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Abstract: The recommender system (RS) has been widely adopted in many applications, including
online advertisements. Predicting the conversion rate (CVR) can help in evaluating the effects of
advertisements on users and capturing users’ features, playing an important role in RS. In real-world
scenarios, implicit rather than explicit feedback data are more abundant. Thus, directly training the
RS with collected data may lead to suboptimal performance due to selection bias inherited from the
nature of implicit feedback. Methods such as reweighting have been proposed to tackle selection
bias; however, these methods omit delayed feedback, which often occurs due to limited observation
times. We propose a novel likelihood approach combining the assumed parametric model for delayed
feedback and the reweighting method to address selection bias. Specifically, the proposed methods
minimize the likelihood-based loss using the multi-task learning method. The proposed methods are
evaluated on the real-world Coat and Yahoo datasets. The proposed methods improve the AUC by
5.7% on Coat and 3.7% on Yahoo compared with the best baseline models. The proposed methods
successfully debias the CVR prediction model in the presence of delayed implicit feedback.

Keywords: recommender system; implicit feedback; delayed feedback; conversion prediction;
selection bias

1. Introduction

The recommender system (RS) is widely used to address the information overload
problem in multiple fields, including online advertising [1], drug adverse event predic-
tion [2], and personalized treatments [3]. Predicting the conversion rate (CVR) plays a
central role in RS. Taking online advertising as an example, advertisers are interested in
evaluating the purchase potential of each item for the users; in this example, the CVR of
a user–item pair refers to the probability of the user purchasing the item. By accurately
predicting the CVR, advertisers can grasp users’ preferences and provide personalized
advertisements to the users. On top of this, advertisers can raise their advertisement
earnings with limited advertisement investment by enhancing the overall CVR. In general,
a good CVR prediction model presents advantages in inferring user preference and offering
personalized recommendations, improving the usefulness of the RS.

In practice, high-quality explicit ratings or feedback may be lacking. Instead, there
is a large amount of implicit feedback, which indirectly reflects opinions by observing
user behaviors [4]. One of the most severe problems of implicit feedback is the selection
bias due to the nature of implicit feedback [5]. By passively tracing users’ past behaviors,
the RS cannot collect user behaviors if the item is not exposed to the user. The collection of
observed user–item pairs with implicit feedback is often a set of missing-not-at-random
samples for the population [5]. Thus, directly inferring user preference from the observed
behavior may lead to suboptimal performance of the CVR prediction model.

The CVR prediction problem with implicit feedback has been studied for a long
time [6–9]. To address the selection bias of implicit feedback, content-based approaches
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collect and utilize the features of users and items along with contextual information. This
information helps to mine the users’ actual preferences by creating a profile of each user and
item, then matching the user–item pairs by associating their profiles. In addition, methods
incorporating propensity scores can help to alleviate the selection bias, including the
inverse probability score weighting (IPS) and double robust (DR) methods. These methods
have been applied to several popular models dealing with implicit feedback, including
matrix factorization (MF) [10] and neural collaborative filtering (NCF) [11], resulting in a
large number of approaches for tackling selection bias and predicting CVR using implicit
feedback [12–17].

However, previous methods omit the delayed feedback problem, which often occurs
in implicit feedback scenarios due to limited observation times. For example, if a user
likes an item, the user will convert at a certain post-click timestamp. If the timestamp is
outside the observation period, then negative feedback will be observed, resulting in a false
negative sample. As pointed out by [18], delayed feedback is very common in practice,
where most conversions occur after a certain period; 50% of conversions occur after one
day post-click, and 13% of those occur after two weeks. Ignoring delayed feedback in
predicting CVR leads to underestimation of the eventual CVR.

There have been a number of methods aiming to adjust for the naïve method of
capturing the delayed feedback. Most of these tackle delayed feedback issues by assuming
that a fixed proportion of the negative label will finally convert and that every user–item
pair without conversions shares the same probability as a mislabel. However, this is
not reliable, as it has been shown that the delayed time is not a uniform distribution,
with most conversions occurring within the latest day after the click. To this end, Chapelle
et al. [18] first introduced the survival analysis method to deal with delayed feedback in
CVR prediction. This method assumes that the delay from click to conversion follows an
exponential distribution with unknown expectations. The paper stresses that the models
of delayed feedback and CVR prediction cannot be taken separately. The CVR prediction
model was trained by maximizing the joint likelihood of both models with either the EM
algorithm or direct optimization. Following this work, several authors have extended the
exponential delayed feedback model to a more flexible Weibull model/mixture of Weibull
model or even the nonparametric model, borrowing ideas from the good performance of
kernel density estimation [19–21].

The above methods either deal with the selection bias brought about by the implicit
feedback or the delayed feedback issues with explicit feedback separately; however, no
methods have tackled the delayed feedback when only the implicit feedback is available for
predicting the CVR. Disentangling these two problems in predicting CVR and ignorance of
either side would lead to a biased CVR prediction. In this paper, we propose methods for
unbiased CVR prediction in the presence of delayed implicit feedback. We apply two meth-
ods that have been validated as useful in debiasing RS in the context of implicit feedback,
namely, the IPS and DR methods, and consider how to obtain unbiased CVR predictions
with delayed feedback in these methods. We propose the joint likelihood of observed
data in conversion logs with parameters in the CVR prediction and delayed feedback
models. In parameter estimation, we minimize the joint loss function, that is, the negative
log-likelihood with regularization. Most existing methods either address the selection
bias using basic IPS or DR techniques or their variants, or capture the delayed feedback
while assuming no selection bias. Compared with existing methods, our proposed joint
likelihood loss and multi-task learning approach seeks to simultaneously optimize the CVR
prediction model and the delayed feedback model; thus, the proposed models should be
unbiased and more robust. We carried out experiments with the proposed method on two
real-world datasets. The results demonstrate good performance in obtaining a higher CVR
prediction accuracy with unbiased samples from the test datasets. The proposed approach
outperforms competing models, including those proposed to address selection bias with
implicit feedback and those dealing with delayed feedback, on multiple measurement
scales.
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2. Related Work
2.1. Conversion Rate (CVR) Prediction

Conversion rate prediction refers to estimating the probability of a user completing a
predefined action (a conversion), such as making reviews/ratings for a movie, making a
purchase, or signing up for a service in e-commerce. Fundamental models such as logistic re-
gression and multi-layer perception can be used for prediction by leveraging some features
from the users and items. More sophisticated methods such as the ESMM [22], ESCM2 [23],
and ECMA [24], have been proposed and applied in different industries. However, these
methods ignore the existence of delayed feedback in practice. ESCD [25] and ESDF [26]
tackle the issue of delayed feedback for their CVR prediction models. Nonetheless, these
approaches need more theoretical assurance. In [23], the authors proved that the results of
ESMM [22] were biased. In this paper, we propose a likelihood-based loss function and
train the proposed models by maximizing the likelihood. The theoretical properties of
maximized likelihood estimators help to enhance the evidence of the proposed method.

2.2. Selection Bias in Implicit Feedback

Implicit feedback refers to indirect indicators of users’ preferences, as opposed of
explicit ratings; examples include browsing data and purchase history. Explicit feedback
such as ratings explicitly reflects user preferences. Unlike explicit feedback, which requires
a user response, implicit feedback is often readily available. However, implicit feedback has
several drawbacks that challenge researchers to make full use of it, such as inherent noise
and lack of negative feedback [27]. Several techniques have been proposed to handle these
challenges, including negative sampling and methods for denoising [28–30]. However,
the above methods have not addressed the issue of selection bias in implicit feedback.
Thus, we apply the IPS approach to adjust for the selection bias. The DR approach can
further improve models for CVR prediction by introducing an imputation model. The DR
approach avoids the out-of-bounds problem and reduces the variance compared with the
IPS approach. A number of of methods for debiasing RS have been proposed based on IPS
and DR [12,14,31–34].

2.3. Delayed Feedback

Delayed feedback refers to situations where there is time between the click and the
conversion. Ignoring the possibility of delayed feedback and directly labeling such samples
as negative leads to underestimation of the CVR. As the delay time can be treated as a
random variable following specific distributions of a survival time, it links CVR prediction
with survival analysis in statistics. Delayed feedback models (DFM) [18] address this
problem by assuming the distribution of the delayed time as an exponential distribution
with an expectation determined by a generalized linear model having some predefined fea-
tures. In addition, other distributions might be effective for modeling the delayed feedback.
In [19,20], the authors proposed modeling the delayed feedback using a single Weibull
distribution and a mixture of Weibull distributions, respectively, while [21] proposed an
efficient approach called NoDeF for modeling the distribution of the delayed feedback non-
parametrically using kernel density estimation techniques. However, the above methods
may fail to reflect the true distribution of the delayed feedback. To resolve this problem,
FSIW [35], FNW/FNC [36], ESDFM [37], DEFER [38], and DEFUSE [39] utilize resam-
pling. However, all of the above methods rely on explicit feedback. Our proposal aims to
provide more unbiased and accurate CVR prediction models in the presence of delayed
implicit feedback.

3. Problem Setup and Preliminaries
3.1. Problem Setup

We first show the basic setups in a CVR prediction problem without considering the
time delay from click to conversion in the presence of implicit feedback. Let U and I be
the sets of users and items in the RS, respectively. The user–item pairs are expressed by
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D = {(u, i) | u ∈ U , i ∈ I}. We denote the conversion of user–item pair (u, i) by ru,i.
Conversions in the presence of implicit feedback often denote a variable that measures the
user’s preference, such as whether the user views or purchases the item, rather than a direct
rating or feedback to declare their like and dislike of the item(s). Without loss of generality,
the conversion is assumed to be a binary variable, where ru,i = 1 means conversion and
ru,i = 0 indicates a failure of conversion. In addition to the conversion outcomes, we
denote the user–item features and the observation of ru,i by xu,i ∈ RK and ou,i ∈ {0, 1}
for each user–item pair in the dataset, where ou,i = 1 indicates that ru,i is observed and
documented in the database. We denote the sets of observed user–item pairs in the dataset
by O = {(u, i) | (u, i) ∈ D, ou,i = 1}. The complete observations can be represented by
{xu,i, ru,i | (u, i) ∈ O} ∪ {xu,i | (u, i) ∈ D\O}.

We assume a model for CVR prediction with parameters θ which seeks to predict ru,i
with user–item features xu,i, which we denote by r̂u,i = f (xu,i, θ). The aim is to achieve
the least biased CVR prediction for all user–item pairs among the population D. To this
end, by assuming a prediction error erru,i = L( f (xu,i, θ), ru,i), e.g., the mean square or
cross-entropy error, the problem translates to minimizing the population loss, that is,

Lp(θ) =
1
|D| ∑

(u,i)∈D
erru,i =

1
|D| ∑

(u,i)∈D
L( f (xu,i, θ), ru,i).

However, there are also unobserved user–item pairs (u, i) ∈ D\O. The naïve method
optimizes the loss function on observed samples, which seeks to minimize the sample loss:

Ls(θ) =
1
|O| ∑

(u,i)∈O
erru,i =

1
|O| ∑

(u,i)∈O
L( f (xu,i, θ), ru,i). (1)

If the set of observed samples O is a random selection from the population D without
selection bias, in the other words, the selection indicator ou,i is independent with (xu,i, ru,i),
then we have E(Ls(θ)) = E(Lp(θ)); thus, minimizing the sample loss can asymptotically
achieve the optimal estimation based on the population loss, leading to the unbiased CVR
prediction model. However, due to the properties of implicit feedback there might exist a
selection bias which renders ou,i dependent with (xu,i, ru,i) [14]. There have been a number
of methods addressing this issue. The IPS method addresses this issue using the propensity
score, that is, the probability of each user–item pair being observed, then weights the
sample loss using the inverse propensity scores. The loss function of the IPS method is

LIPS(θ) =
1
|O| ∑

(u,i)∈O

ou,ierru,i

p̂u,i
, (2)

where p̂u,i is the estimated propensity score of user–item pair (u, i). The IPS method
reweighs the observed user–item pairs using the inverse propensity score. It has been
verified that the IPS loss is unbiased of the population loss if the propensity score model is
correctly specified, where p̂u,i = E(ou,i = 1 | xu,i) for all (u, i) ∈ D. The DR method aims
to improve the IPS method by incorporating an imputation model g(xu,i, ϕ) [14]. The loss
function for the DR method is

LDR(θ, ϕ) =
1
|O| ∑

(u,i)∈O

[
ou,ierru,i

p̂u,i
+ (1 − ou,i

p̂u,i
)êrru,i

]
, (3)

where p̂u,i is the estimated propensity score and êrru,i = L(g(xu,i, ϕ), ru,i) is the loss of
the imputation model. It has been proven that the DR method can avoid out-of-bounds
prediction for the CVR and reduce the variance compared with the IPS method with the
help of the auxiliary imputation model.
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3.2. Delayed Feedback and Survival Analysis

In the presence of delayed feedback, the naïve method mistakenly assigns negative
labels to those samples with observation times that are too short to capture the eventual
conversion status. Previous studies [18] have pointed out that this issue is closely related
to censored time survival analysis. In survival analysis, researchers are interested in
estimating the occurrence of a predefined event, such as the resurgence of the disease
after a treatment and the incubation time before symptoms after an infection. To this end,
estimation of the period during the starting time (time of treatment or infections) and the
event time, called the survival time, is of great importance. The length of the survival
time is always larger than zero; thus, an ordinary normal distribution cannot be applied,
as some survival time may be missing when the actual survival time is longer than the
observation time. This issue makes survival analysis different from general regression or
classification problems.

In survival analysis, assuming the survival time T(T > 0) follows a distribution with
the probability density function f (t), the cumulative distribution function is denoted by
F(t) =

∫ t
0 f (s)ds. The survival function is the probability of the survival time being longer

than the time t, in other words, where the event does not occur before time t. The survival
function is denoted by S(t) = Pr(T > t) =

∫ +∞
t f (s)ds = 1 − F(t). We denote the

observation time (or censored time in traditional survival analysis) by C. The probability
that the event does not occur before the observation time is S(C). The hazard function λ(t),
referring to the instantaneous occurrence rate of the event happening in time t conditional
on the absence of occurrence before time t, plays an important role in survival analysis.
It can be computed using λ(t) = f (t)/S(t). The functions mentioned above can all be
expressed as a function of λ(t), that is,

S(t) = exp(−
∫ t

0
λ(s)ds),

F(t) = 1 − S(t) = 1 − exp(
∫ t

0
−λ(s)ds),

f (t) = λ(t)S(t) = λ(t) exp(
∫ t

0
−λ(s)ds).

(4)

By designing λ(t), it is possible to consider multiple types of survival time distributions,
including exponential, gamma, Weibull, log-normal, etc. The simplest is the exponential
distribution, where λ(t) = λ is a constant. Though simple, the exponential distribution has
strong ability to fit the real-world survival time. Here, we apply the simplest exponential
distribution for delayed feedback modeling and show its advantage in CVR prediction with
implicit and delayed feedback without the need for a sophisticated delayed feedback model.

4. Materials and Methods

The goal of the proposed method is to predict the CVR of a user–item pair given
its features. We denote this by the prediction model f (xu,i, θ). Overall, we realize this
goal by assuming a parametric model for the delayed feedback and maximizing a newly
proposed likelihood function given the parametric model and all the observed data. Directly
maximizing the likelihood (1) can lead to biased estimates for the parameters and a biased
CVR prediction model due to selection bias and delayed feedback. We revise the likelihood
function (1) to tackle these two problems simultaneously. First, we assume an exponential
model for the delayed feedback and use it to infer the probability of a conversation being
observed/unobserved given its real status. In comparison, the naïve approach assumes
that the observed status of the conversions implies the actual status for all user–item pairs,
which is impossible in the presence of delayed feedback. Second, we incorporate an IPS/DR
module to tackle the selection bias, which makes the estimated parameters robust against
selection bias. We optimize the modified likelihood with multi-task learning to obtain a
more unbiased CVR prediction model.
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In the following, we use uppercase letters for random variables and lowercase letters
for observed data. The variables in the model are provided below (note that the subscripts
(u, i) are omitted in some cases for simplification):

• X : Set of features, including the features of the user and those of the item.
• O ∈ {0, 1} : Random variable indicating whether the user–item pair is observed in the

dataset.
• C ∈ {0, 1} : Random variable indicating whether a conversion will finally happen.
• D ≥ 0 : Delay between click and conversion.
• E ≥ 0 : Observation time (elapsed time) after the click.
• R ∈ {0, 1} : Variable indicating whether the conversion occurs during the observation

time.

As an example, O(u, i) represents the random variables indicating whether user–item pair
(u, i) is observed, and ou,i represents the realization of O(u, i) in the dataset.

In addition, there is a period between the item being displayed and the click. Mostly,
the click occurs just a few seconds after the display, and is captured by the observation time
between the display and the click; thus, we regard it as a momentary event. The connection
between these variables plays a key role in describing the model. If a conversion finally
occurs, it suggests that the conversion will finally happen, and the delay time between the
click and conversion is captured by the observation time, that is,

R = 1 ⇐⇒ C = 1, D ≤ E. (5)

If a conversion has not been observed, this may be attributed to two possible cases:
either a conversion will not finally happen, or the observation time is too short to capture
the delayed feedback, that is,

R = 0 ⇐⇒ C = 0 or C = 1, D > E. (6)

We can observe Y if and only if O = 1; thus, some ru,i = R(u, i) would be lacking. We
assume independence between O and (C, D, E) given the features X, that is,

Pr(C, D, E | X, O = 1) = Pr(C, D, E | X). (7)

This assumption corresponds to the ignorability assumption under the causal inference [40],
and is often assumed to guarantee identifiability. We also assume independence of the pair
(C, D) and the observation time E given the set of features X, i.e.,

Pr(C, D | X, E) = Pr(C, D | X). (8)

This assumption holds, as the analysis system decides the observation time irrespective of
the nature of the users or items; in contrast, the random variables (C, D) are determined by
the intrinsic nature of the user–item interactions.

From the datasets, the conversions, features, and observation times for the observed
user–item pairs are given. Following the previous section, we denote the whole set of
user–item pairs by D and the set of observed user–item pairs by O. The observed datasets
consist of triplets (xu,i, ru,i, eu,i) for (u, i) ∈ O. As for those with ru,i = 1, the delay
time from click to conversion du,i is given, forming an alternative triplet (xu,i, ru,i, du,i).
To fit the data, we first derive the probability of R(u, i) = ru,i = 1, D(u, i) = du,i and
R(u, i) = ru,i = 0, E(u, i) = eu,i given X(u, i) = xu,i and the parameters of the models,
which are the foundation of the overall likelihood function. First, according to (5), we have

Pr(ru,i = 1, D(u, i) = du,i | X(u, i) = xu,i)

=Pr(D(u, i) = du,i, C(u, i) = 1 | X(u, i) = xu,i)

=Pr(D(u, i) = du,i | X(u, i) = xu,i, C(u, i) = 1)Pr(C(u, i) = 1 | X = xu,i),

(9)
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and according to (6),

Pr(ru,i = 0 | X(u, i) = xu,i, E(u, i) = eu,i)

=Pr(D(u, i) > eu,i, C(u, i) = 1 | X(u, i) = xu,i, E = eu,i) + Pr(C(u, i) = 0 | X(u, i) = xu,i, E(u, i) = eu,i).
(10)

We use two models to fit the observed data, including models for Pr(D(u, i) = du,i |
X(u, i) = xu,i, C(u, i) = 1) and Pr(C(u, i) = 1 | X(u, i) = xu,i). The first model is the
distribution of the delayed time and the latter is the CVR prediction model, which is the
main focus of our problem. We assume the hazard function as λ(x, t)(t ≥ 0). By chang-
ing λ(x, t), it is possible to obtain multiple parametric models for the delayed feedback,
e.g., Weibull distribution, gamma distribution, log-normal distribution, log-logistic dis-
tribution, etc. The most common is the exponential distribution, with λ(x, t) = λ(x) as
time-invariant. Without loss of generality, we assume the delayed feedback model as the
simplest exponential distribution. Thus, according to (4),

Pr(D(u, i) = du,i | X(u, i) = xu,i, C(u, i) = 1) = λ(xu,i) exp(−λ(xu,i)du,i) (11)

and

Pr(D(u, i) > eu,i | X(u, i) = xu,i, C(u, i) = 1) = S(xu,i, eu,i) = exp(−λ(xu,i)eu,i). (12)

We model the connection of the hazard function λ(xu,i) with a modified linear regres-
sion, that is, λ(xu,i) = Max(0, β · xu,i), where β is an unknown parameter to be estimated.
On constructing the CVR prediction model Pr(C(u, i) = 1 | X(u, i) = xu,i), we use matrix
factorization, which assumes a latent embedding of users, denoted by Hu for user u ∈ U
and Wi for item i. The probability of conversion for user–item pair (u, i) is denoted by
r̂u,i = 1/[1 + exp(−Hu · Wi)]. Then, we have

Pr(C(u, i) = 1 | X(u, i) = xu,i) = r̂u,i,

Pr(C(u, i) = 0 | X(u, i) = xu,i) = 1 − r̂u,i.
(13)

According to Equations (9) to (13), the loss function of a single user–item pair (u, i) is
provided by the modified cross-entropy loss, which is also the negative log-likelihood
function:

erru,i = ru,ilog[Pr(ru,i = 1, D(u, i) = du,i | X(u, i) = xu,i)]

+ (1 − ru,i)log[Pr(ru,i = 0 | X(u, i) = xu,i, E(u, i) = eu,i)]

= ru,ilog[r̂u,iλ(xu,i) exp(−λ(xu,idu,i))] + (1 − ru,i)log[r̂u,i exp(−λ(xu,ieu,i)) + 1 − r̂u,i].

(14)

We propose two loss functions based on the IPS and DR approaches. For the one incorpo-

rating the IPS approach, we obtain the joint loss function LIPS(θ, β) =
1
|O| ∑(u,i)∈O

ou,ierru,i

p̂u,i
,

where erru,i refers to (14). The parameters are optimized by minimizing the regularized loss
function

arg min
θ,β

LIPS(θ, β) +
γ

2
∥θ∥2

2 +
µ

2
∥β∥2

2, (15)

where (γ, µ) are regularization parameters. We call this method MF-IPS+DeF .
For the loss function incorporating the DR approach, we assume another imputation

model, which is also encoded with an MF denoted by r̂ru,i = g(xu,i, ϕ). Thus, êrru,i
is provided by the binary cross-entropy loss, which is also the negative log-likelihood
function:

êrru,i = r̂ru,i log(r̂u,i) + (1 − r̂ru,i) log(1 − r̂u,i). (16)
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We then obtain the joint loss LDR(θ, β, ϕ) =
1
|O| ∑(u,i)∈O

[
ou,ierru,i

p̂u,i
+ (1 − ou,i

p̂u,i
)êrru,i

]
,

where erru,i refers to (14) and êrru,i refers to (16). The parameters are obtained by minimiz-
ing the loss with regularization:

arg min
θ,β,ϕ

LDR(θ, β, ϕ) +
γ

2
∥θ∥2

2 +
µ

2
∥β∥2

2 +
τ

2
∥ϕ∥2

2, (17)

where (γ, µ, τ) are regularization parameters. We jointly learn the parameters in the CVR
prediction model and the imputation model using the multi-task learning technique. We
call this method MF-DR-JL+DeF.

5. Results

This section presents the results of our experiments comparing the proposed methods
and competing methods for predicting the CVR on two real-world datasets.

5.1. Dataset Preparation

Following previous studies [14,33,34], we conducted real-world experiments on the
widely used Coat [12] and Yahoo [41] benchmark datasets. Both datasets consist of training
and test sets, with the two sets in each study sharing the same sets of users and items.
The training datasets are biased datasets that suffer from selection bias, while the test
datasets are unbiased. The Coat dataset consists of 6960 user–item pairs in the training set
and 4640 user–item pairs in the test set, with 290 users and 300 items; each user–item pair is
represented by a rating from 1 to 5. We binarized these using a threshold of 3, with ratings
lower than 3 assigned a score of zero 0 and a score of 1 being assigned otherwise. The Yahoo
dataset consists of 311,704 user–item pairs in the training set and 54,000 in the test set. We
binarized these similarly, again using a five-point scale.

We simulated the delayed feedback as follows: first, we extracted the features of users
and items through a basic MF method applied to the training set. We concatenated the
features of users and items for the representation of the features of user–item pairs xu,i, then
fixed the overall training period L as a constant. The user may randomly click an item at a
timestamp tclick within the training period. We sampled tclick

u,i from a uniform distribution
Unif(0, L), while the observation time (or elapsed time) was Eu,i = L − tclick

u,i . We assumed
that the delayed time followed an exponential distribution Du,i ∼ Exp(λ(xu,i)), where the
hazard function λ(xu,i) = exp(Wd · xu,i), Wd is randomly sampled from a prior multivariate
normal distribution N (0p, σ2

HIp), and σH is a hyperparameter. In the presence of delayed
feedback, the user–item pairs with Du,i > Eu,i might be mistakenly labeled as negative
samples. We set the labels of these samples to 0 in the training set, and set L = 5 and
σH = 0.1 in the basic setups, rendering around 20% of positive samples in the training set
mislabeled as 0 due to delayed feedback. We trained the proposed method and competing
methods on the modified training set, then tested them on the unbiased test set.

5.2. Training Details

For the proposed MF-IPS+DeF and MF-DR-JL+DeF methods, we minimized the loss
function with the Adam optimizer. We tuned the learning rate in {0.01, 0.015, 0.02, 0.03, 0.05, 0.1}
and weight decay in [1 × 10−6, 5 × 10−2] . The training was stopped if there were five
epochs with a relative loss reduction lower than 1 × 10−5. In the proposal with DR, we
set different weight decay rates in the CVR prediction model/imputation model and the
delayed feedback model, then tuned them separately. The batch size was set to 128 for the
Coat dataset and 256 for the Yahoo dataset. All the results and figures were generated with
Python codes. We trained the models with Python 3.11.9 and Pytorch 2.3.0. The figures
were generated with matplotlib 3.8.4.
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5.3. Baselines

We want to show the performance of the proposed methods in the presence of both
implicit and delayed feedback; however, the baseline methods for comparison include
methods that address selection bias through the IPS approach, which follow the DR ap-
proach while ignoring the delayed feedback, and those that capturing the delayed feedback
with parametric models, which neglect the selection bias. As our proposed proposed CVR
prediction model addresses delayed feedback using MF as the base model, we compare it
with other MF-based methods such as MF [10], MF-IPS [12], MF-ASIPS [31], MF-SNIPS [12],
and MF-DR [31], MF-DR-JL [14], and MF-MRDR-JL [32]. MF-IPS, MF-ASIPS, and MF-
SNIPS are variants of the base MF method with base or advanced IPS approaches, while
MF-DR, MF-DR-JL, and MF-MRDR-JL are variants of the base MF method that incorporate
DR techniques; all of these methods overlook the issue of delayed feedback. We compared
the proposed approach with the delayed feedback models, assuming different distributions
for the delayed time. We used the method in [18], called the DFM, as the base model. In [18],
the authors proposed considering the delayed time as an exponential distribution and used
a multi-layer perception (MLP) to learn the hazard function. They used the Weibull and
log-normal distributions, which are popular in survival analysis, to model the delayed
time. To distinguish them, they referred to these as DFM-EXP, DFM-Weibull, and DFM-LN.
All three of these methods are designed to capture the delayed feedback, but neglect the
impact of selection bias in the datasets.

5.4. Evaluation Protocols

We adopted three widely used metrics for evaluation: AUC, NDCG@K, and Recall@K.
AUC stands for area under the receiver operating curve, which is a widely used metric
in diagnostic studies to evaluate the accuracy of a diagnostic test by synthesizing the
pairs of sensitivity and specificity across all cutoff points of the continuous biomarker of
the test. NDCG@K stands for the normalized discounted cumulative gain at K, which
compares the top K predicted items for each user and the actual preference of each user.
Recall@K aggregates and averages the proportion of correctly specified items among the
top K predicted items for each user. Both NDCG@K and Recall@K are useful for comparing
the ranking performance of different ranking algorithms. We set K = 10 for Coat and K = 5
for Yahoo. Each model was trained for ten rounds, retrieving the mean and standard error
as the eventual results.

5.5. Performance Comparisons

The prediction performance of the proposals and the baselines for the two datasets are
shown in Table 1. Among the baselines, the DR-based methods perform better than the
IPS-based and delayed feedback models. For the Coat dataset, the MF-DR model obtains
the highest AUC. For the Yahoo dataset, the MF-MRDR-JL, which jointly learns both the
imputation model and the prediction model, achieves the best AUC. Both use the DR
approach to eliminate the selection bias, indicating the effectiveness of this approach. The
DFM model, which incorporates the delayed feedback into CVR prediction, improves the
AUC of MLP by around 0.02 and largely enhances NDCG@K and Recall@K, suggesting
the importance of training a delayed feedback model and including it in the loss function.
In contrast, the DFM-based methods, which consider the delayed feedback but ignore the
selection bias, perform significantly worse than the SOTA MF-based baseline methods and
the proposed methods, indicating that it is particularly important to adjust the selection
bias when addressing CVR prediction with implicit feedback. The proposed approach
significantly outperforms the state-of-the-art (SOTA) baselines on all evaluation metrics.
The proposed MF-DR-JL+DeF method improves upon the AUC of the MF-DR method
by 5.7% on the Coat dataset, and the proposed MF-IPS+DeF method improves upon the
AUC of the MF-MRDR-JL method by 3.7% on the Yahoo dataset. While the MF-IPS method
performs significantly worse than the SOTA baselines, the proposed MF-IPS+DeF method
greatly improves upon its the performance. From this perspective, the delayed feedback
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module plays an important role in accurate CVR prediction; indeed, both the delayed
feedback module and adjusting for selection bias are indispensable.

Table 1. Performance in terms of AUC, NDCG@K, and Recall@K on COAT and YAHOO. The best two
results are bolded; the best baseline results for DFM methods with delay feedback and IPS/DR-based
methods are underlined.

COAT YAHOO

Method AUC NDCG@10 RECALL@10 AUC NDCG@5 RECALL@5

MLP 0.617±0.001 0.505±0.000 0.551±0.001 0.573±0.006 0.569±0.009 0.336±0.009
DFM-EXP 0.632±0.000 0.605±0.000 0.645±0.000 0.598±0.001 0.645±0.001 0.413±0.001
DFM-Weibull 0.633±0.000 0.605±0.000 0.645±0.000 0.598±0.001 0.645±0.001 0.413±0.002
DFM-LN 0.631±0.000 0.605±0.000 0.644±0.000 0.598±0.001 0.645±0.001 0.413±0.002

MF 0.652±0.009 0.650±0.007 0.688±0.007 0.500±0.002 0.598±0.002 0.366±0.002
+ IPS 0.642±0.010 0.640±0.005 0.684±0.010 0.609±0.002 0.601±0.003 0.382±0.004
+ ASIPS 0.656±0.008 0.646±0.010 0.685±0.011 0.606±0.003 0.618±0.004 0.400±0.004
+ SNIPS 0.650±0.006 0.652±0.008 0.691±0.006 0.563±0.004 0.588±0.004 0.355±0.005
+ DR 0.685±0.007 0.652±0.008 0.689±0.007 0.604±0.004 0.626±0.003 0.399±0.003
+ DR-JL 0.658±0.009 0.656±0.008 0.690±0.007 0.627±0.002 0.601±0.003 0.381±0.004
+ MRDR-JL 0.678±0.007 0.666±0.008 0.692±0.008 0.629±0.003 0.611±0.004 0.398±0.005
+ IPS+DeF 0.698±0.004 0.674±0.006 0.695±0.008 0.652±0.002 0.600±0.002 0.373±0.004
+ DR-JL+DeF 0.724±0.010 0.695±0.021 0.721±0.015 0.644±0.013 0.665±0.020 0.432±0.018

5.6. Sensitivity Analysis

To comprehensively evaluate the proposed method, we conducted a sensitivity analy-
sis with the proposed MF-IPS+DeF and MF-DR-JL+DeF methods on the Coat dataset and
compared them with two baselines: the optimal DFM model (DFM-Weibull) and the opti-
mal MF-based method (MF-DR). First, we varied the mislabeling ratio (MR), that is, the pro-
portion of positive samples mislabeled as negative with observation times shorter than the
delay time, from 10% to 30%. We set different MRs by changing the total observation time L;
L = 3.2, 3.92, 5, 6.7, 9.7 correspond to MR = 10.02%, 15.05%, 19.66%, 24.99%, 30.12%, respec-
tively, or approximately 10%, 15%, 20%, 25%, and 30%. The results are shown in Figure 1.
The proposed methods consistently outperform the baselines in terms of AUC, NDGC@K,
and Recall@K. Compared with the other two methods, MF-DR-JL+DeF shows a compara-
bly small decrement on all metrics when the MR increases, suggesting its robustness. The
DFM-Weibull method consistently performs the worst, and there is no significant variation
in its performance across different MRs. This showcases the importance of adjusting for
selection bias in CVR prediction with implicit feedback.

Figure 1. Effects of the mislabeling ratio (%) on AUC, NDGC@10, and Recall@10 on the Coat dataset.

We additionally explored the effect of different distributions of the delayed feedback
on the performance of the proposed methods, as shown in Figure 2. In addition to the
exponential distribution, we set two other distributions (the Weibull and log-normal distri-
butions) for the delay time. The MR was fixed to around 20%. Note that even for the other
distributions, the proposed MF-IPS+DeF and MF-DR-JL+DeF methods only adopted
the exponential distribution when constructing the loss function. The performance of



Entropy 2024, 26, 792 11 of 14

the proposed methods under the different distribution shows no significant differences,
with both methods consistently outperforming the baselines. This suggests the robustness
of the proposals under mis-specification of the delay time distribution.

Figure 2. Effects of different distributions of the delay time in terms of AUC, NDGC@10, and Re-
call@10 on the Coat dataset.

5.7. Comments

From the results of the performance comparisons under the original setups and the
sensitivity analysis, different parametric distributions of the delayed feedback have little
impact on the predicted CVR. Thus, we recommend using the easiest exponential model
for the delayed feedback. The proposed MF-DR-JL+DeF method is robust against an
increasing mislabeling ratio caused by delayed feedback, while the other methods may not
be as robust. In practice, we recommend the MF-DR-JL+DeF method for an unbiased and
robust CVR prediction model in the presence of delayed and implicit feedback.

6. Discussion

We experimented with the proposed methods on two real-world datasets and com-
pared the results with extensive baselines. Of all the baseline methods, the ones with
the optimal AUCs were all DR-based methods. Compared with the IPS approach, DR
methods incorporate an imputation model to reduce the variance. Of the three baseline
delayed feedback models, there were no significant differences in prediction performance.
A possible reason for this result is that the actual distribution of the delay time is generated
from the simplest exponential distribution. Thus, delayed feedback models with more
complex Weibull and log-normal distributions also capture the actual exponential distribu-
tion of the delay time. Therefore, we conducted a sensitivity analysis, varying the actual
underlying distribution of the delayed feedback. The results show that the performance of
these methods is consistent across different actual delayed feedback distributions. Thus,
we recommend using the simplest exponential distribution to model the delayed feedback.

We only used MF as the base model in the proposed method. In addition to the
basic MF model, other methods such as BPR and NCF [11,42] can be applied to implicit
feedback problems. These baseline models can be easily combined with the proposed
method by adjusting the loss functions, and may further improve the CVR prediction
accuracy. In addition, we only tried two approaches for tackling selection bias with implicit
feedback: the basic IPS method, and the DR method with joint learning. There are several
more recent methods studying eliminating the selection bias based on the basic IPS and
DR methods, such as by balancing the covariates or proposing better propensity score
estimators [34,43,44]. The proposed method can be extended to incorporate these methods
for further improvement.

There are several limitations in the proposed method that must be addressed. First,
the proposed method relies on the joint loss, which requires an explicit form of the distribu-
tion for the delayed feedback. The proposed models only use the exponential distribution,
and show good performance even when the actual distribution is a Weibull or log-normal
distribution. Nevertheless, the distribution of the delayed feedback may be complex and
have multiple peaks or periodicity [21]. For example, users may view the purchase web
pages and complete conversions in a certain period during the day, called the peak user
hours. To this end, several methods have been proposed to capture the complex distribution
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of delayed feedback [35–39]. We intend to extend our proposed method in future work
to more accurately model the delayed feedback. Second, we only considered static CVR
prediction in the problem setups. Other topics that have raised attention in recent times
include multi-touch attribution settings and streaming CVR prediction [18,19,37,45,46].
In further work, it would be appealing to test the usefulness of the proposed method or its
extensions for addressing these problems.

7. Conclusions

In this paper, we have proposed a novel method for debiasing CVR prediction in RS
in the presence of delayed and implicit feedback. We tackle selection bias and mislabeling
due to delayed feedback by devising a new likelihood-based loss function that jointly
incorporates models for the delayed time and debiasing the CVR prediction through the
IPS technique and DR method. We conducted extensive experiments on two real-world
datasets, showing that the proposed methods can obtain state-of-the-art performance in
the presence of implicit and delayed feedback. The results of our sensitivity analysis
validate the robustness of the proposed MF-DR-JL+DeF model, which we recommend for
practical use.
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