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Abstract: Classically, the refractive index of a medium is due to a response on said medium
from an electromagnetic field. It has been shown that a single two-level atom interact-
ing with a single photon undergoes dispersion. The following extends that analyses to a
three-level system interacting with two photons. Analysis of the system is completed both
numerically for all photonic field modes, and analytically for an adiabatic solution of a
single field mode. The findings are not only interesting for understanding additional physi-
cal phenomena due to the increased complexity of a three-level, two-photon system, but
are also necessary for advancing applications such as quantum communications, quantum
computation, and quantum information.

Keywords: quantum optics; quantum information; quantum communications; quantum
cavity electrodynamics; three-level atom

1. Introduction
The electromagnetic field propagates through empty space at the speed of light, c.

When the space is occupied by a medium, however, the speed may differ. A convenient
way to account for the interaction between the radiation field and medium is through the
index of refraction.

The index of refraction is used to quantify optical devices, and is traditionally based
on macroscopic interactions. When the medium and radiation field consists of only a few
particles, quantum phenomena must be taken into account. It has been shown [1] that the
interaction of a single photon with a single two-level atom still exhibits the idea of an index
of refraction.

The understanding of photonic interactions with an atom has implications in quantum
information theory and quantum computations. It is well known that, due to the multiple
degrees of freedom a photon has (spatial, temporal, and polarization), they can be used for
superdense coding [2]. That is, a single photon can be used to encode multiple quantum
bits (qubits) of information. Demonstration of two-qubit quantum operations on a single
photon have been achieved [3]. There has also been experimental success that showed the
manipulation of a three-qubit single photon state via linear deterministic quantum gates
that exploited the photon’s polarization and two-dimensional spatial-parity-symmetry of
the photon’s transverse field [2]. Quantum communications over long distances have also
been demonstrated via satellites [4].

These revelations conclude that the propagation of photonic states are of great im-
portance, such as in studying quantum state stability in which the state may be carrying
quantum information for communications. Even more so, it is important to understand
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methods of being able to control a photon beam where the quantum nature cannot be
ignored, such as when the number of photons is small.

In the following, it is shown that the phase shift created by a single atom on a two-
photon field can be detected using a Mach–Zehnder interferometer. This is performed by
first introducing the basic operators from cavity quantum electrodynamics, then developing
the Hamiltonian of the interaction between the photon field and atom. The solution of this
Hamiltonian is completed both numerically for multiple modes of the photon field, as well
as analytically for a single mode under the adiabatic approximation. The basics of quantum
optical instruments are then discussed to develop the Mach–Zehnder interferometer to
which the solutions of the atom–field interaction are then transported through. Furthermore,
introduction of a variable χ-phase changer within the interferometer displays the possibility
of controlling the entangled states after the field–atom interaction. The results demonstrate
that, as for a single photon with a two-level atom, a two-photon field with a three-level atom
still contains idea of an index of refraction which can be implemented across many quantum
fields, including quantum information, quantum computing, quantum communications,
and even improving imaging in microscopy.

2. Atomic Interactions with Quantum Fields
The interaction of an electromagnetic field and atom are fundamentally quantum

in nature. As such, the electronic state of the atom as well as the photonic state of the
electromagnetic field are governed by quantum operators.

This section develops the necessary quantum operators needed to analyze a photonic
field interacting with a general n-level atom. It should be noted that the development here
is sequential, and serves as the beginning of the setup for the physical system which is to be
incorporated with the Hamiltonian. These include parameters such as the field polarization
and dynamic forms of the electromagnetic field.

2.1. The Atomic Transition Operator

Consider an n-level atom with Ne bounded electrons. A given electron e− in this
system starts in an initial state |i⟩ and through some process ends in the final state |j⟩, which
is restricted by the Pauli exclusion principle via the Fermi–Dirac commutation relations:

e
−iEi t

h̄ |i⟩
Electronic
Transition−−−−−→ e

−iEj t
h̄ |j⟩ (1)

where the phase associated with the state’s energy is displayed explicitly. Here, Ei and Ej

are the electron’s initial and final energy, respectively. The operator associated with this
state change is the atomic-transition operator σ̂ij, and is defined as

σ̂ij = e−iωijt |j⟩ ⟨i| (2)

such that ωij = (Ej − Ei)/h̄ is the driving frequency of the two atomic energy levels, which
can be seen in Figure 1.

An important case of the atomic-transition operator is when the initial and final states
are equal. In this case, σ̂ii = |i⟩ ⟨i| and leaves the state unchanged, even in phase. This is
useful when the energy of a given electron is to be calculated.
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Figure 1. Depiction of the electronic energy structure of a three-level ladder atom interacting with
two photons, k and q.

2.2. The Electromagnetic Field Operator

The electromagnetic field operator will be developed under the cavity approxima-
tion [5]. In this approximation, a photon γ is restricted to confide in a perfectly conducting
resonant cavity. In such a cavity, the field is required to obey the boundary conditions set
forth by the Maxwell equations. The boundary conditions restrict the available wave vec-
tors for the force mediating photon to exhibit, turning an integration over all wave vector
space into a discrete sum over wave number space dependent on the cavity geometry.

Each wave vector the photon can exhibit is related to a mode of the field. The develop-
ment of the electromagnetic field operator will be first performed for a single mode of a
single photon in a cavity. Next, the electromagnetic field operator will be generalized for a
single photon that has access to all modes of the given resonant cavity. Finally, the general
electromagnetic field operator for a cavity will be given which includes multiple photons,
each of which can access all available modes of the given cavity.

2.2.1. Single-Mode Fields

A single mode-state of the classical electromagnetic field at the position x⃗0 and time t
in a rectangular cavity of volume V can be given as

E⃗γ⃗(x⃗0, t) =∑
s

ϵ̂
(s)
γ⃗ Eγ⃗α

(s)
γ⃗ e−iνγt+iγ⃗·⃗x0

+ ∑
s

ϵ̂
∗(s)
γ⃗ Eγ⃗α

∗(s)
γ⃗ eiνγt−iγ⃗·⃗x0

(3)

where γ⃗ is the wave vector, ϵ̂γ⃗ and ϵ̂∗γ⃗ are the unit polarization vectors, αγ⃗ and α∗γ⃗ are
amplitudes and dimensionless, νγ is the field frequency, s is the polarization state, and fi-

nally Eγ⃗ =
√

h̄νγ/2ε0V give the units of an electric field. The associated magnetic fields

can be obtained from H⃗(x⃗0, t) =
[
γ⃗ × E⃗(x⃗0, t)

]
/µ0, and will not be examined henceforth.

The wave vector is given as γ⃗ = ⟨γx, γy, γz⟩, which has restricted values from the boundary
conditions as γx = 2πnx/Lx, γz = 2πnz/Ly, and γz = 2πnz/Lz where nx, ny, nz ∈ Z.
A set (nx, ny, nz) defines a mode in the cavity approximation.

For simplification, the polarization basis vectors are chosen to be real, so that ϵ̂γ⃗ = ϵ̂∗γ⃗.
Furthermore, the polarization state will be chosen to be linear. Thus, the electric field is
now expressed as

E⃗γ⃗(x⃗0, t) = ϵ̂γ⃗Eγ⃗

(
αγ⃗e−iνγt+iγ⃗·⃗x0 + αγ⃗eiνγt−iγ⃗·⃗x0

)
(4)

The classical electromagnetic field mode can be quantized simply by promotion of αγ⃗ and
α∗γ⃗ to the harmonic creation and annihilation operators â+γ⃗ and âγ⃗, respectively. As usual,
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the harmonic creation and annihilation operators obey the standard commutation relation[
âγ⃗, â+γ⃗

]
= 1. This results in the single mode electromagnetic field operator as

ˆ⃗Eγ⃗(x⃗0, t) = ϵ̂γ⃗Eγ⃗

(
âγ⃗e−iνγt+iγ⃗·⃗x0 + â+γ⃗ eiνγt−iγ⃗·⃗x0

)
(5)

Verification that this operator promotion is accurate can be achieved by inserting the electric
and magnetic field mode equations into the classical electromagnetic field Hamiltonian and
showing it is dynamically identical to a harmonic oscillator. The introduction of the creation
and annihilation operators shows the field can create and destroy particles associated with
it, namely photons.

It is typical, and convenient in some cases, to separate the positive and negative
frequency parts of the electromagnetic field as

ˆ⃗Eγ⃗(x⃗0, t) = ˆ⃗E(+)
γ⃗ (x⃗0, t) + ˆ⃗E(−)

γ⃗ (x⃗0, t) (6)

where ˆ⃗E(+)
γ⃗ (x⃗0, t) is the positive frequency portion containing annihilation operators and

ˆ⃗E(−)
γ⃗ (x⃗0, t) is the negative frequency portion containing only creation operators. The forms

of the frequency components can be seen explicitly as

ˆ⃗E(+)
γ⃗ (x⃗0, t) = ϵ̂γ⃗Eγ⃗ âγ⃗e−iνγt+iγ⃗·⃗x0

ˆ⃗E(−)
γ⃗ (x⃗0, t) = ϵ̂γ⃗Eγ⃗ â+γ⃗ eiνγt−iγ⃗·⃗x0

(7)

This form of the electromagnetic field operator, given in Equation (6), shows the
possibility of a single photon with a wave vector γ⃗ being created then destroyed throughout
the cavity in a steady-state manner. To include dynamical motion, the photonic excitation
of the electromagnetic field is to be enveloped in a Gaussian wave packet [6], as shown by

Ê(x)
γ⃗ (x⃗0, t) −→ Ê(x)

γ⃗ (x⃗0, t)e
−1
2L2 (x⃗0−ctγγ̂)2

Ê(y)
γ⃗ (x⃗0, t) −→ Ê(y)

γ⃗ (x⃗0, t)e
−1
2L2 (x⃗0−ctγγ̂)2

Ê(z)
γ⃗ (x⃗0, t) −→ Ê(z)

γ⃗ (x⃗0, t)e
−1
2L2 (x⃗0−ctγγ̂)2

(8)

Here, x⃗0 is the location within the cavity where the electromagnetic field is excited at t = 0,
the “universal” time such that tγ = t + t(γ)e is a temporal offset from the universal time due

to some elapsed time, t(γ)e from creation. γ̂ = ⟨γ′
x, γ′

y, γ′
z⟩ is a unit vector identifying the

direction the excitation begins to propagate as defined by the wave vector. The superscript
variables, (x), (y), and (z) refer to the field’s Cartesian components. Here, the Gaussian
envelopes are chosen because they are widely used in optics combining the mathematical
elegance with physical practicality, providing stable, smooth, and efficient solutions for
pulse generation, propagation, and manipulation. Additionally, many laser systems natu-
rally produce pulses with Gaussian envelopes, as they arise from the fundamental mode of
many optical cavities (e.g., TEM00 mode). Gaussian pulses are also naturally emitted in
processes involving spontaneous or stimulated emission, where the gain medium supports
such distributions. Although optical pulses may not always be perfectly Gaussian, many
real-world pulse shapes (e.g., sech2 or Lorentzian) can be approximated by Gaussian en-
velopes, especially when simplicity and broad applicability are preferred. Hereon, when
referencing the electromagnetic field operator, the dynamic version containing the Gaussian
envelope for propagation will be used.



Entropy 2025, 27, 71 5 of 22

2.2.2. Multimodal Fields

Thus far, only a single photon in a single mode of the electromagnetic field residing
in a conducting cavity has been examined. In actuality, there are other modes of the
electromagnetic field the photon can excite and occupy. The inclusion of these modes
are necessary for understanding one of the most fundamental atomic processes of the
atom–electronic relaxation with spontaneous photonic emission.

Inclusion of all of the modes a photon can occupy is straightforward: simply sum over
all modes that satisfy the boundary conditions for the given cavity. More conveniently,
since the modes and wave vectors for a cavity are intimately related, it suffices to simply
sum over all allowable wave vectors for the cavity. Thus, the electromagnetic field operator
for multiple modes is simply

ˆ⃗Eγ⃗(x⃗0, t) −→ ∑
γ⃗

ˆ⃗Eγ⃗(x⃗0, t) (9)

This gives the multimode electromagnetic field operator as

ˆ⃗Eγ(x⃗0, t) = ∑
γ⃗

ˆ⃗Eγ⃗(x⃗0, t) (10)

A slight change in notation has also been used. On the left hand side, the subscript γ is
now used as an identifier for the γ-photon in the field, which can be in any of the γ⃗ modes
of the electromagnetic field.

2.2.3. Multiple Multimodal Fields

Seeing how a single photon may occupy any allowable mode of a resonant cavity,
the next step is to include multiple photonic excitations, each able to access any mode of the
electromagnetic field within the cavity. Inclusion of all excitations is once again as simple
as summing over all photons within the cavity,

ˆ⃗E(x⃗0, t) = ˆ⃗Eγ(x⃗0, t) + ˆ⃗Eλ(x⃗0, t) + . . .

= ∑
γ

ˆ⃗Eγ(x⃗0, t)
(11)

where the notation from Equation (10) has been used for photon labeling with each photon
having its own set of available modes.

3. Hamiltonian of the System
The following details the solution of a three-level atom interacting with two photons.

The dynamics of the electromagnetic field will be captured by treating the incoming photons
via Gaussian wave-packets. It is noted that the atom interacting with the electromagnetic
field is in a ladder scheme where Ea < Eb < Ec. Furthermore, the atomic states |a⟩ and |b⟩
interact via a photon k, and atomic states |b⟩ and |c⟩ interact via a photon q. The electron of
the atom will initially be in the ground state, |a⟩.

The Hamiltonian of such a system can be given as [5]

Ĥ = Ĥatom + Ĥ f ield − V̂int (12)

In this, Ĥatom is the portion of the Hamiltonian associated with the electronic energy levels
of the atom, Ĥ f ield is related to the free energy in the electromagnetic field, and V̂int is due
to the interaction of the electromagnetic field and atomic electrons.
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3.1. Electronic Energy

The portion of the Hamiltonian associated with the atomic energy levels has the
explicit form

Ĥatom = ∑
i

Eiσ̂ii (13)

where the summation is over the atomic levels, Ei is the energy of the ith atomic level,
and σ̂ii is the atomic transition operator. It should be noted that atomic levels are complete,
in the sense that ∑

i
σ̂ii = [1], where [1] is an i × i unit matrix.

For the 3-level atom being considered, this results in

Ĥatom = Eaσ̂aa + Ebσ̂bb + Ecσ̂cc (14)

3.2. Field Energy

The field energy of the Hamiltonian can be determined by recognizing the electromag-
netic field is dynamically equivalent to the simple harmonic oscillator. Thus, the energy
associated with each photonic excitation of the electromagnetic field can be calculated
via the creation and annihilation operators in the same manner as the simple harmonic
oscillator. In the case of two photons, k and q, the result is

Ĥ f ield = ∑
γ⃗

h̄νγ

(
â+γ⃗ âγ⃗ +

1
2

)
(15)

3.3. Interaction Energy

The interaction energy of the electromagnetic field and atom is determined via the
dot product of the atomic dipole moment and electromagnetic field. In the case of the
three-level atom interacting with two photons, the interaction potential can be seen as

V̂int = ˆ⃗p ·
(

ˆ⃗Ek +
ˆ⃗Eq

)
(16)

in which ˆ⃗p is the dipole moment operator of the atom. The form of ˆ⃗p can be discerned from
quantizing the classical dipole,

p⃗ = ∑
m

e−⃗rm (17)

where e− is the elementary electric charge of the electron and r⃗m is the position of the mth

electron in the atom relative to the nucleus. Quantization occurs using completeness and
the projection operator as

ˆ⃗p = ∑
m

∑
i

∑
j

e− |j⟩ ⟨j| r⃗m |i⟩ ⟨i|

= ∑
m

∑
i

∑
j
℘⃗ijmσ̂ij

(18)

The summations over i and j are the energy levels of the atom, while ℘⃗ijm = e− ⟨j|⃗rm|i⟩
can be thought of the quantum mechanical dipole moment of the mth electron. The dipole
moments will be used under the dipole approximation: the field due to the electronic
charge is assumed to be evenly distributed about the atom and constant in structure.

The system under investigation will be restricted to a single electron. With Equation (18),
the interaction portion of the Hamiltonian is now
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V̂int = (℘⃗aaσ̂aa + ℘⃗abσ̂ab + ℘⃗acσ̂ac+

℘⃗baσ̂ba + ℘⃗bbσ̂bb + ℘⃗bcσ̂bc+

℘⃗caσ̂ca + ℘⃗cbσ̂cb + ℘⃗ccσ̂cc) ·
(

ˆ⃗Ek +
ˆ⃗Eq

) (19)

Equation (19) has many simplifications that occur. First, there are no “self-dipoles”. This
results in all diagonal terms ℘⃗iiσii being identically zero. It is, however, expected for there
to be “dipole symmetry”, which gives the relation ℘⃗ij = ℘⃗ji. The final simplification is that
℘⃗acσ̂ac = ℘⃗caσ̂ca = 0. This is a result of the atomic transition selection rule, namely that
∆l = ±1, where l is the angular moment of the state. As an illustration, suppose |a⟩ is in
symmetrical s state (l = 0). This means that |b⟩ must be in the p state (l = 1), which is
antisymmetric. As a result, |c⟩ is either in the s state (l = 0) or d state (l = 2), which are
again symmetrical. This would mean that ℘⃗ac ∼ ℘⃗ss = ℘⃗sd = 0.

The prior discussion results in a reduction of Equation (19) to the following form:

V̂int = [⃗℘ab(σ̂ab + σ̂ba) + ℘⃗bc(σ̂bc + σ̂cb)] ·
(

ˆ⃗Ek +
ˆ⃗Eq

)
(20)

It will further be assumed that the k-photon arrives to the atom before the q-photon
and that the k-photon is prepared in an energy distribution matching the ωab energy
level, while the q-photon is prepared matching the ωbc energy level. Then, a decent
approximation is that any interactions between the k-photon and the ωbc energy level is
negligible and similarly for the q-photon and the ωab energy level. This results in the
k-photon being required to interact with the |a⟩ −→ |b⟩ transition and the q-photon being
required to interact with the |b⟩ −→ |c⟩ transition. This assumption reduces the interaction
Hamiltonian to

V̂int = Êk(σ̂ab + σ̂ba) + Êq(σ̂bc + σ̂cb)

=
[

Ê(+)
k + Ê(−)

k

]
(σ̂ab + σ̂ba)

+
[

Ê(+)
q + Ê(−)

q

]
(σ̂bc + σ̂cb)

(21)

where the electromagnetic field operator clearly commutes with the atomic transition
operator. Also, the coupling constants

g⃗k =
(
℘⃗ab · ϵ̂⃗k

)
E⃗k

gq⃗ =
(
℘⃗bc · ϵ̂⃗q

)
Eq⃗

(22)

have been introduced and absorbed into the appropriate electromagnetic field operator.
It can be seen in Equation (21) that there are cross-terms that correspond to the creation
of a photon and an increase in atomic energy level, such as Ê(−)

k σ̂ab. Likewise, there are
cross-terms terms that correspond to the annihilation of a photon with a drop in atomic
energy level, like Ê(+)

q σ̂cb. Such terms are non-energy-conserving, and are to be neglected
under what is known as the rotating wave approximation. This gives the final form of the
interaction potential as

V̂int = Ê(+)

k⃗
σ̂ab + Ê(−)

k⃗
σ̂ba + Ê(+)

q⃗ σ̂bc + Ê(−)
q⃗ σ̂cb (23)

4. Equations of Motion
The equations of motion due to this Hamiltonian will be determined in the Schrodinger

picture using probability amplitudes. Furthermore, interest is isolated to the interaction
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of the electromagnetic field and the atom. Thus, only the interaction potential will be
examined and solved accordingly. The system will be assumed to be in a one dimensional
cavity along the z-direction.

4.1. Probability Amplitudes

Beginning with the Schrodinger equation,

ih̄
∂

∂t
|Ψ⟩ = V̂int |Ψ⟩ (24)

the following assumed state with undetermined probability coefficients will be fed into
Equation (24):

|Ψ⟩ =C(t) |c⟩ ⊗ |0k⟩ ⊗ |0q⟩+

∑
q

Bq(t) |b⟩ ⊗ |0k⟩ ⊗ |1q⟩+

∑
q

∑
k

Aq
k(t) |a⟩ ⊗ |1k⟩ ⊗ |1q⟩

(25)

where summations occur due to the photons being able to be in any of the available modes.
The left hand side of Equation (24) applied to Equation (25) gives

ih̄
∂

∂t
|Ψ⟩ =ih̄Ċ(t) |c, 0k, 0q⟩

+ih̄ ∑
q

Ḃq(t) |b, 0k, 1q⟩

+ih̄ ∑
q

∑
k

Ȧq
k(t) |a, 1k, 1q⟩

(26)

Next is to apply Equation (23) to Equation (25) to obtain the right hand side of
Equation (24). For the one dimensional setup along the z-axis, the electromagnetic field
operators for a given photon γ have the explicit form

Ê(+)
γ = ∑

γ

gγ âγe−iνγt+iγte
1

2L2 (z−ct)2

Ê(−)
γ = ∑

γ

gγ â+γ eiνγt−iγte
1

2L2 (z−ct)2
(27)

Applying Equation (23) to Equation (25) where the electromagnetic field operators have
the form of Equation (27) will result in the right hand side of Equation (24) as

V̂int |Ψ⟩ =∑
q

h∗q(z, td)C(t) |b, 0k, 1q⟩

+∑
q

hq(z, td)Bq(t) |c, 0q, 0k⟩

+∑
q

∑
k

h∗k (z, t)Bq(t) |a, 1q, 1k⟩

+∑
q

∑
k

hk(z, t)Aq
k(t) |b, 0k, 1q⟩

(28)

Comparison of the vector components of Equations (26) and (28) gives the following system
of equations for their respective coefficients:
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
ih̄Ċ(t) = ∑

q
hq(z, td)Bq(t)

ih̄Ḃq(t) = h∗q(z, td)C(t) + ∑
k

hk(z, t)Aq
k(t)

ih̄Ȧq
k(t) = h∗k (z, t)Bq(t)

(29)

in which

hk(z, t) = gkeikz−i∆kte
−1
2L2 (z−ct)2

hq(z, td) = gqeiqz−i∆qte
−1
2L2 (z−ctd)

2
(30)

where ∆k = νk − ωab and ∆q = νq − ωbc are the detuning factors, and td = t + te is the
delayed time that the q-photon arrives at the atom from a temporal spacing of some elapsed
time, te. As usual, the (∗) operator denotes complex conjugation.

4.2. Coupling and the Two-Level Atom

From Equation (29), it can be seen that |b⟩ is coupled with both states |a⟩ and |c⟩,
while the states |a⟩ and |c⟩ have no direct coupling, a result of the demonstrated angular
momentum selection rule.

It is, in fact, possible to obtain the system of equations modeling a two-level system
with a single electron interacting with a single photon from Equation (29). This is performed
by decoupling the |b⟩ and |c⟩ states. Decoupling results in

ih̄Ḃ(t) = ∑
k

hk(z, t)Ak(t)

ih̄Ȧk(t) = h∗k (z, t)B(t)
(31)

The solution to the two-level system [1] will be convenient for comparing similarities as
well as new phenomena obtained from the higher complexity of the three-level system.

5. Adiabatic Solutions
To find an analytical solution, we use the mode function approach [6] that involves

selecting an appropriate form for the mode. We consider a Gaussian mode function, which
effectively consists of a superposition of many plane wave modes.

For a single mode, it is possible to obtain an analytic expression for B(t) under the
adiabatic approximation, which is sufficient to determine dispersion results. As a result of
obtaining B(t), similar expressions can be obtained for A(t) and C(t) by differentiation of
the obtained equation, B(t). First, for a single mode, Equation (29) takes the form

ih̄Ċ(t) = hq(z, td)B(t)

ih̄Ḃ(t) = hk(z, t)A(t) + h∗q(z, td)C(t)

ih̄Ȧ(t) = h∗k (z, t)B(t)

(32)

From here, direct integration of Ȧ(t) and Ċ(t) yields

C(t) =
−i
h̄

gqeiqz
∫

e−i∆qt f (z, td)B(t)dt

A(t) =
−i
h̄

gke−ikz
∫

ei∆kt f (z, t)B(t)dt
(33)
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where the functions f (z, t) and f (z, td) are the Gaussian envelopes of hk(z, t) and hq(z, td),
respectively. Equation (33) can now be substituted into the Ḃ(t) equation from Equation (32)
to give

Ḃ(t) =
−1
h̄2 g2

ke−i∆kt f (z, t)
∫

ei∆kt f (z, t)B(t)dt

− 1
h̄2 g2

qei∆qt f (z, td)
∫

e−i∆qt f (z, td)B(t)dt
(34)

Now, B(t) is expected to be well-behaved and, as such, may be integrated by parts to cast
Equation (34) as

Ḃ(t) =
−ig2

k

h̄2∆k
f (z, t)

∞

∑
n=0

(
i

∆k

)n ∂n

∂tn [ f (z, t)B(t)]

−
ig2

q

h̄2∆q
f (z, td)

∞

∑
m=0

(
−i
∆q

)m ∂m

∂tm [ f (z, td)B(t)]

(35)

It is at this point the adiabatic approximation is invoked. This is performed by taking the
first two terms in each of the summation expansions in Equation (35). Thus,

Ḃ(t) ≈
ig2

k

h̄2∆k
f (z, t)

{
f (z, t)B(t) +

i
∆k

∂

∂t
[ f (z, t)B(t)]

}
−

ig2
q

h̄2∆q
f (z, td)

{
f (z, td)B(t)− i

∆q

∂

∂t
[ f (z, td)B(t)]

} (36)

Equation (36) can be arranged into the form

Ḃ(t) =

−ig2
q

∆q
f 2
d +

ig2
k

∆k
f 2 − g2

k
∆2

k
ḟ f − g2

q

∆2
q

ḟd fd

h̄2 +
g2

k
∆2

k
f 2 +

g2
q

∆2
q

f 2
d

B(t) (37)

where f = f (z, t) and fd = f (z, td). A solution to Equation (37) is given as

B(t) =
h̄B0√

h̄2 +
g2

k
∆2

k
f 2(z, t) +

g2
q

∆2
q

f 2(z, td)

exp


i
∫

dt
[

g2
k

∆k
f 2(z, t)− g2

q
∆q

f 2(z, td)

]
[

h̄2 +
g2

k
∆2

k
f 2(z, t) +

g2
q

∆2
q

f 2(z, td)

]
 (38)

B0 in Equation (38) is the integration constant. With Equation (38) at hand, the field
state A(t) may be calculated. Under the adiabatic approximation, the field state is

A(t) =− gk
h̄∆k

eikz−i∆kt
{

f B(t) +
i

∆k

[
ḟ B(t) + Ḃ(t) f

]}
+A0

(39)

where f is the Gaussian envelope describing the k-photon stated previously, and A0 is a
constant of the integration.

It is possible to calculate the measured field at the detector. It is known [5] that the
measured photon field at a detector is proportional to the first order correlation function
G(1), where

G(1) =
∣∣∣⟨0k, 0q|Ê(+)|Ψγ⟩

∣∣∣2 (40)
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such that |Ψγ⟩ represents the field portions of |Ψ⟩, in particular

|Ψγ⟩ = C(t) |0k, 0q⟩+ Bq(t) |0k, 1q⟩+ Aq
k(t) |1k, 1q⟩ (41)

In the realm of quantum applications, there is usually higher interest in the details of the
phase of the measured quantum state. Letting E = ⟨0k, 0q|

(
Ê(+)

k + Ê(+)
q

)
|Ψγ⟩, where Ê(+)

has been expanded for the two photons, it can be shown that

E = gqeiqz−iνqt f (z, td)B(t) (42)

Determining the phase of E allows for the calculation of the phase and group velocities, letting

δ
q
k(t) =

∫
dt

[
g2

k
∆k

f 2(z, t)−
g2

q

∆q
f 2(z, td)

]
/

[
h̄2 +

g2
k

∆2
k

f 2(z, t) +
g2

q

∆2
q

f 2(z, td)

]
(43)

The phase of the field state χ
q
k(t) for a single mode under the adiabatic approximation can

be given as
χ

q
k = qz − νqt + δ

q
k(t) (44)

Differentiation of χ
q
k with respect to time will yield the angular frequency which can then

be used to calculate the phase and group velocities, as will be seen in Section 7.

6. The Quantum Beam Splitter and Mach–Zehnder Interferometer
Interferometry can be used to experimentally measure the dispersion of light. To ob-

serve the dispersion effects of individual photons, a Mach–Zehnder interferometer should
be used. Such an interferometer is composed of two quantum beam splitters and two mir-
rors. A brief summary of the concepts and key equations for the quantum beam splitter and
Mach–Zehnder interferometer are to be presented followed by the results of a three-level
atom in one arm of the interferometer and a phase changer in the second arm.

6.1. Optical Instruments

The quantum beam splitter, Figure 2, is considered a four-port optical device with
two input modes and two output modes [7]. The two input modes will be taken to be |α1⟩
and |α2⟩, while the two output modes will be |β1⟩ and |β2⟩.

Bea
m

Sp
lit

ter

|α1⟩

|α2⟩

|β1⟩

|β2⟩

Figure 2. Depiction of the quantum four-port beam splitter. The beam splitter takes in two input
states, |α1⟩ and |α2⟩, and produces two output states |β1⟩ and |β2⟩.
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The action of the beam splitter on the input states |α1⟩ and |α2⟩ can be represented by
a general unitary matrix, [U]. The form of such a matrix is well known, and is given as

[U] = eiη

[
eiξ 0
0 e−iξ

][
cos θ sin θ

− sin θ cos θ

][
eiϕ 0
0 e−iϕ

]
(45)

where η, ξ, θ, ϕ ∈ R. This form of [U] demonstrates that the four-port beam splitter is a three
action process. First, the input modes undergo a phase change. Second, the amplitudes of
the states are then rotated. Lastly, a final phase shift occurs.

The Schrodinger representation of [U] is obtained via the Jordan–Schwinger formulation
of an angular momentum operator with two bosonic mode (creation/annihilation) operators,

L̂0 =
1
2
(α̂+1 α̂1 + α̂+2 α̂2)

L̂1 =
1
2
(α̂+1 α̂2 + α̂+2 α̂1)

L̂2 =
−i
2
(α̂+1 α̂2 − α̂+2 α̂1)

L̂3 =
1
2
(α̂+1 α̂1 − α̂+2 α̂2)

(46)

such that the operators obey the commutation relations of the angular momentum operators.
Physically, the L̂-operators detail the spin properties of the light under investigation. It is
possible to obtain the output states from these operators as[

|β1⟩
|β2⟩

]
= Ŝ

[
|α1⟩
|α2⟩

]
Ŝ+ (47)

such that
Ŝ = e−iϕL̂3 e−iθ L̂2 e−iξ L̂3 e−iη L̂0 (48)

By explicit calculation, the creation and annihilation operators of the input states can be
expressed in terms of the creation and annihilation operators of the output states. Doing
so gives

α̂1
(

β̂1, β̂2
)
=β̂1e−i(ϕ+ξ+η) cos θ − β̂2ei(−ϕ+ξ−η) sin θ

α̂2
(

β̂1, β̂2
)
=β̂1ei(ϕ−ξ−η) sin θ + β̂2ei(ϕ+ξ−η) cos θ

α̂+1
(

β̂+
1 , β̂+

2
)
=β̂+

1 ei(ϕ+ξ+η) cos θ − β̂+
2 e−i(−ϕ+ξ−η) sin θ

α̂+2
(

β̂+
1 , β̂+

2
)
=β̂+

1 e−i(ϕ−ξ−η) sin θ + β̂+
2 e−i(ϕ+ξ−η) cos θ

(49)

The use of two quantum beams splitters and two mirrors can create the Mach–
Zehnder interferometer, the setup for which is shown in Figure 3, and includes the three-
level atom in the upper arm and a variable phase changer in the lower arm. Figure 3
serves as a theoretical setup, and a brief discussion at the end of this section concerns
experimental implementation.

An empty Mach–Zehnder interferometer, one without an atom or phase changer, is
balanced. Thus, the probability the photons choose either arm is equal. Of particular
interest in the interferometer will be the interaction of two photons with a three-level atom;
thus, examination of two photons in the empty interferometer is to be performed first.
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Bea
m

Sp
lit

ter

|α1⟩

|α2⟩

|β1⟩

|β2⟩

Beam
Splitter

|β′
2⟩

|β′
1⟩

|ζ1⟩

|ζ2⟩

M
irror

M
irr

or

Atom

|a⟩
|b⟩
|c⟩

χ-Phase Changer

Figure 3. Depiction of the Mach–Zehnder interferometer. In the upper arm resides a three-level atom,
while in the lower arm is a variable phase changer.

There are four possible input states; however, by symmetry and index rearrangement
only two need to be examined, namely

|I1⟩ = |α1⟩ ⊗ |α2⟩
= |{1k, 1q}, {0k, 0q}⟩
= α̂+1k

α̂+1q
|{0k, 0q}, {0k, 0q}⟩

(50)

which represents both input photons, in the single modes k and q, entering through the
same port of the first beam splitter. In this case, port |α1⟩. The second possible input state is

|I2⟩ = |α1⟩ ⊗ |α2⟩
= |{1k, 0q}, {0k, 1q}⟩
= α̂+1k

α̂+2q
|{0k, 0q}, {0k, 0q}⟩

(51)

which represents one photon entering one port while the other photon enters through
the second port. In this case, the k photon enters through port |α1⟩ whereas the q photon
enters via the |α2⟩ port. Application of Equation (49) to Equations (50) and (51) gives
the propagation states, |P1⟩ and |P2⟩, in the upper and lower arms of the interferometer,
respectively, as

|P1⟩ = |β1⟩ ⊗ |β2⟩

=α̂+1k

(
β̂+

1k
, β̂+

2k

)
α̂+1q

(
β̂+

1q
, β̂+

2q

)
|{0k, 0q}, {0k, 0q}⟩

=e4i(ϕ+ξ−3η) cos2 θ |{1k, 1q}, {0k, 0q}⟩

− e4i(ϕ+η) cos θ sin θ |{1k, 0q}, {0k, 1q}⟩

+ e−4i(−ϕ+ξ−η) sin2 θ |{0k, 0q}, {1k, 1q}⟩

− e4i(ϕ+η) cos θ sin θ |{0k, 1q}, {1k, 0q}⟩

(52)

while the second arrangement, having one photon in each input port, gives
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|P2⟩ = |β1⟩ ⊗ |β2⟩

=α̂+1k

(
β̂+

1k
, β̂+

2k

)
α̂+2q

(
β̂+

1q
, β̂+

2q

)
|{0k, 0q}, {0k, 0q}⟩

=e−6iη cos2 θ |{1k, 0q}, {0k, 1q}⟩

+ e2i(ξ+η) cos θ sin θ |{1k, 1q}, {0k, 0q}⟩
− e2iη sin2 θ |{0k, 1q}, {1k, 0q}⟩

− e2i(−ξ+η) cos θ sin θ |{0k, 0q}, {1k, 1q}⟩

(53)

For studying the three-level atom, it is necessary for both photons to go through the same
arm of the interferometer in order to excite up to the third atomic level, |c⟩. This means
that which photonic mode is in which arm is unimportant. What is important is that
the photon is in a given arm. Then, |2, 0⟩ = |{1k, 1q}, {0k, 0q}⟩, |0, 2⟩ = |{0k, 0q}, {1k, 1q}⟩,
and |1, 1⟩ = |{1k, 0q}, {0k, 1q}⟩ = |{0k, 1q}, {1k, 0q}⟩. It will also be assumed that the beam
splitters are 50:50, which means cos θ = sin θ, resulting in θ = π/4. Then, the propagation
states after the first beam splitter can be given as

|P1⟩ =
1
2

e4i(ϕ+ξ−3η) |2, 0⟩ − 1
2

e−4i(−ϕ+ξ−η) |0, 2⟩

−
√

2
2

e4i(ϕ+η) |1, 1⟩
(54)

and the second configuration results in

|P2⟩ =
1
2

e2i(ξ+η) |2, 0⟩ − 1
2

e2i(−ξ+η) |0, 2⟩

+
1
2

(
e−6iη − e2iη

)
|1, 1⟩

(55)

It can be seen that, for |P1⟩, there is always a 50% chance of the photons splitting into two
separate arms. For |P2⟩, however, by choosing a real beam splitter, one that does not cause
an overall rotation of the photon state (i.e., ϕ = ξ = η = 0), the photons can be forced to
emerge in pairs of the balanced/empty interferometer,

|P2⟩ =
1√
2
|2, 0⟩ − 1√

2
|0, 2⟩ (56)

where the states have been renormalized appropriately. With this in mind, only the input
state |I2⟩ (now called |I⟩) is to be used with real 50:50 beam splitters in the interferometer.
Similarly to before, the output state |O⟩ = |ζ1⟩ ⊗ |ζ1⟩, after the second beam splitter can be
determined. By applying [U] twice on the input state |I⟩,

|O⟩ =
[
U
][

U
]
|I⟩ (57)

which, in terms of the input state, can be given as[
U
]−1[

U
]−1

|O⟩ = |I⟩ (58)

gives the creation operators of α̂+1 and α̂+2 in terms of ζ̂+1 and ζ̂+2 as

α̂+1 = −ζ̂+2

α̂+2 = ζ̂+1
(59)
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Thus, by inspection, if the photons go in two separate ports, after two real 50:50 beam
splitters, the photons come out two separate ports. It can also be noted that the photons
switched ports, and the photon from the first input port obtained a phase change of π,

|O⟩ = − |1, 1⟩
= − |{0k, 1q}, {1k, 0q}⟩

(60)

where the modes are shown to display the interchanging of the photons as compared with
Equation (51).

6.2. The Three-Level Atom and Interferometer

Introduction of the atom changes the probability by being a potential barrier for
the photons, thus increasing their chance of going through the lower arm. The balance
of the interferometer can be restored as well as varied by including a phase changer in
the lower arm, as shown in Figure 3. The variation in this phase changer will, in turn,
change the probability of which arm the photons are in, which upon detection details the
dispersion. Inclusion of a χ-phase changer in the lower arm of the interferometer can be
implemented with [

χ
]
=

[
1 0
0 eiχ

]
(61)

Then, the output state is obtained as

|Oχ⟩ =
[
U
][

χ
][

U
]
|I⟩ (62)

Once again, this can be used to obtain

α̂+1 =
1
2

[(
1 − eiχ

)
ζ̂+1 −

(
1 + eiχ

)
ζ̂+2

]
α̂+2 =

1
2

[(
1 + eiχ

)
ζ̂+1 +

(
eiχ − 1

)
ζ̂+2

] (63)

which, when applied on the input state |I⟩ yields the output of a Mach–Zehnder interfer-
ometer with a phase changer in the lower arm as

|Oχ⟩ =
1
4

(
1 − e2iχ

)
|{1k, 1q}, {0k, 0q}⟩

+
1
4

(
1 − eiχ

)(
eiχ − 1

)
|{1k, 0q}, {0k, 1q}⟩

− 1
4

(
1 + eiχ

)2
|{0k, 1q}, {1k, 0q}⟩

− 1
4

(
e2iχ − 1

)
|{0k, 0q}, {1k, 1q}⟩

(64)

The photonic field modes have been shown explicitly to display the effect the χ-phase
changer has on the interchanging of of the photons at the output. Interestingly enough,
a χ-phase changer with χ = π results in the photons exiting from the same port modes as
they entered.

Before placing the atom in the top arm of the interferometer, it is worth considering an
interferometer with two phase changers, one in each arm. This is to contrast how a phase
changer, which will change the phase of any photon by the same amount, contrasts with an
atom, which is expected to change the photon field phase based on the mode state of the
photons. In this case,

[
χ
]
−→

[
χ0

]
, where
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[
χ0

]
=

[
eiχ0 0
0 eiχ

]
(65)

which represents a χ0-phase changer in the top arm and a χ-phase changer in the bottom
arm. As before,

|Oχ0⟩ =
[
U
][

χ0

][
U
]
|I⟩ (66)

which, by the same method used prior, yields

α̂+1 =
1
2

[(
eiχ0 − eiχ

)
ζ̂+1 −

(
eiχ0 + eiχ

)
ζ̂+2

]
α̂+2 =

1
2

[(
eiχ0 + eiχ

)
ζ̂+1 +

(
eiχ − eiχ0

)
ζ̂+2

] (67)

which gives the output state as

|Oχ0⟩ =
1
4

(
e2iχ0 − e2iχ

)
|{1k, 1q}, {0k, 0q}⟩

+
1
4

(
eiχ0 − eiχ

)(
eiχ − eiχ0

)
|{1k, 0q}, {0k, 1q}⟩

− 1
4

(
eiχ0 + eiχ

)2
|{0k, 1q}, {1k, 0q}⟩

− 1
4

(
e2iχ − e2iχ0

)
|{0k, 0q}, {1k, 1q}⟩

(68)

With the χ0-phase changer being replaced with an atom, it is necessary to solve
Equation (29) under the interferometer setup shown in Figure 3. For an analytic demon-
stration, this will be performed under the adiabatic approximation for photons in a single
mode, and then generalized to the multimode field. Numerical results will be presented
for the multimode solution. The solution to Equation (32) is formally given as

|Ψ⟩ = T̂ exp
[
− i

h̄

∫ t

t0

V̂int(τ)dτ

]
|Ψ0⟩

≈ eiχq
k |Ψ0⟩

(69)

such that T̂ is the time ordering operator to take into account that V̂int(τ1) and V̂int(τ2) may
not commute. Then, Equation (39) has the solution

A(t) = A0eiχq
k (70)

Thus, if the photon field state started without any phase, it will have obtained the phase
χ

q
k upon interacting with the atom. The form of χ

q
k is given in Equation (44), where the

integral of δ
q
k(t) is to be taken over all time due to the fact that the final phase of the photon

field, long after interaction with the atom, is what is to be measured/examined. From this,
it is clear the atom acts similarly to the χ0-phase changer, with one stark distinction—the
obtained phase change is dependent on the mode state of the photon field.

The output from the Mach–Zehnder interferometer with an atom in the upper arm
and χ-phase changer in the lower arm is then given as
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|Oχ
q
k
⟩ =1

4

(
e2iχq

k − e2iχ
)
|{1k, 1q}, {0k, 0q}⟩

+
1
4

(
eiχq

k − eiχ
)(

eiχ − eiχq
k

)
|{1k, 0q}, {0k, 1q}⟩

−1
4

(
eiχq

k + eiχ
)2

|{0k, 1q}, {1k, 0q}⟩

−1
4

(
e2iχ − e2iχq

k

)
|{0k, 0q}, {1k, 1q}⟩

(71)

The generalization to the multimode nature of the photon field will be performed approxi-
mately. The approximation is that the mode probability distribution will remain unchanged
due to the interaction of the atom, and will only receive a phase change. This amounts to
treating

∣∣∣Aq
k(t)

∣∣∣ in Equation (25) as constant. Under this assumption, the multimode output
from the Mach–Zehnder interferometer with an atom in the upper arm and a χ-phase
changer in the lower arm is given by summing over all modes in Equation (71).

|O⟩ = ∑
k

∑
q

Aq
k |Oχ

q
k
⟩ (72)

The proposed experiment can be implemented using a Mach–Zehnder interferometer
with a single-atom trap placed in one arm of the interferometer. Experimental demonstra-
tions of single-atom trapping have been well established. For example, a single atom can
be confined in a superoscillatory optical trap [8], or individual 87Rb atoms can be loaded
from a magneto-optical trap into an optical dipole trap, operating with a far detuning of
61 nm from the atomic resonance [9]. In order to increase coupling with trapped atoms,
the system of focusing mirrors can be used inside the Mach–Zehnder interferometer [10].

7. Numerical Results
Demonstration of the photonic dispersion via a single three-level atom can be seen

from solving Equation (29). Results from a numerical evaluation of Equation (29) are
presented below. The evaluation was completed using SciPy’s explicit Runge–Kutta fifth-
order accurate formula of quartic interpolation polynomials, “RK45”. The absolute error
and relative error of the solver were set to 10−8.

The simulation was completed in natural atomic units, such that Planck’s con-
stant h̄ = 1 and the speed of light c = 1, and the permittivity of free space ε0 = 1.
As such, quantities of interest in the S.I. system are obtained by the following conversions:
[Time] = h̄/mec2, [Length] = h̄/mec, [Mass] = me, [Velocity] = c, and [Energy] = mec2.
The energy levels of the atom were set to match the scale of the valence electron of a
rubidium atom, while the k-photon field had 275 modes available and the q-photon field
had 175 modes available. The length of the cavity was chosen such that the 200th mode of
the k-photon field was was in resonance with the ωab transition. The value for the length
and mode are obtainable from the eigenfrequencies of the cavity k = 2πn/L. With c = 1,
the wavenumber is equivalent to the frequency, which is set to ωab and n = 200. This puts
the resonance mode of the ωbc transition near the 121st cavity mode.

The initial states of the photon fields were set such that the neighboring 40 modes above
and below the resonance mode had equal probabilities. For the k-field, this corresponded
to modes 160–240, and for the q-field, modes 80–160. The initial probability values were
chosen to be real, and to have an initial phase of zero. The choice of implementing quantities
similar to a rubidium atom comes from their ability to be trapped and contained in quantum
electrodynamic cavities [10,11]. Furthermore, the details of the rubidium atom, such as its
energy levels, transition frequencies, and coupling strengths, are known in detail [12].
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Figure 4 demonstrates the phase change of a given mode of the photon field upon
interaction with a three-level atom. The field starts with a near-linear phase change in
time, upon which is changed during interaction, and then remains nearly linear in time
after interaction. This demonstration shows the atom does indeed act as a phase changer.
The linear aspects before and after interaction of the phase are also expected, since each
mode in Equation (27) has a linear dependence in time without any interactions. Further-
more, with the phase change of multiple modes displayed, it can be seen quite readily how
the photonic field phase change is dependent on the occupied mode. A demonstration that,
unlike with a standard phase changer (which would change the phases of all modes of
the photon field equally), the atom is mode dependent. The set of modes shown are A1

1(t),
A1

10(t), A1
20(t), A1

30(t), A1
40(t), and A1

50(t).

2960 2980 3000 3020 3040
Time
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A[1] Phase
A[10] Phase
A[20] Phase
A[30] Phase
A[40] Phase
A[50] Phase

Figure 4. Demonstration of the phase of Aq
k(t) for various modes of the k−photon. The q-photon was

chosen to be in the q = 1 mode.

As one can see from Equation (37), the amplitude B(t) acquires the phase

B(t) ≃ exp
(−ig2

q

h̄2∆q

∫
dt f 2

d +
ig2

k

h̄2∆k

∫
dt f 2

)
B0, (73)

that aligns with the results [1] and extends them to the two-photon regime. Similarly,
for three-level atoms, the phase and group velocities can be defined as follows:

Vph =
ω

k
= c + c

( −g2
q

h̄2∆qω0
f 2
d +

g2
k

h̄2∆kω0
f 2
)

, (74)

Vg =
∂ω

∂k
= c + c

( −g2
q

h̄2∆2
q

f 2
d +

g2
k

h̄2∆2
k

f 2
)

. (75)

The importance of this extension is that the three-level atom has different phase shift
than the two-level atom, and it means that the dispersion of the three-level atom can
provide separation the two-photon states from a single-photon state using the Mach–
Zehnder interferometer.

Figure 5 demonstrates how, by tuning the χ-phase changer in the lower arm of the
Mach–Zehnder interferometer, it is possible to control the output state. In particular, with
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each input of the interferometer having one of the photons, it is possible to tune the phase
changer such that there is a large probability to obtain entangled output states. It can also
be seen that the probability of |2, 0⟩ = |0, 2⟩.

While the main focus in this paper is in understanding the phase change of the photon
field due to atomic interactions, it is still interesting to see the relative state probabilities
throughout the interaction. Figures 6 and 7 show the probabilities of the electron to be in a
given energy level and the existence of a photon in the field, respectively.
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Figure 5. Output configuration probabilities for the Mach–Zehnder interferometer with a χ-phase
changer in the lower arm.
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Figure 6. Probability for the electron to be in a given atomic level over the simulation time.
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Figure 8 demonstrates the change in the field’s mode probability upon interaction
with an atom. This phenomenon is not taken into account for the multimode output of
the Mach–Zehnder interferometer. The initial condition is that A1

k(0) = 0 for all k of the
k-photon. It can be seen clearly here that, at the time of interaction, there is now probability
for the q-field to be in its first mode, demonstrated by k-photon probabilities appearing.
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Figure 8. Demonstration of the k-photon with equal probability to be in any mode approaching and
interacting with the three-level atom. Verification that atomic interaction changes the photon wave
packet. The q photon is in the q = 1 mode.

Figure 9 demonstrates the conservation of probability across the simulation of the two
photons with a three-level atom. This is obtained by squaring and summing all coefficients
from the solution of Equation (29). The probability remains at unity. Deviations from this
are attributed to error tolerances of the simulation.
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Figure 9. Demonstration of the conservation of probability with the simulated system.

8. Conclusions
In closing, the completed analysis focused on the dynamic interaction of a two-photon

field interacting with a single electron of a three-level atom. Aspects of the analysis studied
included how to account for photonic propagation and interactions of a multiphoton field
that has access to all available modes with an atom. The interaction of the field with the
atom was shown to change the mode distribution of the photons, as well as induce a phase
change upon the field states. Our approach even includes interactions with all vacuum
modes, and the obtained results are valid for a mode function approach [6] when the
photon has large detuning from the atomic resonance and the role of relaxation is negligible.
From this, the phase and group velocities were obtained, and the results were contrasted
to the two-level atom [1]. The importance of the phase properties were highlighted with
respect to various other quantum fields, including quantum communications, quantum
information, and quantum computing.

Insight into the dynamics of the two-photon field is critical when dealing with quan-
tum information, where the photons themselves contain information in the form of qubits.
By examining the field’s evolution across the interaction with a three-level atom, perception
is gained into how the behavior and properties of the photon change.

A key aspect examined includes the analysis of the phase velocity of the photon field.
The dispersion of light details the speed at which the phase of the field state propagates
in space, and is thus responsible for the temporal behavior of the field state. As such,
the phase velocity, and thus the dispersion, is imperative when analyzing protocols of
quantum communication systems. A deeper understanding of these concepts leads to
a better understanding of how a photon’s quantum information can be manipulated
and controlled.

Studying the dispersion of a two-photon field has lead directly to a deeper under-
standing of not only physical processes, but also the fundamental properties that reign over
quantum communications. These results will further contribute to the creation of more effi-
cient and reliable quantum communication systems, which is of fundamental importance
in areas such as quantum cryptography, quantum teleportation, and quantum computing.
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