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Abstract: The main aim of this study is to achieve the numerical solution for the Navier—
Stokes equations for incompressible, non-turbulent, and subsonic fluid flows with some
Gaussian physical uncertainties. The higher-order stochastic finite volume method (SFVM),
implemented according to the iterative generalized stochastic perturbation technique and
the Monte Carlo scheme, are engaged for this purpose. It is implemented with the aid of
the polynomial bases for the pressure-velocity—temperature (PVT) solutions, for which
the weighted least squares method (WLSM) algorithm is applicable. The deterministic
problem is solved using the freeware OpenFVM, the computer algebra software MAPLE
2019 is employed for the LSM local fittings, and the resulting probabilistic quantities are
computed. The first two probabilistic moments, as well as the Shannon entropy spatial
distributions, are determined with this apparatus and visualized in the FEPlot software.
This approach is validated using the 2D heat conduction benchmark test and then applied
for the probabilistic version of the 3D coupled lid-driven cavity flow analysis. Such an
implementation of the SFVM is applied to model the 2D lid-driven cavity flow problem
for statistically homogeneous fluid with limited uncertainty in its viscosity and heat con-
ductivity. Further numerical extension of this technique is seen in an application of the
artificial neural networks, where polynomial approximation may be replaced automatically
by some optimal, and not necessarily polynomial, bases.

Keywords: stochastic finite volume method; Shannon entropy; Navier—Stokes equations;
stochastic perturbation technique.cx

1. Introduction

Uncertainty in fluid flows is remarkably less frequently studied in computational
mechanics [1] than in solids and structure deformations [2,3], but following physical ob-
servations, it seems to be more natural and accurate. Further, it is usually characterized
by decisively larger statistical scattering of state-dependent physical parameters, so that
uncertainty quantification and/or propagation may exhibit unpredictable and highly non-
linear characteristics. Uncertainty quantification in both fluids and solids is traditionally
delivered with the help of various implementations of the stochastic finite element method
(SFEM) [4], whereas analogous extensions of other discrete numerical methods are defi-
nitely less popular, and even scarce. This specifically applies to the finite volume method
(FVM) [5,6], which seems to be more efficient than the FEM in many fluid flow problems
described by the Navier-Stokes equations [7-10]. The FVM is decisively less popular
in computational mechanics than the FEM, but its implementations and applications in
stress analysis [11], multiscale analyses [12,13], and heterogeneous media [14] make this
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methodology more attractive, useful, and accurate. Common usage of the FVM with ma-
chine learning algorithms [15], along with new research paths including adaptivity [16] or
mimetic algorithms [17], are observed. There is well documented evidence in the literature
of the application of this method to solve a huge variety of stochastic problems, e.g., conser-
vation laws in physical systems [18], computer science issues [19], flow problems [10], and
energy simulations [20].

It is well known that modern stochastic analysis is usually based upon determination
of the basic probabilistic moments and coefficients of the state functions for the given
computational domain [21], including recently developed methods with fractional deriva-
tives [22]. This enables the further discussion and justification of statistical correlations
between different mechanical and physical fields in regards to reliability analysis [23].
Direct determination of the resulting probability functions in the given system, exhibit-
ing some random parameters, is still explored, i.e., Ref. [24]; nevertheless an alternative
method consists of the estimation (or direct computation) of probabilistic entropy. It can be
determined using discrete or continuous probability measures for the physical quantity
of interest. Shannon entropy [25-27] is most frequently applicable to assess complex-
ity, diversity, disorder, or chaos, and some mathematical models applied successfully in
image analysis [28,29], computer science [30], information theory [26,31], economics [32],
physics, and engineering [33,34], and employing this entropy may attract increasing interest
and importance.

Therefore, the main idea of this work is a utilization of the stochastic finite volume
method (SFVM) [35] for the determination of the spatial distribution of the Shannon the-
ory for fully coupled Navier-Stokes equations relevant to the fluid flow problems in the
presence of specific physical uncertainty. This is not the first attempt to include entropy
application in fluid flows analysis [34,36]; however, the approach proposed combines
different computational strategies to achieve this goal and to deliver a comparison of the
entropy-based method with the existing moments-based approaches. It is based upon
combined polynomial interpolation and the weighted least squares method (WLSM) re-
covery of polynomial bases, linking the PVT solutions with the physical parameters of
the analyzed fluid. Random polynomials of some physical characteristics of the fluid are
used in the stochastic perturbation method for Taylor expansions to calculate probabilistic
moments in the given flow problem [4]. These polynomials are next engaged in Monte
Carlo simulations (MCS), enabling Shannon entropy computations at the discrete finite
volume level. Two numerical examples are presented here, namely (i) heat transfer in some
trapezoidal plates and (ii) the 3D lid-driven cavity flow benchmark CFD, where Gaussian
heat conductivity is considered. These two case studies enable a contrast of the first two
probabilistic moments maps with those representing Shannon entropy, as well as analysis
of the probabilistic convergence of all probabilistic responses, while increasing the size of
the generated population in the MCS approach. These studies confirm several observations
made in computational solid mechanics analyses, especially the fact that extreme values of
the resulting coefficients of variation of the PVT solution coincide very well with those of
Shannon entropy. Additionally, this work documents a coincidence of the maps for these
two parameters, which may affect further studies in computational mechanics.

2. Uncertainty in Navier-Stokes Equations

The system of basic equilibrium Navier-Stokes equations, to be extended towards
stochastic analysis and to be solved numerically, can be written in the given computational
domain Q) for the unknown fluid state functions, i.e., velocities, v; = v;(x); pressure, p = p(x);
temperature, 6 = 0(x) (x € (), as follows [37]:
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Jv; =
P (atl + Ui,jvj) = i+ fir 1)
Ui = 0, (2)
Uij = _P‘Sij + 2“1/181‘]', 3)

00 ~
pc (at + 9,1‘01') = (kb,:) ; + qi, (4)

where the following geometrical equation is adopted:
1 1 (9v; = dv; .

&ij = E(Ui,j+vj,i) =5 <axj + o ) T 1,2,3. (5)

Here, the second-order symmetric tensors 0;;, ¢;; represent the stress and strain states for the
given fluid, whose viscosity is traditionally denoted by y, its heat conductivity by k, its heat
capacity as ¢, and the mass density as p. These equations are relevant to the macroscopically
homogeneous single-phase fluid, although they may also be rewritten and solved in case
of any heterogeneity. The following general boundary conditions need to be imposed here:

v; = 0;;x € 9y, (6)
oijhj = fl';X S an, (7)
6 =6;x € 00 (8)
a0
ka = §;x € 9Q),. 9)

Variational formulation of this problem is introduced in the following way:

/527,’,0(2),‘ +Ul‘,]‘vj)dﬂ + / 501"1'(2]481']' - pélj)dﬂ = /5viﬁd0 + / (5"01‘]91'(11(800). (10)
o o o) Elo)
/ Spv;;dQ =0, (11)
Q

/ 60pc(0+0,0;)d0 + / k66 ,0,dQ) = / 505dQ + / 504d(20). (12)
o) Q 0 20,
It is further assumed that some physical parameters of the analyzed fluid exhibit Gaussian
uncertainty within the first two given moments [38]. An extension of the aforementioned
equations to uncertainty analysis involves using the generalized stochastic perturbation
technique. For this purpose, let us consider a random variable b and its probability density
function (PDF) by pj(x) so that its expectation can be defined as follows:

—+o00

E() = [ xpo(x) dx (13)

—00
assuming no additional truncation, in this case. Further, one can define the central proba-
bilistic moment of the mth order as follows:

+eo
pn(b) = [ (b= E[b])"py (x)d. (14

—00
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Let us consider the following representation of the random function v(b) with respect to its
parameter b around its mean value [4,35], as follows:

v(b) = v° (bo) te a;(bb )

l’l n
Ab ..t & V)

n
. | A (15)

b=b0

where ¢ is a given perturbation parameter, while the nth-order variation of a random
variable is given as follows:

A" = (5b)" = ¢" (b f bo)” (16)

Taking into account the partial derivatives of physical system function v(b), this function
should be continuous and differentiable at the mean value of the input random parameter
b =b°, which condition is fulfilled using polynomial, power, hyperbolic, and harmonic, as
well as exponential, functions. Then, the expected values are evaluated from Equation (13)
using the 10th-order expansion, with € = 1, as follows:

2y 4y
Ef(0)] = v (1) + 3 52| w2 (80) + 4 3| () ”
L1 0) () + 42 &0 (10 + 1 20 () 17)
AT boﬂé T bo.”S 0! 310 b:boylo

It is assumed that the input random variable b exhibits symmetrical, but not necessarily
Gaussian, distribution to eliminate all odd-order term expansion components (uniform or
symmetric triangular distributions are admissible here as well).

A precision of the expected value determination (and also variances) using this tenth-
order approach has been demonstrated in the first numerical experiment. Assuming that
the variable b exhibits Gaussian distribution, one may simply derive its higher-order central
probabilistic moments in the following way:

~ 0; p:2k+1
= {{aw)}"(p—l)u OV (-1 (=35 p =2k

for any natural k > 1, the expansions relevant to higher-order statistics in this methodology
can be found in Ref. [4]. Uncertainty analysis, based upon probabilistic moments and coef-
ficients, has some well-known limitations and may be biased due to some unpredictable
numerical errors; therefore, a concept of probabilistic entropy has been proposed by Shan-
non [25] and then extended by many researchers. It states that uncertainty in the given
technical system, quantified by a real valued function f = f(b), where b is this uncertainty
source, may be quantified by a real number £, as follows:

=~ L (O I F0)) 1)

where n stands here for the number of possible different states of this system. Because a
coefficient of variation (CoV) was dominantly used in stochastic computational mechanics
to discuss uncertainty importance and propagation in the given boundary value problem,
a comparison of the Shannon entropy distribution with the analogous distribution of the
CoV for the given benchmark problem is delivered in the following sections.
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3. Stochastic Finite Volume Method

The following polynomial basis is proposed for the resulting discrete temperature
field Tp in the presence of an uncertainty source b [4]:

Tg = ngbm, m=0,....n—1,p=1,...,N, (20)

where ng stands for a rectangular matrix of the unknown polynomial coefficients, so that
the following continuous approximation is adopted:

0(x;) = ¢p(xi) Tg = Pp(x;) ngbm, i=1,2p=12,...,Nym=0,...,n—1; (21)

where ¢g and Tj are traditional deterministic shape functions. The temperature gradients
are similarly determined as follows:

0= ¢p; T = ¢p; Dpub"™, i=1,2m=0,...n—1 (22)
Analogous representation is proposed for the pressures as follows:

Py = ngbm,m:O,...,nfl;ﬁzl,...,N, (23)
as well as for the fluid velocities. These interpolation (or approximation) functions inherent
in the response function method (RFM) follow the series of the given flow problem solutions,
where the input uncertainty parameter b is initially discretized in a uniform way within
the given lower and upper bounds. One introduces several uniform subdivision of the
interval [inf(b), sup(b)], getting the set {by, bs,. .., bp}, and iteratively solves the Navier—
Stokes equations system for a discrete value of this parameter b. This parametrization is
introduced in the following thermodynamic equilibrium equations with the additional
upper index « = 1,.. ., p, whose natural value usually does not increase above one hundred.

As is well known, the basic idea behind the FVM is an application of the Gauss-
Ostrogradsky divergence theorem to replace the volumetric integrals inherent in governing
Equations (10)—(12), with the surface integrals rewritten for all the finite volumes, com-
pletely composing the entire computational domain. The contribution of each finite volume
to the global equilibrium equation is represented by the contribution of its center, as well
as its outer faces. It remarkably differs from the FEM and the boundary element method
(BEM) discretization [37,39], in which the significance of each element traditionally depends
upon the contributions of their nodal points.

Therefore, Equation (10) is discretized in each local finite volume I, as follows [40-42]:

(@) A () 1 s 1 s
pWAUM N 1k ),y - LR gy 4

=1 ;o (24)
- (vum))lwl(*) - (va)l +p(Wg®

where V) denotes the /th finite volume (in Figure 1). The pressure gradient in x; direction is
calculated with the use of the Gauss integration scheme, as follows [35,40]:

(25)

where Ajis the area of the face j, n; denotes the versor of this surface directed outwards,
and o =1,..., M. An analogous procedure is proposed for the velocities, e.g.,
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vu® = v Z% u™ A (26)
]7

where the central differencing scheme is applied to determine the given value at the cell
face center. The following definitions are adopted, yielding:

27)

Figure 1. 3D view of a single finite volume.

Finally, the following algebraic equations system is obtained for the /th finite volume:

K@y (¢ +21<l] T =g (28)
=

The variable Ul(]a ) (t) is the so-called velocity face flux adjacent to the finite volume [ and its
j outer plane computed at time ¢ for the response function test indexed with a. The global

momentum equation in the RFM-based FVM is rewritten as follows:

N
;@M) +22mjuw ZQ (29)

The central differencing scheme, with the coefficient x as the (linear) interpolation factor
connecting the given finite volume and its particular face j, is introduced to evaluate the
given scalar field at the cell face center. The continuity equation, cf. Equation (11), is
discretized similarly on the finite volume level as follows:

Yy ua;=o (30)



Entropy 2025, 27, 67

7 of 17

Var(T(b,x))

Then, the following matrix equation for pressures (for the finite volumes center contribution
and the finite volumes face, separately) is applied:

55 P(a)—=(a
KP@p®) (1) 4 Zinj( P (1) = )™ @31)
]:

where its global version is provided as follows:

Mz

)+ Z Z R Pt Z Q" (32)

=1

Finally, the SFVM discretization of the heat transfer equation is proposed as follows:

T(a ®
Kz( )Tl( ‘(1) + ZKI]( )Tz(] (t) = Qz (33)
where @) (@
o) (a 1 g A
g0 _ " @ @@ g e A
I At li ?Pl I El (1= x)Aijrji + ki 4]
F;(a) = uz(ia)vpz(a)cz(“)XAlj”ﬂi , 1=1,23 (34)
T(w) _ ( Vel (w)
Qr® = AL (s ar) 1 of

and (pl(“) is the viscous dissipation in the /th finite volume and the ath RFM numerical test.

Therefore, the global heat transfer equation for the SFVM yields [35] the following:

2 KT((X + 2 Z KT(OC) Tl] 2 QT(tx) (35)

Having determined the series of the PVT solutions for the given flow problem,
one needs to complete the polynomial representations for these solutions proposed in
Equations (21)—(23), which can be achieved using an interpolation or approximation
method. Usually, polynomial interpolation or the least squares method (LSM) is pre-
ferred, although some spline techniques or artificial intelligence tools can be engaged as
well. Finally, the calculation of the first two probabilistic moments of the temperature
begins analytically in the following way:

+o00 +<?0
E[T(b,x)] = [ T(b,x) po(tidt = [ DE,b" py ()t (36)
+o00 +oo 5
= [ (T0,x) ~E[T@,x)) pot)dt = [ (DF,b" — E[T(b,%)])" pu(t)at (37)

In case of the existence of the abovementioned integrals, the results are identical in the
probabilistic context, and such a methodology is called the semi-analytical method (SAM),
due to the approximative character of the temperature representations. In general, one
may apply the generalized Taylor expansion proposed by Equation (15), and then the
expression describing expectations (Equation (17)) will be enriched with the approximating
polynomials. This approach is usually called the stochastic perturbation technique, in
which the tenth order is applicable in the given test flow problems. Finally, the statistical
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counterparts of Equations (36) and (37) are used in the classical Monte Carlo scheme, whose
numerical accuracy is biased by the total number of random trials.

4. Numerical Simulation
4.1. The 2D Heat Transfer Benchmark Test

The first example shows the numerical solution of the heat transfer in a trapezoidal
plate with two elementary finite volumes’ discretization. This benchmark example has been
attached to validate computational implementation of the proposed SFVM and also to verify
the numerical convergence of the entire procedure. This case study has been entirely coded
in the MAPLE computer algebra system, where the FVM equations, Monte Carlo simulation
relevant to the uncertainty quantification, as well as Shannon entropy computations have
been compiled. The geometry of this benchmark test is shown schematically in Figure 2,
where a constant source of heat g = 8.OI;ITI;‘ has been applied, and the material density of the

plate equals p = 1.0%, whereas the heat conductivity « is the given Gaussian uncertainty
source, and it has been identified using its first two probabilistic moments E[] =2.0 N/K:s,
while its coefficient of variation equals 0.05. The boundary conditions imposed on this
plate are relevant to a heating of the upper surface and a maintenance of zero values at the
lower surface, as shown in Figure 2.

ty T = 20K
Lo=2m L3 =6m
A
g T oT
p=1— p —+—=0
-3 m’ s 'y
16 Nm
q~8 °
s-kgcv, cv,
l\=2l
K-s v >
Li=12m X
T=0K

Figure 2. CVs configuration with boundary conditions in the 2D numerical test.

An approximation of the integrals using the midpoint rule and the derivatives at the
CV faces obtained using the second-order central differences yields the following algebraic
system of equations:
98Ty — 17T, = 1386
. (38)
98T, — 17T = 1746

The final deterministic solution for the two temperatures obtained in this case is
obtained as follows:

0 __ 2452 1 2884 1
T—[v'; o x| (39)

Two polynomial functions relating the resulting temperatures with the heat conductivity
x have been determined using the polynomial interpolation function embedded in the
CurveFitting library of the MAPLE system.

Figure 3 presents the statistical estimators of the expectations (left graph) and the
coefficient of variation (right graph) for the temperatures computed using the deterministic
scheme of the finite volume method, in conjunction with the Monte Carlo simulation
routines for 125, 250, 500, 1000, 2000, 5000, 10.000, 20.000, 50.000, 100.000, and finally,
200.000 random samples in the MAPLE system. The results of these simulations are
shown in Figure 3, including the expectations of convergence (a) and the coefficients of
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variation convergence (b). Figure 4 illustrates the probabilistic convergence of both discrete
temperatures; the horizontal axes in these graphs include a logarithm of an increasing MCS
sample number. The first two moments have been estimated directly using the Statistics
library of this system, while Shannon entropy has been determined by the partitioning of
the histograms created in MAPLE; the additional script has been created for this purpose.

20.75 - —D—':——j R e

20,50 0,080 |-+t

D025 e
20 e 0.049 -

0.048 i

1950 Do P b
Ex(T) B O S U I AR SR R COV(T)0.047_...........; ..... A Lo U R SO
19.25 h h : ] h : ; ; : : : :

T DOURUURL CUUURUUUUURUUOE UV USRI SO

Lo Lo Lo 0.046 -
T L

T T S RRECICE TP IPPTRRRRN PN S 0.045 -+ -oeomioem bl
ABL25 - - eeh b

D 0,088 ool S SR O
L[ R B SIEIERPRS S e o

17,75 TR R 0043 qgeeceitoc b T OO TS I

:
1.%10° 1.%10° 1.x 10° 1.%10°

N e
(@) (b)

Figure 3. Expected values (a) and coefficients of variation (b) of the temperatures for Gaussian heat

conductivity.

154 e ""':"D"
Rs2|
1.50+
TP SRR SO SRR RO SOOI HOR S

h(T) 1.444 - SRR S S SRS S S
1.42-
S N St s
138

1.36+

1,38

T t t t
1.%10° 1. %10*
log(n'

* T1. 0O T2

Figure 4. Shannon entropies of temperatures in the heat flow test for Gaussian heat conductivity.

These two figures confirm that the fastest convergence is traditionally obtained for
the lowest order probabilistic moment (expected value), where good accuracy is obtained
even for about 10° random trials. Satisfactory accuracy of the coefficients of variation is
noticed while applying 5 x 10* repetitions in the MCS approach. Reasonable convergence
of Shannon entropy is determined with 2 x 10°, which means that reliable results in
entropy analysis demand remarkably larger sizes of populations and computer effort. It
is interesting that the coefficients of variation of both temperatures are almost the same,
while the expectations and Shannon entropies display remarkably different values in the
two discrete points under consideration. This partially confirms the previous observations
made for nonlinear solids [43] that Shannon entropy shows the trends relevant to the
expectations and coefficients of variation at the same time, so that instead of two graphs, a
single uncertainty propagation graph may be analyzed.

Additional observations for the Shannon entropies can be made while varying both
the total number of random trials and the expectation of the randomized heat conductivity
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k, which is reported in Figure 5 below. This is separately delivered for the two given
discrete volumes. This data confirms the high impact of the Shannon entropy to this
expectation, whose increase remarkably decreases the entropy of interest. Furthermore,
larger expectations of the heat conductivity results in a monotonous increase in the Shannon
entropy, while increasing the size of the MCS analysis, and inversely, smaller expectations
of random input cause a monotonous decrease in this entropy to its theoretical limit.

1.9
* + ¥ -
. | 1.8
. * Lt + 0_—1.7
. + 4.6
. . - Lt ot ..
* .t ‘1'05
.t Lt e o[ 44 h(TT)
. I
.« T ¢, . lng?
. . L2 v
et PO ol
’ PO T I
.+ * + LR +
R T i A
e vt g et
- Te 7 06. 5'1.6 o ot
11 10 9 PR * '1‘:?30‘ .
12 log(n) v 0
k" og
(a) (b)

Figure 5. Shannon entropies of temperatures Ty (a) and T (b) in the heat flow test for Gaussian heat
conductivity k, according to the random samples in the MCS analysis.

This benchmark test has also been used to contrast the first two moment computations
computed using the simulation method (MCS solution) with a semi-analytical approach
(SAM solution), where symbolic integration has been delivered, and also with the stochastic
perturbation approach of the tenth order (SPT solution). This study is attached to check a
validity range of the SPT technique, whose time and computer power usage is close to those
of the deterministic case study solution. The results are shown in Figures 6 and 7 below
for two discrete volumes in the function of an increasing input uncertainty in this model,
ie., a(x) € [0.00,0.25], which corresponds to a huge uncertainty regarding the temperature-
independent physical characteristics of solids. Due to the nature of the specific solutions,
the stochastic perturbation and semi-analytical methods return continuous functions with
respect to this parameter a(k) when the simulation for each discrete value (k) = 0.025*n,
where natural 7 =1, ..., 10. The results cannot be deduced from Figures 6 and 7.

19,2 T
d B : : : : : : : :
i : ! 224
18- E :
g e : : : : : : : :
BB o d e e @ : :
T S T A 22
3 . H . . H . @ H | -
1B oot R : : : : : : : 4
: : : : : : @ 248t
Ex(T1) i : N Ex(T2) :
L S S S St PSS NS T
i : : : P& :
g : : : o : : : : : :
182 foee et RS b
‘ R R § 2147
s N ! ) N -
: : : * : : : : :
i ; B 21,2 e
181 CaE : ‘
i : L : : I : : : : : i
e ® 21 B
R e L AN N —
0.0250.0500.0750.1000.1250.1500.1750.2000.2250.250 0.0250.0500.0750.1000.1250.1500.1750.2000.2250.250
ofx) o(x)
4 MCS solution O SPTsolution * SAM solution 4 MCS solution * SAM solution O SPT solution
(a) (b)

Figure 6. A comparison of the temperature expectations (T; (a) & T, (b)) in the given discrete volumes
using three concurrent computational techniques.
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015+ 0.15+

0.10+ 040 el g
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T T T T T T T T : i + t t t t T
0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.025 0_650 0.0‘75 0.100 0,1‘25 0,1‘50 0.175 0.2‘00 0.2‘25 0.250

(k) o(x)
[[O sPTsolution * SAM solution & MCS solution] [® mMcssolution O SPTsolution * SAM solution]
(@) (b)

Figure 7. A comparison of the temperature coefficients of variation (T; (a) & T, (b)) in the given
discrete volumes using three concurrent computational techniques.

The expected values contained in Figure 6a,b coincide perfectly with each other for all
three methods and for any input uncertainty level. This coincidence is expected, even for
lower-order stochastic perturbation theories; nevertheless, the existence of semi-analytical
trend in these results depends upon specific stochastic responses of the given physical
systems. Not all response functions (except polynomial types) can be relatively easily
integrated using the Gaussian probability density function (PDF). This methodology may
also fail when non-Gaussian PDF is chosen for a particular physical motivation; then, the
application of polynomial approximations may not return the exact analytical result. These
effects are also expected for higher-order statistics, for which symbolic integration is more
complex. All the trends of both expectations are nonlinear, smooth, and convex, so one can
also extrapolate from these curves a propagation of the expected values out of this interval.
Figure 7 presents additional information concerning the second-order statistics (variance),
where almost perfect agreement is restricted to the interval «(k) = [0.00, ..., 0.20].

Eventually, all the methods start to diverge from each other, and the largest values
come from the MCS approach, with smaller values resulting from the analytical approach
(SAM curve), while the SPT trend begins to underestimate this probabilistic moment. It is
likely that the greatest precision in the SPT approach could be achieved by systematically
increasing the order of this method while increasing the input uncertainty level above the
critical value (k) = 0.20. One also notices that the general trend is almost linear from
the very beginning, and then for about x(k) = 0.20, it falls into a curvilinear mode, and
the extrapolation for larger input uncertainties may be biased, with a higher modeling
error; the second moments are remarkably close to each other for two given finite volumes.
Concluding this benchmark test, one may assume that the usage of the time-consuming
Monte Carlo simulation for numerical analysis of the basic probabilistic characteristics of
the physical responses in linear systems with limited input uncertainty may be replaced
with some alternative techniques, but this is not the case for Shannon entropy, where
statistical estimation of the histogram remains the best approach.

The final part of this numerical experiment has been devoted to the verification of the
importance of the two input parameters inherent in the generalized stochastic perturbation
technique—the input coefficient of variation of the heat conductivity and the perturbation
parameters. The absolute differences between the fourth and the second Oy, the sixth and
the fourth Og, the eighth and the sixth Og, as well as the tenth and the eighth Oy, are
presented on Figure 8.
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0.3
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8(E(v)) g.2- Os §(a(v))
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Figure 8. Common influence of the input uncertainty and the perturbation parameter on (a) expected

values and (b) coefficients of variation of the temperature in the finite volume 1.

Both graphs well-document that the differences between the neighboring even orders
of the Taylor expansions vanish rapidly when increasing the order of this methodology.
These differences quite expectedly increase while increasing the input uncertainty level
and the perturbation parameter value above the traditionally accepted value of one. The
precision of the tenth-order perturbation scheme can be validated by contrasting these two
figures with Figures 6a and 7a, respectively. Taking into account ¢ = 1 and the extreme value
of the input CoV equal to 0.25, it is observed that the modeling error in the expectations is
remarkably smaller than 1%, which confirms the sufficient precision of the determination of
the first two moments. An analogous error while computing the coefficient of variation for
the same combination of input parameters equals about 2.5%; nevertheless, an application
of the input CoV equal to 5% in the first case and 10% in the second case, makes this error
negligible. This discussion may gain importance when considering temperature-dependent
physical parameters, for which uncertainty propagation may be highly nonlinear during
heating or coupled heat and mass transfer processes.

4.2. The 3D Coupled Lid-Driven Cavity Flow

Let us consider a cube of unit dimensions discretized into 400 equal cubic finite
volumes containing a fluid with the following physical parameters—density, specific heat,
thermal conductivity, and viscosity (both CoVs equal 0.10). These two parameters are
randomized separately, according to the Gaussian distribution, to distinguish the influence
of their uncertainty on the PVT solution of the given fluid flow problem. The boundary
conditions introduced for this cube relevant to the forced uniform flow at the upper
surface and the surface temperature difference between the upper and lower surface are
schematically shown in Figure 9.

The problem is restricted to 2D analysis to provide a more apparent final visualization
of the resulting state functions and their basic probabilistic characteristics. The time
increment has been set as At = 0.10 s, and the computations have been stopped after 10 s. It
is clear that a composition of the physical parameters of the fluid is artificial and is taken to
complete this benchmark test, while realistic fluids analysis would be more demanding.
Computational analysis has been performed with hybrid usage of three different computer
systems, namely (a) OpenFVM (a series of the few deterministic Navier-Stokes problem
solutions, with some varying physical parameters) [44], (b) symbolic environment of the
mathematical package MAPLE [45] (WLSM fitting), and (c) the freeware FEPlot 3.1 [35]
(visualization of probabilistic moments and entropy).
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Figure 9. Boundary conditions for the lid-driven cavity flow.

The expected values, coefficients of variation, and Shannon entropies of the resulting
temperatures in two tests, including random viscosity (a) and heat conductivity (b), are
shown in Figures 10-12 below. It is rather natural and intuitively clear that the expected
values of the temperatures in both problems are almost equal to each other (Figure 10),
and they increase moderately from the upper to the lower surface of this quadratic cavity,
resulting from the thermal boundary conditions presented in Figure 9. Negligible boundary
temperature fluctuations throughout the upper and lower edges are caused by the rotational
character of this particular flow.
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Figure 10. Expected values of the temperature field in the lid-driven cavity flow test for Gaussian
viscosity (a) and heat conductivity (b).
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Figure 11. Coefficients of variation of the temperature field in the lid-driven cavity flow test for

Gaussian viscosity (a) and heat conductivity (b).
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Figure 12. Shannon entropies for the temperature field in the lid-driven cavity flow test for Gaussian
viscosity (a) and heat conductivity (b).

First of all, it is noticeable that the coefficients of variation, as well as probabilistic
entropies, exhibit similar spatial distributions; this similarity holds true for both uncertainty
sources separately. These parameters are, at the same time, completely different from the
corresponding distributions of the expectations.

Moreover, one notices that the uncertainty in fluid viscosity causes extreme uncertainty
of the temperature distribution (the largest values of the CoV and entropy) in some part of
the right vertical edge of this computational domain. Analogous uncertainty in the fluid’s
heat conductivity results in the extremes near the upper left corner, quite close to the cavity
inlet. Interestingly, the minimum values of the resulting temperature uncertainty (close to
0, which is adjacent to the deterministic situation) form almost the same patterns within
the given 2D domain for the fluid viscosity and a very similar pattern to that of the random
heat conductivity case. Finally, it is remarkable that larger CoVs and Shannon entropies are
noticed while randomizing heat conductivity than the corresponding values obtained for
fluid viscosity. It agrees well with engineering intuition and may serve as some verification
of this probabilistic solution.

5. Concluding Remarks

(1) Shannon entropy determination for the PVT solution of the fluid flow problems with
uncertainty, solved using the stochastic finite volume method, has been presented
in this work. This approach uses fully coupled Navier-Stokes equations and dual
probabilistic methodology, based on the generalized stochastic perturbation method,
as well as the Monte Carlo simulation technique. It has been demonstrated here
that the spatial distribution of probabilistic entropies is very close to the additional
distribution of the coefficients of variation of the given fluid state function and may be
useful in further uncertainty analysis for flow problems. This coincidence is observed
for two different physical properties of the fluid, namely heat conductivity and
viscosity, so the results do not appear to be accidental. Additionally, the probabilistic
convergence of Shannon entropy has been documented using two discrete volumes,
discretizing some planar heat conduction problems. Therefore, Shannon entropy
would be advisable to illustrate uncertainty propagation in the flow problem instead
of a series of the probabilistic moments and coefficients, which need to be studied
together to achieve the same goal. It should be highlighted that contrary to the existing
research in computational mechanics, this study enables the spatial distributions of
Shannon entropy throughout the entire computational domain, and this entropy
exhibits local characteristics connected with the discrete finite volume.

(2) The numerical solution presented here is based on the hybrid usage of the open
source FVM program, a computer algebra system for probabilistic analyses, and the
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LSM fittings, as well as FEPlot software to complete a visualization of the resulting
probabilistic moments and entropies. Further implementations focus on a closer
interfacing of these three systems, as well as on the parameter sensitivity of the
resulting entropy concerning the histogram partitioning, the Monte Carlo random
trials number, the input uncertainty level, as well as the FVM time and the spatial
discretization of the given flow problem. It may be that due to the numerical error of
the solution itself or erroneous definition of the aforementioned problem parameter
settings, Shannon entropy distribution computation would be inefficient. In case of
any possible numerical discrepancies, other probabilistic entropy models could be
considered.
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