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Abstract: During the rice harvesting process, severe occlusion and adhesion exist among
multiple targets, such as rice, straw, and leaves, making it difficult to accurately distinguish
between rice grains and impurities. To address the current challenges, a lightweight seman-
tic segmentation algorithm for impurities based on an improved SegFormer network is
proposed. To make full use of the extracted features, the decoder was redesigned. First,
the Feature Pyramid Network (FPN) was introduced to optimize the structure, selectively
fusing the high-level semantic features and low-level texture features generated by the
encoder. Secondly, a Part Large Kernel Attention (Part-LKA) module was designed and
introduced after feature fusion to help the model focus on key regions, simplifying the
model and accelerating computation. Finally, to compensate for the lack of spatial interac-
tion capabilities, Bottleneck Recursive Gated Convolution (B-gnConv) was introduced to
achieve effective segmentation of rice grains and impurities. Compared with the original
model, the improved model’s pixel accuracy (PA) and F1 score increased by 1.6% and
3.1%, respectively. This provides a valuable algorithmic reference for designing a real-time
impurity rate monitoring system for rice combine harvesters.

Keywords: rice; impurities; semantic segmentation; SegFormer

1. Introduction
Rice is one of the world’s major staple crops, accounting for 12% of global arable land

and providing food for over 50% of the population [1–3]. The impurity rate in paddies is
an important indicator of rice quality [4]. During the harvesting and processing of rice,
various impurities are often mixed in. A high impurity rate can reduce the quality of pro-
cessed products, affecting the taste and appearance of the food. In international trade, the
impurity rate of paddies is also an important trade standard. Most countries have specific
restrictions and regulations regarding the impurity rate of imported rice. Understanding
and controlling the impurity rate helps agricultural exporters and government agencies
comply with international trade standards, ensuring product quality and compliance.

Rice impurities significantly affect the quality of rice grains and impede the efficiency
of processing systems. Improving the segmentation accuracy of rice grains and impurities
is, therefore, an important task in rice sorting and quality control. Currently, modern
rice-sorting systems, such as optical sorters and pneumatic separators [5,6], are widely
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adopted in industrial rice processing. Optical sorters utilize high-resolution cameras to
classify rice grains based on color, size, and shape, offering high sorting speed and accuracy.
However, they often face challenges such as poor lighting, dust interference, or occlusion
of impurities, which significantly affect their performance. Pneumatic separators, on the
other hand, separate impurities based on density differences. Although effective in some
scenarios, they struggle to distinguish impurities with similar densities to rice grains. These
shortcomings highlight the need for advanced segmentation methods to address challenges,
such as occlusion, adhesion, and detecting small impurities.

Moreover, advances in 3D vision systems offer greater potential for precise and fast
detection of target regions. For example, Sergiyenko and Tyrsa [7] developed a 3D optical
machine vision sensor with intelligent data management, which significantly improved
robotic swarm navigation performance and enhanced 3D mapping capabilities. Similarly,
Ivanov et al. [8] demonstrated the effectiveness of 3D data cloud fusion technology in
improving the autonomous navigation accuracy of robotic groups in unknown terrains.
Additionally, Sergiyenko et al. [9] proposed a synchronized data transfer model that effec-
tively optimized obstacle detection and navigation. While these technologies have shown
remarkable results in robotics, their application to agricultural tasks, such as rice impurity
segmentation, remains largely unexplored. The advancements in 3D vision systems provide
potential directions for achieving more precise segmentation and positioning in complex
agricultural environments through the integration of multi-modal information.

This study focuses on improving the segmentation accuracy of rice grains and impuri-
ties using a 2D image-based approach. In recent years, advances in computer vision and
deep learning technologies have provided new solutions for automatically detecting and
classifying crop impurities, significantly improving efficiency and accuracy. Deep learning
algorithms can learn complex feature patterns from a large amount of image data, thereby
accurately classifying different types of impurities. This automation not only improves
work efficiency but also reduces the need for manual intervention [10].

Based on deep learning, semantic segmentation algorithms can be divided into two
main categories: methods based on convolutional neural networks (CNNs) and methods
based on Transformers. The Fully Convolutional Network (FCN) [11] is one of the earliest
proposed semantic segmentation algorithms based on CNNs. The FCN replaces tradi-
tional fully connected layers with fully convolutional layers, achieving end-to-end pixel-
level classification.

Convolutional neural networks (CNNs) have dominated semantic segmentation in
agriculture. Representative research includes the following: Jin et al. [12] proposed an intel-
ligent detection method for mechanized soybean harvesting quality based on an improved
U-Net algorithm, using the VGG16 network as the feature extraction module. The system’s
evaluation indices for recognizing intact soybeans, broken soybeans, and impurities were
93.04%, 89.40%, and 96.49%, respectively. Compared with manual detection, the maximum
absolute error for detecting soybean breakage rate was 0.57%, and for impurity rate, it
was 0.69%.

Liu et al. [13] proposed a lightweight fully convolutional rice impurity segmentation
algorithm based on deep learning, using an improved EfficientNetV2 network model
and introducing a Normalized Attention Mechanism (NAM) to enhance feature extrac-
tion performance. The average detection time for a single image was 0.103 seconds on
GPU devices and 0.301 seconds on CPU devices, demonstrating the lightweight nature of
the algorithm.

However, CNNs have several drawbacks, such as limited receptive fields and the
inability to capture global information, which significantly reduces their segmentation
accuracy in impurity detection [14,15]. The core self-attention mechanism of Transformers
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can capture long-range information and dynamically adjust the receptive field according to
the image content [16]. Therefore, Transformers exhibit stronger performance and flexibility
compared to CNNs. Vision networks based on Transformers have already been researched
in agriculture. For example, Yang et al. [17] proposed a new model called ECA-SegFormer,
which enhances feature representation robustness by introducing the Efficient Channel
Attention (ECA) module and Feature Pyramid Network (FPN) into the SegFormer decoder.
ECA-SegFormer achieved an average pixel accuracy of 38.03% and an average intersection
over union (IoU) of 60.86% on the dataset.

SegFormer [18], as a Transformer-based visual recognition network, offers better
computational efficiency and feature extraction capabilities. However, it has issues such as
insufficient feature utilization and an overly simplistic decoder. In this paper, we take the
SegFormer backbone as the feature extractor and redesign the decoder.

The main contributions of this paper are as follows:

1. To address the problem of insufficient feature utilization, we use an optimized Feature
Pyramid Network (FPN) to replace the original MLP layer, enhancing the semantic
information of features;

2. A novel attention module (Part-LKA) was designed, which can independently adjust
attention for different parts, enhancing the model’s focus on important features;

3. Bottleneck Recursive Gated Convolution (B-gnConv) was designed based on Re-
cursive Gated Convolution (gnConv) [19] to reduce training costs and improve the
network’s spatial interaction capabilities;

4. Different models were trained on a self-built dataset, and their performance was
verified using a test set. The results show that the proposed method achieved higher
accuracy in rice impurity segmentation, demonstrating its effectiveness.

2. Improved SegFormer Network Architecture
The improved SegFormer network model mainly consists of two parts: an encoder

and a decoder, with the overall structure illustrated in Figure 1. The encoder is responsible
for extracting multi-scale features, while the decoder aggregates and processes these multi-
scale features to generate the final image output.

The encoder’s input module resizes the input image to a uniform pixel size, and the
Transformer Block processes it to produce feature maps at different resolutions. First, an
optimized Feature Pyramid Network (FPN) is utilized to combine high-level semantic
features with low-level features, generating richer feature maps. Subsequently, the Part-
Large Kernel Attention (Part-LKA) operation is applied to the fused features, allowing the
network to focus on specific dimensions, thus enhancing feature relevance and better han-
dling of local contexts. The attention-adjusted features are then upsampled using bilinear
interpolation and resized to 1/4 of the input image size for dimensional concatenation.
Next, two 1 × 1 convolutions are used to adjust the channel count to effectively fuse features
from different scales. Additionally, Recursive Gated Convolution (gnConv) is integrated
into the 1 × 1 convolutions to enhance spatial interaction within the network and capture
hierarchical features. The final output is the decoded semantic segmentation map.
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Figure 1. Improved model network architecture. Note: H represents the height (number of rows of
pixels), W represents the width (number of columns of pixels), C represents the number of channels,
MLP stands for Multi-Layer Perceptron, Part-LKA represents the Part Large Kernel Attention module,
and B-gnConv represents the Bottleneck Recursive Gated Convolution.

2.1. Encoder

The encoder adopts the MiT-B0 structure from the SegFormer model, which is com-
posed of four Transformer Blocks, as shown in Figure 2. Overlap Patch Embeddings (OPE)
are used for feature extraction and downsampling of the image. The standard convolution
layer is used to scale the feature map by modifying the patch size and stride, ensuring that
patches overlap, thereby establishing connections and converting two-dimensional features
into one-dimensional features. Next, Efficient Self-Attention (ESA) and a Mix Feed-Forward
Network (Mix-FFN) are employed for self-attention computation and feature enhancement.
Additionally, to extract richer details and semantic features, the Transformer Block uses
multiple stacked ESAs and Mix-FFNs to increase the network depth.

Overlap Patch 
Embeddings

Efficient 
Self-Attn

Mix-FFN

N

 

Figure 2. Encoder network architecture.

ESA (Efficient Self-Attention) is similar to the traditional self-attention mechanism in
structure, but it employs a sequence reduction operation to reduce computational com-
plexity. The principle of the traditional self-attention mechanism is shown by Equation (1)
as follows:

Attention(Q, K, V) = Softmax

(
QK⊤
√

dhead

)
V (1)

where Q, K, and V are all N × C matrices, and N represents the sequence length H × W.
By performing a dot product between Q and K, the similarity between feature maps
is calculated to obtain the attention scores. These scores are then multiplied with the
original feature map V to extract data. At this point, the computational complexity of the
self-attention mechanism is O(N2), which is not favorable for large images. Therefore, a
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sequence reduction factor R is used to shorten the sequence, with the specific operation
as follows:

K̂ = Reshape
(

N
R

, C, R
)
(K) (2)

K = Linear(C · R, C)(K̂) (3)

where N represents the number of heads in the self-attention mechanism, and R represents
the scaling factor for each self-attention mechanism. After processing, the resulting matrix
size is R

N × C.
Mix-FFN uses a 3× 3 convolution to dynamically express the inter-patch relationships,

thereby replacing the fixed positional encoding used in ViT [20]. By placing convolution
within the FFN, the impact of zero-padding on positional encoding is reduced. The specific
operation is as follows:

Xout = MLP(GELU(Conv3×3(MLP(Xin)))) + Xin (4)

where Xin represents the features derived from the attention mechanism.

2.2. Optimization of FPN Structure

The FPN structure used in the decoder was proposed by Lin et al. [21], and it effectively
detects objects of different sizes, improving detection accuracy and robustness. In the field
of semantic segmentation, FPN provides rich contextual information, which is crucial for
accurately segmenting small objects or complex details in images, as well as for improving
object boundary handling, as shown in Figure 3(1).

For smaller targets, shallower features are more beneficial for segmenting fine details,
while incorporating only a part of the high-level features into the lower-level features
is favorable for the upsampling process to restore image resolution. Therefore, the FPN
structure was optimized. Experimental comparisons show that directly outputting the
highest-level features while fusing other features using FPN maximizes the retention of
detailed information. This improvement enhances the model’s accuracy while maintaining
its original advantages. The structure is illustrated in Figure 3(2).

1×1Conv1×1Conv

2×UP2×UP

1×1Conv1×1Conv

2×UP2×UP

1×1Conv1×1Conv

2×UP2×UP

1×1Conv1×1Conv

1×1Conv1×1Conv

2×UP2×UP

1×1Conv1×1Conv

2×UP2×UP

1×1Conv1×1Conv

1×1Conv1×1Conv

(1) (2)

Figure 3. FPN structure before and after improvement.
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2.3. Part Large Kernel Attention Module

The original SegFormer uses Multi-Layer Perceptrons (MLPs) for simple feature trans-
formation. Although this approach reduces the computational complexity of the model,
it is unable to effectively filter important feature information during the transformation
process. To extract significant feature information, this paper proposes the Part Large
Kernel Attention (Part-LKA) module, with the network structure illustrated in Figure 4.
The proposed Part-LKA considers both channel and spatial dimensions simultaneously.

DW-Conv DW-D-Conv

Concat

1×1Conv

Split

Figure 4. Part-LKA network structure.

The input feature map is divided into two parts along the channel dimension, and
depthwise convolution and dilated depthwise convolution are performed separately. Depth-
wise convolution is applied independently on each channel to capture spatial features
within each channel, without mixing information between different channels. The dilated
depthwise convolution, with a dilation rate of 3, further expands the receptive field to cap-
ture more extensive spatial features. The feature maps obtained by depthwise convolution
and dilated depthwise convolution are concatenated along the channel dimension, thus
integrating spatial information at different scales. The 1 × 1 convolution used in the model
not only fuses channel information but also captures the relationships between different
channels. The generated attention map is then multiplied elementwise with the original
input feature map to dynamically adjust the feature intensity at each spatial position and
across channels, thereby emphasizing important spatial locations and channel features. The
specific operations are as follows.

F = F1 ⊕ F2 (5)

Attention = Conv1×1(DW · D · Conv(F1)⊕ DW · Conv(F2)) (6)

Output = Attention ⊗ F (7)
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where ⊕ represents concatenation along the feature dimension, F1 and F2 are matrices of
size H × W × C/2, and ⊗ denotes elementwise multiplication.

2.4. Bottleneck Recursive Gated Convolution

Recursive Gated Convolution (gnConv) enhances the representation capability of
convolutional neural networks by recursively applying convolution operations while
controlling the flow of information. The growth environment of rice is complex, involving
impurities of various types and shapes, which poses a challenge for accurate segmentation.
Traditional convolution methods usually apply fixed weights to all input positions, ignoring
the uniqueness of local image regions, resulting in the inability to accurately identify
impurity features in complex scenarios. Therefore, a single convolution operation is very
limited in handling such fine-grained visual tasks.

To address these issues, this study introduces the gnConv module. The goal of the
gnConv module is to achieve long-range modeling and high-order spatial interaction. It is
constructed using standard convolutions, linear projections, and elementwise multiplica-
tion, but has input-adaptive spatial mixing functionality similar to self-attention. In CNNs,
networks mainly use static convolution kernels to aggregate neighboring features, whereas
Vision Transformers use multi-head self-attention (MSA) to dynamically aggregate spatial
token weights. However, the quadratic complexity and large input size of self-attention
significantly limit the application of Vision Transformers. In contrast, gnConv achieves
equivalent spatial interaction using simple operations such as fully connected layers of con-
volutional kernels. The basic module of this method is gated convolution. Let x ∈ RHW×C

be the input feature of the gated convolution, then the output y can be represented as:[
pHW×C

0 , qHW×C
0

]
= ϕ(x) ∈ RHW×2C (8)

p1 = f (q0)⊙ p0 ∈ RHW×C (9)

y = ϕ(p1) ∈ RHW×C (10)

where the input x is linearly projected and then split into channels to obtain p0 and q0; the
function f () represents the computation through depthwise convolution, and ϕ denotes
the linear projection.

Through multiple recursive convolution processes, in each recursion, the input features
are convolved with depthwise convolution kernels, and the resulting output is combined
elementwise with the output of pointwise convolution. This gating mechanism enables
the model to selectively retain important information or discard irrelevant data based on
specific context, thereby managing the flow of information more effectively and capturing
hierarchical features within paddy images.

To achieve a balance between computational cost and representational power, this
module is combined with two 1 × 1 convolutions to reduce the model’s parameter count
and computational complexity, forming what is termed the Bottleneck Recursive Gated
Convolution (B-gnConv) module, as shown in Figure 5. In the initial stage, feature compres-
sion reduces the computational burden, followed by recursive gated convolution to capture
complex spatial hierarchies, and the extracted features are then remapped to a higher-
dimensional space for further processing. This process not only enhances the model’s
ability to learn details but also mitigates accuracy loss caused by input feature compression.
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1×1Conv

1×1Conv

gnConv

Conv,2C
(C,*)

Split

DW-Conv

Conv,C/2

Conv,C

Conv,C

Split

(C/4,*) (C/2,*) (C,*)

(C/4,*) (2C-C/4,*)

Figure 5. Bottleneck-gnConv network structure.

3. Experiments
3.1. Dataset

The rice impurity sample images were captured using a Huashi LRCP10230 industrial
camera with a lens focal length of 12 mm. Under an LED light source (model: YSC-R9060_W,
manufactured by YVSION in Shenzhen, China), the light source was positioned at a
45-degree angle to minimize shadows and ensure uniform illumination. The industrial
camera was used to sample the rice impurity samples in the sampling box of the harvester.
A total of 4288 images with a resolution of 800 × 600 were taken and saved in JPG format.
The LabelImg tool was used to annotate the rice grains and impurities, with the annotations
categorized into four classes: rice grains, stems, branches, and background. Each of the four
categories, including the background, was marked with specific RGB values: rice grains
[128, 128, 128], stems [0, 128, 0], branches [128, 0, 0], and background [0, 0, 0]. The image
annotation process is shown in Figure 6.

Before training the network, the 4288 labeled rice impurity images were divided into
training, validation, and test sets in a ratio of 8:1:1. Additionally, to prevent model over-
fitting and improve robustness, data augmentation techniques, such as random flipping,
contrast enhancement, Gaussian blur, grayscale processing, and brightness enhancement,
were applied during the training process.

(a)Original Image (b)Annotation Results (c)Results Show

Figure 6. Image annotation results.
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3.2. The Model Training Environment

The improved algorithm was trained and tested using the deep learning framework
PyTorch on a desktop computer, with the hardware and software parameters shown in
Table 1. For the hardware setup, the computer used an AMD Ryzen 5 5600G processor
(CPU) (Advanced Micro Devices, Inc., Santa Clara, CA, USA) and an NVIDIA GeForce
GTX 1660s graphics card (GPU) (NVIDIA Corporate, Santa Clara, CA, USA) with 6 GB
of video memory. For the software environment, the operating system was Windows
10, Python version 3.8, PyTorch framework version 1.12, and CUDA 11.6 was utilized
for acceleration.

Table 1. Hardware and software parameters.

Environment Item Value

Hardware environment

CPU AMD Ryzen 5 5600G

GPU NVIDIA GeForce GTX
1660s

Video memory 6 GB

Software environment

OS Windows 10
Python 3.8
Pytorch 1.12
CUDA 11.6

The input size of the model was set to 512 × 512, with a batch size of 8. The optimizer
selected was Adam, with an initial learning rate of 1 × 10−4, using a cosine decay schedule,
and the minimum learning rate was set to 0.01 times the initial learning rate. The weight
decay parameter was set to 0.01, and the momentum factors Beta1 and Beta2 were set to 0.9
and 0.999, respectively, for first-order and second-order moment estimation. The dropout
ratio was set to 0.1 to prevent overfitting, and the convolutional kernel size was set to 3. The
loss function was a combination of cross-entropy loss and Dice loss for gradient calculation.
The number of training epochs was set to 800 to ensure sufficient convergence of the model.

3.3. Experimental Evaluation Metrics

To properly evaluate the proposed method, model parameter count and computational
complexity were taken as key metrics, combined with pixel accuracy (PA), class pixel
accuracy (CPA), mean intersection over union (MIoU), and comprehensive evaluation (F1)
to assess model performance. The mathematical expressions for calculating PA, CPA, MIoU,
and F1 are as follows:

PA =
TP + TN

TP + TN + FP + FN
(11)

CPA =
TP

TP + FP
(12)

mIoU =
TP

TP + FN + FP
(13)

F1 =
2TP2

2TP + FN + FP
(14)

where TP represents the pixel correctly classified as belonging to the target class, TN
represents the pixel correctly classified as not belonging to the target class, FP represents
the pixel incorrectly classified as belonging to the target class when it does not, and FN
represents the pixel incorrectly classified as not belonging to the target class when it does.
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3.4. Performance Comparison of Various Semantic Segmentation Models

To objectively evaluate the performance of the improved model in segmenting rice
impurities, the proposed model was compared with the original model and several main-
stream models under the same configuration and initial training parameters. The results
are shown in Table 2.

As shown in Table 2, compared to the original model, the improved model achieved
increases of 1.6%, 5.06%, and 3.1% in PA, MIoU, and F1, respectively. Compared to other
mainstream models, the improved network achieved the best accuracy for all metrics, sig-
nificantly outperforming other networks. In terms of model lightweighting, the improved
model’s parameter count is only 4.07 M, which is 16.53 M, 42.64 M, 20.82 M, 1.72 M, and
5.57 M fewer than NAM-EfficientNetv2, PSPNet [22], U-Net [23], DeepLabV3+ [24], and
HRNet [25], respectively. Additionally, the computational complexity of the improved
model is 4.66 G, which is 18.05 G, 26.24 G, 108.42 G, 8.56 G, and 4.71 G lower than those of
the aforementioned networks, respectively.

Table 2. Comparison with other segmentation models.

Model PA mIoU F1
Params

(M)
FLOPs

(G)

NAM-EfficientNetv2 94.34 83.6 89.12 20.6 22.71
PSPNet 91.27 68.42 76.83 46.71 30.9
U-Net 92.48 71.05 78.77 24.89 113.08

DeepLabV3+ 92.91 71.17 78.76 5.81 13.22
HRNet 92.69 71.38 78.99 9.64 9.37

SegFormer 96.17 83.76 88.47 3.72 3.39
Ours 97.77 88.82 91.57 4.07 4.66

3.5. Performance Comparison of Different Attention Modules

To evaluate the effectiveness of the Part-LKA module designed in this study for
improving accuracy, we conducted a series of experiments. The Part-LKA module was
replaced in the same position within the model with five major modules: the Efficient Multi-
Scale Attention Module (EMA) [26], Coordinate Attention (CoordAtt) [27], Squeeze-and-
Excitation Network (SE) [28], Efficient Channel Attention (ECA) [29], and Convolutional
Block Attention Module (CBAM) [30]. The comparison results are shown in Table 3.

As shown in Table 3, it is evident that, after replacing the SE and ECA modules, the
model’s parameter count and computational complexity decreased, but this was accom-
panied by a corresponding decline in accuracy. Compared to SE and ECA, Part-LKA
improved PA by 1.43% and 1%, respectively, increased MIoU by 4.61% and 3.34%, respec-
tively, and enhanced F1 by 2.82% and 2.03%, respectively. Moreover, compared with EMA,
CoordAtt, and CBAM, the Part-LKA module achieved increases in PA of 0.68%, 1.46%,
and 1.27%, respectively, and improvements in F1 of 1.37%, 2.79%, and 2.43%, respectively,
while having a lower parameter count and computational complexity. Therefore, Part-LKA
demonstrates superior feature selection ability for identifying impurity features, surpassing
the compared attention modules, effectively improving the model’s performance in rice
grain and impurity segmentation.
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Table 3. Training results of different attention modules.

Attention PA mIoU F1 Params (M) FLOPs (G)

EMA 97.09 86.53 90.2 4.12 4.96
CoordAtt 96.31 84.14 88.78 4.73 5.1

SE 96.34 84.21 88.75 4.02 4.54
ECA 96.77 85.48 89.54 4.02 4.54

CBAM 96.5 84.78 89.14 4.34 4.85
Part-LKA 97.77 88.82 91.57 4.07 4.66

3.6. Performance Comparison of Different Feature Fusion Modules

To verify the issue of insufficient feature utilization, we designed a comparative
experiment to evaluate the impact of different feature fusion modules on the performance
of the SegFormer network. Table 4 shows the performance comparison between the
original model (NONE) and three feature fusion modules (FPN, U-Net, SFM [31]), where
GPA represents the pixel accuracy of rice grains, SPA represents the pixel accuracy of
impurity stems, and BPA represents the pixel accuracy of impurity branches. The original
model only performs simple dimensional adjustments and upsampling of features through
the MLP layer. The results show that its PA is 96.17%, F1 is 88.47%, and it performs poorly
in SPA and BPA, which are 79.8% and 83.6%, respectively. This indicates that the original
model has significant shortcomings in multi-scale feature fusion and fails to fully extract
fine-grained semantic information.

In contrast, after using the FPN module, although the PA increased slightly to 96.18%,
the precision of the SPA and BPA improved to 79.74% and 83.78%, respectively, and the F1
score increased to 88.49%. This validates that the top-down feature fusion mechanism of the
FPN can effectively integrate multi-scale information, thereby enhancing the model’s ability
to express target features. On the other hand, U-Net and SFM resulted in performance
degradation due to their less suitable feature fusion methods, especially with SFM, where
SPA and BPA dropped to 64.87% and 78.15%, respectively. These results further highlight
the impact of insufficient feature utilization. Through this experiment, we confirmed
the issue of insufficient feature utilization in the original model and demonstrated the
advantages of the FPN module in improving network performance.

Table 4. Training results of different feature fusion modules.

Module PA GPA SPA BPA F1

NONE 96.17 97.35 79.7 83.6 88.47
FPN 96.18 97.36 79.9 83.78 88.49

U-net 94.34 96.23 65.09 78.83 83.4
SFM 91.88 95.21 64.87 78.15 80.32

3.7. Visualization Analysis

To better perform a qualitative analysis of the model, complex rice grain images
containing impurities were selected from the test set as samples. By calculating weights
using the global average of the gradients, these weights can be used to weight the feature
maps, generating a Class Activation Map (CAM) to observe the importance of each pixel
for the classification results. SegFormer and the improved model generated CAMs in the
last layer, as shown in Figure 7. Subfigure (a) shows some sample images from the test set,
Subfigure (b) shows the CAMs generated by the improved model, and Subfigure (c) shows
the CAMs generated by the original model.

As seen in Figure 7, the CAMs generated by SegFormer show limited attention to the
grains and impurities, with blurred boundaries between different targets. In contrast, the
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CAMs generated by the improved model focus more on the rice grains and impurities, and
compared to SegFormer, the contours between different targets are more distinct, providing
clearer segmentation.

(a)Original Image (b)Improved Model (c)SegFormer

Figure 7. Class Activation Maps of sample images from the original and improved models.

Finally, the segmentation effect of the model on the original images was visualized
with post-processing, and the original images were also visualized using SegFormer. Par-
tial results of the original image processing are shown in Figure 8. It can be seen that,
compared to the rough and uneven boundaries of the original model, the improved model
predicts boundaries more clearly and smoothly, and for impurities at the same locations,
the improved model has higher accuracy in segmentation. This indicates that the improved
model has good potential for practical applications.

(a)Improved Model (b)SegFormer

Figure 8. Visual comparison of segmentation results between the original and improved models.
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3.8. Performance Comparison of Ablation Experiments

To understand the contribution of each module in the improved decoder to the overall
model performance, corresponding ablation experiments were designed. The results of the
ablation experiments are shown in Table 5.

As shown in Table 5, four different ablation comparison experiments were designed.
The first group used SegFormer for testing, while the second group replaced the MLP layer
of the original model with an improved FPN structure in the decoder. The last two groups
progressively added the Part-LKA and B-gnConv modules. By comparing the performance
metrics of the models, the impact of each module on improving model performance
was analyzed.

Overall, compared to the SegFormer model, the improved modules in this study all
contributed to enhancing model performance. Replacing the MLP layer of SegFormer’s
decoder with the improved FPN allowed the integration of features at different scales,
establishing connections among features of different scales. With an unchanged parameter
count and computational complexity, the model’s PA, MIoU, and F1 scores increased by
0.18%, 0.25%, and 0.21%, respectively. The experimental results show that the Part-LKA
module has a greater impact on improving model performance. By using depthwise and
dilated depthwise convolutions, the module can effectively leverage both short- and long-
range information, adapting well to both channel and spatial dimensions. Additionally,
the gnConv module, with its spatial interaction properties, can effectively capture more
detailed information, leading to better segmentation performance.

Table 5. Ablation experiments of different modules.

Module PA mIoU F1 Params (M) FLOPs (G)

SegFormer 96.17 83.76 88.47 3.72 3.39
+P-FPN 96.35 84.01 88.68 3.72 3.39

+P-FPN+Part-LKA 97.53 88.18 91.23 3.77 3.84
+P-FPN+Part-LKA+B-gnConv 97.77 88.82 91.57 4.07 4.66

4. Discussion
Rice impurity segmentation faces various challenges. Firstly, environmental changes

(e.g., lighting and weather) significantly affect the color and texture of rice and impurities,
leading to unstable segmentation results. Secondly, the diversity and irregular shapes
of impurities increase the complexity of model recognition. Overlapping and adhesion
between impurities and rice make segmentation even more difficult, especially in complex
images. In addition, impurities are often small, and detecting and segmenting small targets
in large images reduces accuracy. Considering these issues, the performance of SegFormer
often fails to meet the requirements of our subsequent research. Therefore, we enhanced
the SegFormer model in several ways.

To improve the accuracy of the model when segmenting various impurities and
enhance its representation capability, we replaced the MLP layer in the decoder with
an improved FPN module and added Part-LKA and gnConv modules. Although this
replacement significantly improved the model’s performance, it also increased the model
size and computational complexity, necessitating further optimization.

Next, in order to deploy the algorithm on mobile embedded devices, we focused on
lightweighting the model. We combined two 1 × 1 convolutions with the gnConv module to
construct a Bottleneck-gnConv module, which reduced the model size and computational
complexity through feature compression and increased network depth, while maintaining
accuracy. Ultimately, a rice impurity segmentation model was built. Comprehensive
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comparisons with various mainstream models showed that the improved model performs
excellently in terms of segmentation quality and model complexity.

In comparison with existing methods, our approach demonstrates several advantages.
Jin et al. utilized an improved U-Net for soybean impurity segmentation, achieving high
accuracy but encountering limitations in handling diverse impurity types and environmen-
tal conditions. Similarly, Liu et al. introduced a lightweight NAM-EfficientNetV2-based
method, which improved segmentation efficiency but struggled with global feature rep-
resentation. Unlike these CNN-based methods, our enhanced SegFormer leverages a
Transformer-based architecture, providing superior long-range dependency modeling. Our
method achieved a 1.6% increase in pixel accuracy and a 3.1% improvement in the F1 score
compared to the baseline SegFormer, while outperforming U-Net and NAM-EfficientNetV2
in both accuracy and computational efficiency.

In future research, we will first further improve the quality of the rice impurity dataset.
We plan to capture and annotate images of various rice impurities from different angles and
weather conditions to enhance the robustness of rice impurity segmentation in this study.
Next, we plan to deploy the improved model on mobile embedded devices, and combine
it with remote sensing technology to establish an automated and intelligent agricultural
detection system. By analyzing the rice segmentation results in remote sensing images in
real time, we aim to automatically detect anomalies, thereby achieving timely warnings
and responses. This will significantly reduce agricultural risks and enhance the stability of
rice production.

5. Conclusions
This study proposes a rice impurity segmentation model based on the SegFormer

framework, with particular improvements made to its decoder. The original SegFormer
decoder, composed entirely of MLPs, was overly simplified. Our hypothesis was that, by
enhancing the representational capacity of the neural network and incorporating advanced
feature fusion and attention mechanisms in the decoder, segmentation accuracy could
be improved without significantly increasing model parameters and complexity, thereby
not affecting its deployment on mobile devices. The experimental results support this
hypothesis. The main findings are as follows:

1. The FPN module effectively fused high-level and low-level features, enriching the
feature information;

2. The Part-LKA module successfully adjusted the feature intensity dynamically for
each position and channel, emphasizing important spatial and channel features, thus
enhancing the extraction of effective information;

3. The gnConv module significantly improved the representational capacity of the neural
network, while the introduced Bottleneck-gnConv module effectively reduced model
size and computational burden, maintaining high accuracy.

Comparison experiments indicate that the improved model outperformed the original
SegFormer, with the pixel accuracy and F1 score improving by 1.6% and 3.1%, respectively.
In addition, the model’s parameter count and computational complexity are 4.07 M and 4.66
G, respectively, and the model weight size is only 15.5M, making it suitable for deployment
on mobile devices. This method provides an effective tool for rice impurity detection on
mobile platforms.

Author Contributions: X.Q., H.Y., Q.L., H.L., H.Z. and M.Z. performed the research; H.Z. designed
the research study; X.Q. and H.Y. analyzed the data; and X.Q. and H.Y. wrote the paper. All authors
have read and agreed to the published version of the manuscript.



Entropy 2025, 27, 70 15 of 16

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 52275251, Six Talent Peaks project in Jiangsu under Grant XYDXX-117, Key Research
and Development Program of Zhenjiang under Grant GY2023049, Natural Science Foundation of
Jiangsu Province for Youths under Grant BK20230662, and NDF under Grant JCKY2023***007.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data for this article can be obtained by contacting the correspon-
ding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. FAO. World Food and Agriculture Statistical Yearbook 2022; FAO: Rome, Italy, 2022.
2. Rudiyanto.; Minasny, B.; Shah, R.M.; Che Soh, N.; Arif, C.; Indra Setiawan, B. Automated near-real-time mapping and monitoring

of rice extent, cropping patterns, and growth stages in Southeast Asia using Sentinel-1 time series on a Google Earth Engine
platform. Remote Sens. 2019, 11, 1666. [CrossRef]

3. Xu, S.; Zhu, X.; Chen, J.; Zhu, X.; Duan, M.; Qiu, B.; Wan, L.; Tan, X.; Xu, Y.N.; Cao, R. A robust index to extract paddy fields in
cloudy regions from SAR time series. Remote Sens. Environ. 2023, 285, 113374. [CrossRef]

4. Liang, Z. Selecting the proper material for a grain loss sensor based on DEM simulation and structure optimization to improve
monitoring ability. Precis. Agric. 2021, 22, 1120–1133. [CrossRef]

5. Stepanenko, S.; Kotov, B.; Kuzmych, A.; Demchuk, I.; Melnyk, V.; Volyk, D. Modelling of aerodynamic separation of grain
material in combined centrifugal-pneumatic separator. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia,
22–24 May 2024; pp. 1143–1149.

6. Muruganantham, M.S.; Jeeva, M.S.; Gopalakrishnan, M.R.; Harikeswaran, M.S.; Dhas, M.C.J. Design and Fabrication of Gravity
Separator for Grains and Dust. Int. Res. J. Adv. Eng. Hub (IRJAEH) 2024, 2, 14–17. [CrossRef]

7. Sergiyenko, O.Y.; Tyrsa, V.V. 3D optical machine vision sensors with intelligent data management for robotic swarm navigation
improvement. IEEE Sens. J. 2020, 21, 11262–11274. [CrossRef]

8. Ivanov, M.; Sergyienko, O.; Tyrsa, V.; Lindner, L.; Flores-Fuentes, W.; Rodríguez-Quiñonez, J.C.; Hernandez, W.; Mercorelli, P.
Influence of data clouds fusion from 3D real-time vision system on robotic group dead reckoning in unknown terrain. IEEE/CAA
J. Autom. Sin. 2020, 7, 368–385. [CrossRef]

9. Sergiyenko, O.Y.; Ivanov, M.V.; Tyrsa, V.; Kartashov, V.M.; Rivas-López, M.; Hernández-Balbuena, D.; Flores-Fuentes, W.;
Rodríguez-Quiñonez, J.C.; Nieto-Hipólito, J.I.; Hernandez, W.; et al. Data transferring model determination in robotic group.
Robot. Auton. Syst. 2016, 83, 251–260. [CrossRef]

10. Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020,
236, 111402. [CrossRef]

11. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

12. Jin, C.; Liu, S.; Chen, M. Semantic segmentation-based mechanized harvesting soybean quality detection. Sci. Prog. 2022,
105, 00368504221108518. [CrossRef]

13. Liu, Q.; Liu, W.; Liu, Y.; Zhe, T.; Ding, B.; Liang, Z. Rice grains and grain impurity segmentation method based on a deep learning
algorithm-NAM-EfficientNetv2. Comput. Electron. Agric. 2023, 209, 107824. [CrossRef]

14. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803.

15. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

16. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30. [CrossRef]

17. Yang, R.; Guo, Y.; Hu, Z.; Gao, R.; Yang, H. Semantic segmentation of cucumber leaf disease spots based on ECA-SegFormer.
Agriculture 2023, 13, 1513. [CrossRef]

18. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation
with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090.

19. Rao, Y.; Zhao, W.; Tang, Y.; Zhou, J.; Lim, S.N.; Lu, J. Hornet: Efficient high-order spatial interactions with recursive gated
convolutions. Adv. Neural Inf. Process. Syst. 2022, 35, 10353–10366.

20. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

http://doi.org/10.3390/rs11141666
http://dx.doi.org/10.1016/j.rse.2022.113374
http://dx.doi.org/10.1007/s11119-020-09772-w
http://dx.doi.org/10.47392/IRJAEH.2024.0005
http://dx.doi.org/10.1109/JSEN.2020.3007856
http://dx.doi.org/10.1109/JAS.2020.1003027
http://dx.doi.org/10.1016/j.robot.2016.04.003
http://dx.doi.org/10.1016/j.rse.2019.111402
http://dx.doi.org/10.1177/00368504221108518
http://dx.doi.org/10.1016/j.compag.2023.107824
http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.3390/agriculture13081513


Entropy 2025, 27, 70 16 of 16

21. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

22. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

23. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

24. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

25. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5693–5703.

26. Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient multi-scale attention module with cross-spatial
learning. In Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Rhodes Island, Greece, 4–10 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5.

27. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 13713–13722.

28. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

29. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 11534–11542.

30. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

31. Zhang, Z.; Zhang, X.; Peng, C.; Xue, X.; Sun, J. Exfuse: Enhancing feature fusion for semantic segmentation. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 269–284.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Improved SegFormer Network Architecture
	Encoder
	Optimization of FPN Structure
	Part Large Kernel Attention Module
	Bottleneck Recursive Gated Convolution

	Experiments
	Dataset
	The Model Training Environment
	Experimental Evaluation Metrics
	Performance Comparison of Various Semantic Segmentation Models
	Performance Comparison of Different Attention Modules
	Performance Comparison of Different Feature Fusion Modules
	Visualization Analysis
	Performance Comparison of Ablation Experiments

	Discussion
	Conclusions
	References

