14–17]. In health settings, such models can
perpetuate and exacerbate existing systemic health disparities [18]. In such high-stakes
cases when fairness dictates that model-based decisions should be justifiable, opaque
modeling methods that worsen disparities are especially problematic; rather than building
trust, opaque models tend to erode trust for some while producing excessive trust in others.
Transparent models mitigate this issue by making unfair biases on behalf of the model
very difficult to hide. Transparency is also important to facilitate the regulation of modern
technological innovations, such as autonomous vehicles, smart devices, and large language
models. For example, the General Data Protection Regulation (GDPR) provides a legal
framework that sets guidelines for the collection and processing of personal information
from individuals who live in and outside of the European Union. Adherence to such
guidelines may be difficult to achieve by opaque algorithms.

Due to their complexity, black box algorithms can also be difficult to debug or trou-
bleshoot. A related problem is that black box models may degrade over time due to changes
in the data distribution (“concept drift”) [19]. Detecting and adapting to the evolution of
the data-generating mechanism can be challenging if one is unaware as to which model
structures are impacted by the resulting changes.

Additionally, black box algorithms are prone to overfitting and may therefore perform
much more effectively in predicting training data than validation data. Moreover, if the
features used to build the algorithm are extracted through an automated search as opposed
to scientific knowledge, features that are spuriously associated with the outcome may
naturally enter the model. Such features may degrade the quality of the prediction if
conditions lead to a disconnection in the association. For instance, since the flu season
generally coincides with the college basketball season, the number of college basketball
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games played in a given week during the flu season is typically highly correlated with flu
incidence during the same week. However, during atypical flu seasons, such as the 2009
H1N1 pandemic, this association will disappear.

Our philosophy is that a certain degree of complexity is often warranted for high-
quality prediction. Yet, a model that is primarily based on meaningful, pronounced features
and that only incorporates more nuanced and subtle features if the evidence provided by
the data is sufficiently compelling to warrant their inclusion, will often be transparent and
interpretable. Moreover, we will subsequently show that such models fit via the SRL or
lasso perform as well as or better “out of the box” than a set of popular black box methods
that disregard the principle of parsimony and potentially violate Occam’s Razor in a large
collection of data sets.

2.4. PMLB Processing Steps

PMLB data sets were loaded using the pmlbr R package [20]. Metadata, including
predictor types, endpoint types, and feature counts, were extracted from the PMLB GitHub
repository (https://github.com/EpistasisLab/pmlb, accessed on 25 June 2024). We re-
stricted analysis of the data sets to those with binary or continuous endpoints (categorical
endpoint sets were discarded), with fewer than 10,000 observations, with 50 or fewer
predictors, and with fewer than 100,000 total predictor cells (predictor columns times
observations). It became evident that simulated data sets based on the Friedman simulation
model [21] made up a comparably large fraction of the remaining data sets, and therefore,
these were also removed. For categorical predictors, all classes that appeared in less than
10% of observations were combined into a single class. Prior to modeling, all data sets were
split into training and test sets, where approximately 20% of observations were set aside in
the test set. For each data set, all models were fit and evaluated using the same training
and test sets.

2.5. Modeling Procedures

As this experiment is intended to be a bakeoff, in that models are compared “out of
the box”, algorithms were very minimally tuned.

All random forest, SVM, neural network, and XGBoost models were fit using simple
10-fold cross-validation (CV) and a grid search to tune hyper-parameters. Black box
methods were fit with the caret R package [22], which serves as a wrapping package for the
following fitting engines: random forests with randomForest [23], SVMs with kernlab [24],
feedforward neural networks with nnet [25], and XG-boost with xgboost [26]. The caret
package’s defaults were used in all cases; these and other tuning parameters are described
in Table S1.

The sparseR package [2] was used to fit SRL and lasso models. By default, the lasso
and the SRL use 10-fold CV to search for an optimal value of a single tuning parameter
(λ), which controls the overall level of penalization. The SRL fit with sparseR has two
noteworthy additional tuning parameters that can be modified manually: k, which refers to
the number of order interactions to consider, and poly, which refers to the maximum order
polynomial to consider. The default value for k is 1, which searches among all pairwise
interactions. The default value for poly is 2, which searches for up-to order 2 polynomials
and thereby allows for limited nonlinearity of features. The sparseR package uses the
ncvreg package as a backend fitting engine [27]. Further modifications are available; see
?sparseR for more detailed documentation.

For numeric outcomes, we tuned all algorithms with CV-based root mean squared
error (RMSE), and we also computed the CV-based R-squared (its traditional formulation
using the sum of squared errors) for evaluation. The RMSE and R-squared measure the
aggregate distance between an observation’s model-based prediction and its true value.
The RMSE measures this distance in the same unit as the outcome of interest, while the R-
squared does so in a unitless fashion, where a value of 0 indicates that the model performs
identically to predicting the mean value for all observations (i.e., no predictive value of

https://github.com/EpistasisLab/pmlb
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the model), and a value of 1 means perfect prediction. Similarly, we computed test set-
based R-squared and RMSE values for each combination of algorithm and PMLB data set
for evaluation. Binary endpoints were tuned using CV-based deviance for the lasso and
the SRL (sparseR’s default) and CV-based accuracy for methods trained with caret (its
default). While both binomial deviance and accuracy are meant to assess the quality of a
model’s predictions, the former also considers prediction “confidence” in its computation; a
highly confident, yet incorrect, prediction is penalized worse than a less certain, though still
incorrect, prediction. Binary endpoints were evaluated using the area under the receiver
operating characteristic curve (AUC) for each model’s predictions on the test set. The AUC
quantifies the overall ability of the model to classify observations. Models are simpler
to compare with the AUC than the accuracy when classes are imbalanced; a value of
1 indicates perfect prediction, whereas a value of 0.5 indicates that a model is no better than
randomly guessing the outcome based on the overall proportion of observations in each
class. In some cases, the out-of-bag R-squared estimate was negative; in those instances,
the R-squared was set to zero prior to subsequent modeling.

2.6. Meta-Modeling for Inference

To perform inferences on the differences in average performance across modeling
algorithms, we fit linear mixed models to the outcomes of CV-based R-squared, out-of-
sample R-squared, and AUC values. In these models, each data set received a random
intercept to account for data set-specific differences in the signal-to-noise ratio. We included
fixed effects for the modeling algorithm, with our SRL serving as the baseline for inference.
Comparisons between the SRL and competitors were assessed using the lmerTest package,
which uses Satterthwaite’s approximated degrees of freedom for coefficient hypothesis
tests [28].

3. Results
3.1. Data Set Characteristics

Descriptive statistics for our sampled PMLB data sets are presented in Table 1 for
the overall sample and stratified by endpoint type. The size of the data sets (sample size
vs number of features) is visualized in Figure 1, showing a fairly uniform distribution
along our studied range of features and sample sizes for both categorical and continuous
endpoint types. On average, data sets had five categorical features (standard deviation
(SD): 7), and five continuous features (SD: 6).

100
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3 10 30
Number of features

S
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e 

si
ze

 (
n)

Binary

Numeric

Figure 1. Overview of data set sizes in the Penn Machine Learning Benchmarks database.
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Table 1. Means (standard deviations) of data set characteristics. Class imbalance refers to a measure
of class distribution of the target (outcome) variable, with a value approaching 0 indicating perfectly
balanced target classes and a value approaching 1 indicating extreme class imbalance, where nearly
all instances belong to one class. N refers to the number of data sets under study.

Characteristic Overall, N = 110 Binary, N = 69 Numeric, N = 41

Sample size 856.21 (1619.0) 611.93 (795.8) 1267.32 (2406.2)
Number of features 10.15 (7.0) 12.07 (7.6) 6.93 (4.4)
Number of numeric features 5.14 (6.0) 4.10 (6.5) 6.88 (4.5)
Number of categorical features 5.02 (7.0) 7.97 (7.4) 0.05 (0.3)
Class imbalance 0.08 (0.1) 0.11 (0.2) 0.04 (0.1)

3.2. Overall Model Performance

Descriptive results for model performances are shown in Table 2. For continuous
endpoints, the lasso and SRL had the best-performing model for test data in 12.8% and
17.9% of the data sets (totaling 30.7%), and the SRL was within 5% out-of-sample predictive
accuracy of the best performing model in nearly two thirds of data sets. For binary
endpoints, the lasso and SRL performed best in 22.7% and 34.8% of the data sets (totaling
57.5%), and the SRL was within 5% of the best model in 78.8% of the data sets. The lasso
and SRL were generally faster than the black box methods.

Table 2. Performance across all data sets. SRL: sparsity-ranked lasso. NN: neural networks. RFs:
random forests. SVMs: support vector machines. XGB: extreme gradient boosting.

SRL Lasso NN RFs SVMs XGB

Continuous
CV Rsq; mean (SD) 69.4 (23) 65.4 (22) 47.7 (29) 64.4 (26) 54.4 (28) 69.1 (20)
Test Rsq; mean (SD) 68.2 (25) 65 (25) 54 (31) 72 (24) 61.2 (26) 68.7 (26)
Best performance (%) 17.9 12.8 20.5 35.9 15.4 10.3
Within 5% of best (%) 61.5 35.9 35.9 59.0 35.9 46.2
Run time (s); mean (SD) 3.9 (3) 2.6 (2) 8.1 (9) 16.4 (17) 10.6 (13) 15.6 (5)

Binary
Test AUC; mean (SD) 85.9 (15) 82.4 (17) 83.4 (16) 85.1 (18) 73.3 (18) 85.3 (16)
Best performance (%) 34.8 22.7 27.3 37.9 6.1 39.4
Within 5% of best (%) 78.8 65.2 56.1 69.7 18.2 71.2
Run time (s); mean (SD) 11.6 (11) 7.2 (8) 12.7 (10) 13.9 (14) 8.3 (8) 14.9 (3)

Inferential results comparing models in terms of CV-based R-squared, out-of-sample
R-squared, and out-of-sample AUC values are displayed in Table 3 and summarized in
Figure 2. The SRL generally performed slightly better than the lasso, though this difference
was only significant for binary endpoints, where the SRL had test set mean AUCs that
were 3.5 percentage points higher (95% CI: 1–6; p = 0.018). Similarly, the SRL generally
performed significantly better than neural networks and SVMs across most outcome metrics.
Random forests and XG-boosting performed generally similar to SRL, with all performance
comparisons being insignificant.
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Table 3. Linear mixed (meta) models. Estimates refer to the expected change in the prediction
outcome relative to SRL controlling for data set-specific prediction difficulty. The Int. (intercept) term
refers to the expected value for the listed measure for the SRL. SRL: sparsity-ranked lasso. NNs:
neural networks. RFs: random forests. SVMs: support vector machines. XGB: extreme gradient
boosting. p refers to the mixed model-based p-value testing the hypothesis that each coefficient is
equal to zero.

Term CV Rsq Test Rsq AUC

Estimate (CI) p Estimate (CI) p Estimate (CI) p

Int. 69.4 (62, 77) <0.001 68.2 (60, 77) <0.001 85.9 (82, 90) <0.001
Lasso −4 (−11, 3) 0.28 −3.2 (−11, 4) 0.39 −3.5 (−6, −1) 0.018
NNs −21.7 (−29, −14) <0.001 −14.2 (−22, −7) <0.001 −2.5 (−5, 0) 0.092
RFs −5 (−12, 2) 0.18 3.8 (−4, 11) 0.32 −0.8 (−4, 2) 0.60
SVMs −15 (−22, −8) <0.001 −7 (−14, 0) 0.063 −12.6 (−16, −10) <0.001
XGB −0.3 (−8, 7) 0.93 0.5 (−7, 8) 0.90 −0.6 (−3, 2) 0.70

XGB

SVM

RF

NN

Lasso

−0.2 0.0 0.2
Avg. change in relative to SRL

CV−Rsq

Test Rsq

Test AUC

Figure 2. Linear mixed model results contrasting the expected change in predictive accuracy com-
pared to SRL, controlling for data set-specific prediction difficulty. CV: cross-validation. AUC: area
under the receiver operator curve.

Figure 3 displays a comparison of random forests to the SRL in terms of out-of-sample
performance for all data sets. Here we note that random forests and SRL performed
similarly on the majority of data sets. There are a handful of cases in which random forests
highly outperformed the SRL. A subset of data sets denoted in Figure 3 as red points will
be investigated in the next section as illustrative case studies.

3.3. Case Studies

Here, we present six case studies, starting with two exemplars of the pattern evident
in Figure 3, where the SRL and random forests models performed similarly, and concluding
with four outliers, where the SRL seemed to be underperforming relative to random forests.
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Figure 3. Comparing the predictive performance of random forests to that of SRL on held-out test
sets. Each point represents a data set.

3.3.1. Exemplars

The first case study is the 503_wind data set, for which the PMLB goal is to predict
daily average wind speed at a weather station in Malin Head, Ireland, based on the date
and the wind speeds recorded by 11 weather stations in the Republic of Ireland in the years
1961–1978 [29]. This data set has 6574 observations, and it is further summarized in Table S2.
We found that the SRL outperformed all other methods in terms of test R-squared and
test RMSE, with a notably faster run time than the random forests, SVMs, and, to a lesser
extent, neural network methods. Results for the 503_wind data set are provided in Table 4.
In addition to the SRL being the best performer, it also produced parameter estimates
that are interpretable. In Figure 4, we present the effects for three types of significant
relationships found by the SRL in the 503_wind data: linear, linear with an interaction
effect, and a nonlinear effect.
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Figure 4. For the 503 wind data set, SRL discovered significant and interpretable linear relationships
(left), interaction effects (center), and nonlinear relationships (right).
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Table 4. Comparison of performance for the 503_wind set. SRL: sparsity-ranked lasso. NNs: neural
networks. RFs: random forests. SVMs: support vector machines. XGB: extreme gradient boosting.

Model Test R-Squared Test RMSE Run Time (s)

SRL 0.773 3.12 12.8
Lasso 0.741 3.34 8.4
RFs 0.766 3.17 48.7
SVMs 0.744 3.32 34.8
NNs 0.667 3.78 17.3
XGB 0.770 3.14 4.1

The second case study is the hungarian data set, which consists of a subset of patients
undergoing catheterization at the Hungarian Institute of Cardiology in Budapest between
1983 and 1987 [30]. The PMLB prediction goal is to predict the presence of heart disease
based on a set of 14 variables (summarized in Table S3). The SRL was the fourth best
performing model in terms of the AUC; however, the performance of the top four models
was extremely close, with each having an AUC value within 0.032 of one another. Results
for the hungarian data set are provided in Table 5. While the SRL did not outperform
random forests for this data set, it did provide interpretable parameter estimates relative to
random forests for only a marginal reduction in performance. In Figure 5, we present the
effect for two types of significant nonlinear relationships found by the SRL in the hungarian
data: an interaction effect and a quadratic effect.
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Figure 5. For the hungarian data set, SRL discovered significant and interpretable interaction
relationships (left), as well as a meaningful quadratic relationship (right).

Table 5. Comparison of performance for the hungarian data set. SRL: sparsity-ranked lasso. NNs:
neural networks. RFs: random forests. SVMs: support vector machines. XGB: extreme gradient boosting.

Model AUC Runtime (s)

SRL 0.885 5.8
Lasso 0.894 2.5
RFs 0.899 7.9
SVMs 0.821 9.6
NNs 0.917 10.5
XGB 0.811 18.1
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3.3.2. SRL Underperforming RFs

In this section, we delve more deeply into examples where the SRL appears to be per-
forming worse than alternative methods (case studies highlighted in Figure 3 to the right of
the 45-degree line); these data sets are named analcatdata_apnea1, analcatdata_apnea2,
analcatdata_boxing1, and parity5+5. Descriptive statistics for all of the variables in-
cluded in these data sets are shown in Tables S4–S6. The apnea-related data sets are set up
as regression tasks (numeric outcomes) by the PMLB, and they are originally described in
Steltner et al. [31]. The other data sets, analcatdata_boxing1 and parity5+5, are binary
classification tasks, but we were unable to trace them to their original sources.

For the sleep apnea data sets analcatdata_apnea1 and analcatdata_apnea2, the SRL,
lasso, and SVMs performed considerably worse in terms of test and cross-validated R2

values compared to random forests and XGboost (Table 6).

Table 6. Comparison of performance for the sleep apnea data sets. SRL: sparsity-ranked lasso. NNs:
neural networks. RFs: random forests. SVMs: support vector machines. XGB: extreme gradient
boosting. s: seconds.

Model R-Squared (CV) R-Squared (Test) Run Time (s)

556_analcatdata_apnea2
SRL 0.247 0.376 1.8
Lasso 0.243 0.385 1.3
RFs 0.760 0.956 20.4
SVMs 0.111 0.021 11.6
NNs 0.292 0.719 6.2
XGB 0.684 0.930 17.9

557_analcatdata_apnea1
SRL 0.276 0.296 1.7
Lasso 0.297 0.299 1.1
RFs 0.810 0.830 17.6
SVMs 0.082 0.039 8.9
NNs 0.635 0.823 6.3
XGB 0.859 0.820 19.1

Examining the target outcomes for these data sets (Figure 6), we see that both outcomes
are highly skewed with a point mass at zero, rebutting even normalization methods [32,33].
Given these distributions, it makes sense for the models to be fit better by more robust
methods. While SRL (and lasso) algorithms could be introduced that adequately capture
zero inflation and right skew, that is beyond the scope of this paper.

Upon further inspection, we noticed that the sparseR package by default removes
interactions or other terms with near-zero variance via the recipes package [22,34], which
in this case removed all of the candidate interaction features from the model prior to the
supervised part of the algorithm. By adding the argument filter = "zv", only zero-
variance variables are removed, and therefore, any interactions with variance are retained.
The code for applying this solution and its results are shown in the Supplementary Materials.
Once this was implemented for the analcatdata_apnea2 data set, the SRL achieved a CV-
based R-squared value of 0.91, and a compact model (within one standard error of the
RMSE of the best model) achieved a CV-based R-squared value of 0.88. Coefficients
from the latter model and their marginal false discovery rates [35] can be viewed in
the Supplementary Materials as well. Briefly, we can interpret the model as follows:
observations with Automatic ∈ {0, 3} or those where Scorer_1 ∈ {0, 3} were associated
with higher values of the target variable. If Automatic = 0 and Scorer_1 = 0, there was a
multiplicative modest increase in the target, but when both variables were equal to three,
the target jumped up to the extremely high tail of the distribution, increasing by over
13,000 on average. These results are practically identical for the analcatdata_apnea1
data set.
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Figure 6. Distributions of target variables for sleep apnea data sets (top: raw; bottom: normalized).

For the analcatdata_boxing1 and parity5+5 data sets, the results are summarized in
Table 7. The analcatdata_boxing1 data set contains 120 observations and only three vari-
ables: Official (binary), Round (integer from 1–12), and the target. Due to the small sample
size, we repeated the train–test split many times and noticed that, while there was sub-
stantial variability in the test AUC, the SRL still performed worse than the random forests
method. We suspected that the difference may have been due to a complex nonlinear rela-
tionship between Round and the target. By default, sparseR only looks for pairwise interac-
tions, main effects, and second-order polynomials, but it is readily extendible higher-order
polynomials (while still preferring lower-order terms; see Peterson and Cavanaugh [2] and
Peterson [7]). Here, setting poly = 7 allows for up to seventh-order polynomials to be
considered. The results for all three models are shown in Figure 7, in which we confirm
that this additional flexibility with SRL yields notably better predictions.

Table 7. Comparison of performance for binary outcome data sets where SRL underperformed. SRL:
sparsity-ranked lasso, NNs: neural networks. RFs: random forests. SVMs: support vector machines.
XGB: extreme gradient boosting. AUC: area under the receiver operator curve. s: seconds.

Model AUC Runtime (s)

analcatdata_boxing1
SRL 0.445 2.6
Lasso 0.758 1.5
RFs 0.906 1.6
SVMs 0.594 3.5
NNs 0.727 2.3
XGB 0.898 14.4

parity5+5
SRL 0.500 18.0
Lasso 0.500 6.8
RFs 0.971 1.2
SVMs 0.500 4.1
NNs 0.990 31.1
XGB 0.443 12.5
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Figure 7. Distribution of test set area under the receiver operator curve (AUC) for random forests
(RFs, left), SRL (default, middle), and SRL with up to seven-order polynomials selected (right) for
50 different train/test splits for the analcatdata_boxing1 data set.

The parity5+5 data set consists of 1124 observations, 10 binary predictors, and a
single binary target variable. It seems to us to be designed to showcase a scenario where
transparent modeling methods are set up for failure. The target variable for this data set
uses the nonlinear parity function based on a random subset of size five of the features.
In this case, we used the built-in variable importance metrics for the random forests to
discover that the subset of “important” features were the second, third, fourth, sixth,
and eighth features. We could then confirm the importance of these variables by summing
these binary features and recognizing that the outcome was always 1 when this subset
sum was even and always 0 otherwise. Finally, we note that adding this summation as a
candidate feature to the SRL and adding polynomial terms to sparseR did improve the
model fit considerably, but as this modification requires a hybrid approach (i.e., it blends
information from random forests and SRL), it does not provide a fair comparison of our
method to black box methods, and we do not describe these results.

4. Discussion

We are not the first to suggest that transparent modeling methods perform compara-
bly to black box methods; Christodoulou et al. [36] found that when aggregating across
biomedical data sets from 71 real studies, logistic regression performed, on average, exactly
the same as black box alternatives.

Data sets are growing increasingly large and diverse, and the subset of data set
examples we explored in the PMLB, while larger than any previous study comparing
such methods, is limited in generalizability to data sets with similar outcomes, numbers
of features, signal-to-noise ratios, and variable distributions. In particular, we cannot
generalize these findings to especially high-dimensional data sets (p > 50) or massive
data sets (n > 10,000 or np > 100,000), as these were not included in our analysis. This
comparison and extension would be welcome in future work, as black box models are
said to be data-hungry, performing best in these massive data settings [37]. However, this
extension would require the improved scalability of various methods (including the SRL) as
currently implemented. Another limitation to our study is the fact that the PMLB database
has sparse metadata available for its data sets, and we were unable to trace many of the
data sets back to their original sources.

Given the currently available methods and software, the SRL and lasso are less read-
ily applied to quantitative outcomes whose distributions involve a high degree of non-
normality. In such cases, random forests and other robust algorithms may outperform
our transparent ones. However, robust transparent modeling algorithms might also be
considered in such settings such as robust regression or quantile regression. In our example,
we found that a simple tweak to the defaults in the SRL yielded a model on par with black
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box modeling, but we suspect this fix may only apply to data sets with large signal-to-noise
ratios; often a predictor capable of delineating different outcome modes is not available.

We did not investigate the implementation of stacking or other ensemble-based ap-
proaches [38,39]. Under our definition of transparency, such approaches are not transparent.
Therefore, if a transparent model fits the data best, it will improve the performance of black
box ensembles, but at a high cost of reduced interpretability. Still, in practice it is advisable
to fit such an ensemble and compare its performance to transparent methods alone. One
can compare the relative weight of transparent methods against black box alternatives to
map the data set-specific tradeoff between predictive accuracy and transparency and then
make decisions regarding whether an observed improvement in performance (if it exists) is
worth the opacity, as well as its potential issues regarding trust, fairness, stability, etc.

In our paper, we have considered the SRL and the lasso as two techniques that can
be used to produce transparent models. However, numerous algorithms and methods are
available that are designed to achieve the same objective. As stated in the introduction,
we define transparent models as traditional statistical models expressed in terms of a
linear combination of a maximally parsimonious set of meaningful features. Such models
are often developed by initially formulating a general parametric model that includes
all potential candidate variables, along with any derived variables (e.g., transformed
variables, polynomials, interactions, etc.) that may seem plausible a priori. A variable
selection algorithm is then applied to reduce the complexity of the model and arrive at an
interpretable final model that better adheres to the principle of Occam’s Razor.

Two common statistical approaches to variable selection are based on optimizing a
penalized likelihood measure and optimizing an information criterion. The SRL and the
lasso are both penalized likelihood methods. Other such methods include the elastic net,
the adaptive lasso, the fused lasso, and the relaxed lasso. Information criterion approaches
involve using a penalized measure of model fit, such as the Akaike information criterion or
the Bayesian information criterion, in conjunction with a search algorithm that evaluates
all or some of the fitted models in the candidate collection using the criterion values. Best
subsets selection is an exact algorithm based on an exhaustive search and yields a final
model that is guaranteed to optimize the criterion. Heuristic algorithms exchange exactness
for computational efficiency and/or simplicity, and they may not necessarily identify the
globally optimal model, but they will hopefully yield a model that is nearly optimal (i.e., has
a criterion value close to the global minimum/maximum). Classical stagewise algorithms,
such as forward selection and backward elimination, are examples of heuristic algorithms.

In addition to techniques based on penalized likelihood and information criteria,
many other algorithms and techniques that facilitate transparent modeling have been
proposed, developed, and studied. For instance, decision trees, including classification
trees and regression trees, can often yield a transparent model through a sequence of well-
defined, hierarchical variable splits. Another important paradigm is the Logical Analysis of
Data (LAD) [40–42], which is a methodological framework designed to extract or discover
knowledge from data in a logical form. The LAD combines concepts from optimization,
combinatorics, and Boolean functions for data analysis.

Similarly, due to the bakeoff nature of this experiment, we only compared algorithms
using default values chosen by existing software packages, namely those used by caret
for the black box approaches. An important question is whether the algorithms we use for
comparison can be considered to represent the state of the art. We chose the most popular
packages openly available in R via the CRAN website for fitting neural networks (nnet),
random forests (randomForest), support vector machines (kernlab), and XG-boosting
(xgboost); at the time of writing, these packages each had (by far) more cumulative down-
loads from CRAN than other packages within each model class. These packages are
undoubtedly popular due to their accessibility, generalizability to new problems, and his-
torical precedence, making them good candidates for our experiment. However, more
recently developed algorithms in each model class, including those not yet openly available
via R or CRAN, are likely to outperform existing popular packages. Therefore, we do
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not claim that our models will necessarily outperform or compete well to the state of the
art; rather, we expect that our method will compete admirably when compared to the
most popular modeling alternatives. Future comparisons of more recently developed,
state-of-the-art algorithms, as well as models using more involved tuning strategies, would
be welcome.

In this paper, we focused on comparisons between algorithms “in the wild” (i.e.,
on real data sets), where the true data-generating mechanisms are naturally unknown.
This focus builds substantively atop our previous work, and it showcases concretely how
transparent methods deserve more attention and popularity. We plan to conduct a similar
type of analysis using our time series SRL extension on a large, diverse collection of time
series. Still, there is ample room for future research in silica to investigate the SRL’s
performance under varied scenarios. Specifically, the robustness of the SRL to extreme
outliers, noise intensity, the presence of gaps in the distributions of covariates, and highly
irregular covariate correlation structures may cause issues that deserve additional attention
in future work. Nevertheless, we have shown herein that the SRL can compete admirably
despite the presence of such issues in real data sets, at least for the purposes of prediction.

In conclusion, our transparent algorithms sometimes predict better than black box
counterparts and most of the time perform comparably. We encourage modelers to always
at least consider a transparent modeling approach, even in applications where prediction is
the main objective.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/e26090746/s1. Table S1: Model specification in R; Table S2: Descrip-
tive statistics including median and interquartile range for the 503_wind data set; Table S3: Descriptive
statistics including medians and interquartile ranges for numeric variables and counts/percentages
for categorical variables for the Hungarian data set, stratified by the classification target, which
takes values of 0 or 1; Table S4: Descriptive statistics including medians and interquartile ranges for
numeric variables and counts/percentages for categorical variables in the sleep apnea data sets; Table
S5: Descriptive statistics including counts and percentages for the parity5+5 data set, stratified by the
classification target which takes values of 0 or 1; Table S6: Descriptive statistics including including
medians and interquartile ranges for the numeric variable and counts/percentages for the categorical
variable for the analcatdata_boxing1 data set, stratified by the classification target which takes values
of 0 or 1.
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