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Abstract: Heat engines transform thermal energy into useful work, operating in a cyclic
manner. For centuries, they have played a key role in industrial and technological devel-
opment. Historically, only gases and liquids have been used as working substances, but
the technical advances achieved in recent decades allow for expanding the experimental
possibilities and designing engines operating with a single particle. In this case, the system
of interest cannot be addressed at a macroscopic level and their study is framed in the field
of stochastic thermodynamics. In the present work, we study mesoscopic heat engines
built with a Brownian particle submitted to harmonic confinement and immersed in a fluid
acting as a thermal bath. We design a Stirling-like heat engine, composed of two isothermal
and two isochoric branches, by controlling both the stiffness of the harmonic trap and
the temperature of the bath. Specifically, we focus on the irreversible, non-quasi-static
case—whose finite duration enables the engine to deliver a non-zero output power. This is
a crucial aspect, which enables the optimisation of the thermodynamic cycle by maximising
the delivered power—thereby addressing a key goal at the practical level. The optimal
driving protocols are obtained by using both variational calculus and optimal control theory
tools. Furthermore, we numerically explore the dependence of the maximum output power
and the corresponding efficiency on the system parameters.

Keywords: Brownian heat engine; optimal power delivery; stochastic thermodynamics;
optimal control theory

1. Introduction
As the size of a physical system is reduced, the importance of fluctuations grows, since

the fluctuations may become of the same order of magnitude as the meaningful average val-
ues. Present-day miniaturisation of technological devices has brought increasing attention
to the extension of thermodynamic results to the mesoscale. Stochastic thermodynamics
addresses this challenging goal, extending concepts such as heat, work and entropy to
individual fluctuating trajectories governed by stochastic equations of motion, thereby
incorporating time into the study of thermodynamic processes [1–3]. A colloidal particle
immersed in a fluid at equilibrium constitutes a paradigmatic system in this wide frame-
work. Collisions of the colloidal particle with the fluid particles give rise both to a drag
force and to thermal noise, related by the fluctuation–dissipation theorem [4]. In addition,
a confining force derived from a potential may be added by means of optical traps [5].

Leveraging the unavoidable fluctuations in a mesoscopic system in order to extract
work, as Maxwell’s demon would do [6], constitutes a revolutionary idea that has been
deeply investigated—both theoretically and experimentally—in recent decades [7]. On
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the one hand, ratchet models inspired by Feynman’s work have motivated the design
and study of Brownian motors [8–12]. On the other hand, periodic driving of Brownian
objects has allowed the transposition of classical thermodynamic cycles to the mesoscopic
realm as stochastic heat engines [13–22]. Furthermore, other physical systems such as
thermoelectric generators [23–26], two-level systems [27] or active matter systems [28,29]
have been submitted to similar periodic drivings to build cyclic engines.

Performance of heat engines is usually measured in terms of power and efficiency.
When driven in a quasi-static manner, as in the classical thermodynamic cycles, the output
power vanishes. Thus, building mesoscopic finite-time counterparts of the classical heat
engines (such as the Carnot, Stirling, Ericsson or Otto cycles) has become a relevant line
of research. Renouncing reversibility entails a decrease in efficiency, i.e., there appears a
trade-off between power and efficiency [30,31]. From a practical point of view, the problem
of studying efficiency at maximum power has attracted many investigations in the field of
finite-time thermodynamics. In this context, either general results in the low-dissipation
or slow-driving regime [19,32–41] or specific results for a general driving in some
models [15–17,20,21,42,43] have been obtained. The former approach is based on a linear
response theory scheme, in which the close-to-reversible protocols considered allow for ex-
panding average heat and work around their reversible values, whereas the latter approach
studies a concrete model for arbitrary driving, enabling the analysis of highly irreversible
protocols beyond the linear-response regime.

The final objective of the present work is to design an optimal irreversible Stirling heat
engine. The corresponding classical version encompasses four branches: two isothermal
and two isochoric, all of them reversible—as already said, this entails that this classical
engine delivers zero power. It is worth remarking that irreversible but non-optimal Stirling-
like heat engines have been experimentally demonstrated with a harmonically confined
colloidal particle [7,14]. Here, we outperform this experimental realisation by analytically
investigating how to optimise the cycle, specifically by maximising the delivered power.
This is achieved by finding optimal driving protocols for the constituent processes, which
has been a major topic in non-equilibrium statistical mechanics [44–46]. The general
framework of optimal control theory [47,48], which facilitates the design of shortcuts
and optimal connections between equilibrium states much faster than the corresponding
natural relaxation, is extraordinarily useful in this context. In this regard, state-to-state
transformations (SST) have been recently introduced to encompass a rich set of techniques
under the umbrella of control theory applied to statistical mechanics [49,50].

The rest of this article is structured as follows. In Section 2, the dynamics of the model
is introduced with special attention to the energetics of the processes. Section 3 is devoted
to the development of the constituent branches of the thermodynamic cycle, which are
later employed to build the Stirling-like heat engine. General properties of the heat engine
and a brief analysis of its reversible version are discussed in Section 4. In Section 5, the
maximisation of the engine power is addressed. Therein, the corresponding efficiency at
maximum power is also obtained. Finally, our conclusions are discussed in Section 6.

2. The Model System
2.1. Harmonically Confined Brownian Particle

We consider an overdamped Brownian particle immersed in a thermal bath at temper-
ature T and trapped in a one-dimensional harmonic potential with stiffness k. Both T and k
can be externally controlled, i.e., we assume that their time dependence can be tailored to
our will. The friction coefficient is denoted by λ and is considered as time-independent,
even when the temperature T depends on time. This may be surprising at first sight, since
the friction coefficient for a colloidal particle is determined by both the particle geome-
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try and the solvent viscosity—and the latter depends on the fluid temperature. Yet, it
must be noted that the fluid temperature is usually not varied in experiments with opti-
cally trapped colloidal particles: the bath temperature is effectively raised by introducing
external random forces, the amplitude of which can be controlled [7,51].

Let x denote the particle’s position with respect to the centre of the trap. Its evolution
follows the Langevin equation

λ
dx
dt

(t) = −k(t)x(t) + ζ(t), (1)

where ζ is a Gaussian white noise,

⟨ζ(t)⟩ = 0, ⟨ζ(t)ζ(t′)⟩ = 2λkBT(t)δ(t − t′). (2)

In the above equation, kB is the Boltzmann constant and δ is the Dirac delta function.
The linearity of Equation (1) guarantees that if the initial condition is distributed

according to a Gaussian centred at x = 0, then the distribution remains Gaussian, centred
at the same point, at all times. Hence, the second moment ⟨x2⟩(t), i.e., the variance, fully
determines the state of the system. This quantity evolves following the dynamic equation

λ
d
dt
⟨x2⟩(t) = −2k(t)⟨x2⟩(t) + 2kBT(t). (3)

Energy, Work and Heat

In the above system, we have a three-dimensional “phase space” (k, ⟨x2⟩, T); a point
in this space determines the instantaneous state of the system. The equilibrium equation of
state is directly obtained by looking for the stationary solution of Equation (3) when both k
and T are time-independent:

⟨x2⟩eq =
kBT

k
. (4)

The energy of the system has a kinetic term and a configurational contribution stem-
ming from the harmonic potential,

E(t) =
1
2

mv2(t) +
1
2

k(t)x2, (5)

where m is the mass of the Brownian particle and v is its velocity. In the overdamped limit,
which corresponds to our description, the latter variable is always at its equilibrium value:〈

v2(t)
〉
= kBT(t)/m. Therefore, the average energy is

⟨E(t)⟩ = 1
2

kBT(t) +
1
2

k(t)
〈

x2(t)
〉

. (6)

Thus, the equilibrium energy is characterised by the temperature of the system,

⟨E⟩eq = kBT. (7)

Taking differentials on both sides of Equation (6), one obtains

d⟨E⟩ = 1
2

kB dT +
1
2

k d
〈

x2
〉

︸ ︷︷ ︸
d̄Q

+
1
2

dk
〈

x2
〉

︸ ︷︷ ︸
d̄W

. (8)

On the one hand, we identify the infinitesimal average work d̄W with the contribution
to the energy variation stemming from the change in the external mechanical parameters—
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namely, the stiffness of the trap k. On the other hand, we identify the infinitesimal average
heat d̄Q with the remainder of the energy variation, i.e., the energy variation stemming from
the change in the probability distribution. Note that d̄Q includes two terms corresponding
to the change in the variance of the particle’s velocity and position, respectively [45]. Since
the velocity variable, as aforementioned, is always at equilibrium, the corresponding term
is proportional to the temperature change. Although we focus here on the average values
of heat and work, the corresponding stochastic quantities can also be defined on individual
fluctuating trajectories [1,2].

Let us consider a process connecting two equilibrium state points: (ki, ⟨x2⟩i, Ti) and
(k f , ⟨x2⟩ f , Tf ), where the subscripts i and f denote the initial and final situations, respec-
tively. Work and heat associated with this transition are defined as follows:

Wi→ f =
1
2

∫ f

i
dk ⟨x2⟩, (9)

Qi→ f =
kB
2
(Tf − Ti) +

1
2

∫ f

i
k d⟨x2⟩. (10)

Note that our sign convention considers energy transfers (both work and heat) from
the environment to the system as positive—and as negative in the opposite case. Since our
objective is to extract energy from our heat engine, we thus study cycles with a negative
total work. The first law of thermodynamics is expressed as

∆⟨E⟩i→ f = Wi→ f + Qi→ f , (11)

where ∆⟨E⟩i→ f = ⟨E⟩ f − ⟨E⟩i.

2.2. Dimensionless Variables

In order to simplify our notation, let us introduce dimensionless variables for the
physical properties that characterise our three-dimensional phase space. Specifically, we
choose the units of (k, ⟨x2⟩, T) to be normalised with respect to a reference equilibrium
point (kref, ⟨x2⟩ref, Tref), i.e.,

κ ≡ k
kref

, y ≡ ⟨x2⟩
⟨x2⟩ref

=
kref

kBTref
⟨x2⟩, θ ≡ T

Tref
. (12)

Note that the second equality for the normalised variance is a direct consequence of
the equilibrium condition presented in Equation (4), which now reads

κyeq = θ. (13)

Consistently, dimensionless average energy is defined,

E =
⟨E⟩

kBTref
. (14)

Thereupon, we can rewrite Equations (6) and (7) in dimensionless form as

E =
1
2

θ +
1
2

κy, Eeq = θ, (15)

where we omit the time dependence in E to simplify the notation. Non-dimensional work
and heat are defined consistently,
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Wi→ f =
1
2

∫ f

i
dκ y, (16)

Qi→ f =
1
2
(θ f − θi) +

1
2

∫ f

i
dy κ, (17)

and the first law now reads
∆Ei→ f = Wi→ f +Qi→ f . (18)

In addition, non-dimensional time τ is defined as

τ ≡ t
kref
λ

. (19)

The state of the system at any time τ is thus characterised by the triplet (κ, y, θ). From
now on, differentiation with respect to τ is denoted as q̇ ≡ dq/dτ for any physical quantity
q. Hence, taking into account Equation (3), the evolution of the non-dimensional variance is

ẏ = −2κy + 2θ. (20)

The solution of Equation (20) can be written for general κ and θ as

y(τ) = e−2
∫ τ

0 dτ κ(τ′)
[

yi + 2
∫ τ

0
dτ′ θ(τ′)e2

∫ τ′
0 dτ′′ κ(τ′′)

]
. (21)

Note that for the special case of constant stiffness κ and temperature θ, we have that
the variance exponentially decays to its equilibrium value,

y(τ) =
θ

κ
+ e−2κτ

(
yi −

θ

κ

)
. (22)

Thus, for an infinitely slow—as compared with the characteristic relaxation time of
our system—process, the stiffness of the trap and the temperature behave as constants in
our timescale, the second term on the rhs vanishes and the variance has its instantaneous
equilibrium value for all times. This situation corresponds to the quasi-static limit, which is
discussed in the upcoming sections.

3. Building Blocks for a Stirling Cycle
The aim of this work is to build and investigate a non-equilibrium, irreversible ver-

sion of the Stirling cycle, in analogy with recent studies of irreversible Carnot-like heat
engines [18,21,42,43]. Hence, our stochastic cycle encompasses isothermal and isochoric
branches. We note that Stirling-like cycles have been recently explored in the linear-
response regime described in the Introduction, specifically under the assumption of low
dissipation [41]. Herein, our analysis is performed for arbitrary driving, in general far
from the low-dissipation regime, for the specific model we are considering: a harmonically
confined Brownian particle.

In the following, we define and analyse in detail the constituent branches of the
Stirling-like engine.

3.1. Isothermal Processes

In phase space, isothermal processes are represented by curves with a constant θ value.
In this work, we consider two kinds of isothermal processes: quasi-static and optimal.
Quasi-static processes are non-feasible experimentally and also lack practical interest due
to their null output power. Therefore, they are not our main focus but must be briefly



Entropy 2025, 27, 72 6 of 24

analysed, since they are essential to study irreversible processes—as reference protocols
for the latter. Our focus is put on irreversible isothermal processes with a non-vanishing
output power. In this regard, isothermal processes with maximum extracted work play a
key role for our optimal Stirling-like heat engine.

In an isothermal process connecting equilibrium states, the average energy does not
vary, since Ei = E f = θ. Therefore, by using the first law, one concludes that

∆Ei→ f = 0, Q̃i→ f = −W̃i→ f (23)

for any isothermal process, either quasi-static or irreversible.

3.1.1. Quasi-Static Isothermal Processes

A quasi-static process is defined as a succession of equilibrium states [52]. Therefore,
an isothermal quasi-static process is represented by an equilibrium curve of the form given
by Equation (13), in which the temperature θ is fixed. To sweep this equilibrium curve
y(τ) = θ/κ(τ), the control parameter κ(τ) must be varied sufficiently slowly.

For a quasi-static isothermal process, the work required to drive the system from
the initial to the final state equals Helmholtz’s free energy change ∆Fi→ f , which is a state
function. Then, work, heat and energy variation in such a process are

WQS
i→ f =

θ

2
ln
(

κ f

κi

)
= ∆Fi→ f = −QQS

i→ f , ∆EQS
i→ f = 0. (24)

3.1.2. Optimal Isothermal Processes

Let us consider an isothermal process lasting a finite time τf . In such a protocol, the
system sweeps non-equilibrium states, and thus, work is a functional of the trajectory
in phase space, i.e., a functional of the selected driving κ(τ). Therefore, it is meaningful
to minimise the work performed on the system—i.e., maximise the work extraction—by
looking for an optimal protocol κ̃(τ). This optimisation problem has already been solved for
both unconstrained [42] and bounded stiffness [53]. Note that we employ tildes throughout
this paper to refer to the optimal protocols, the associated optimal paths in phase space
and the corresponding optimal values of the physical quantities.

The unconstrained optimal solution, which is obtained by solving the corresponding
Euler–Lagrange equation, yields a linear evolution of

√
y in time,

ỹ(τ) =

[
√

yi +
(√

y f −
√

yi

) τ

τf

]2

, ∀τ ∈
[
0, τf

]
. (25)

The optimal protocol κ̃ stems from solving Equation (20) for the stiffness,

κ̃(τ) =
θ

ỹ(τ)
− 1

2
d

dτ
ln ỹ(τ). (26)

Note that the κ̃ is discontinuous at both the initial and final times,

lim
τ→0+

κ̃(τ) = κi −
1
τf

(√
κi
κ f

− 1

)
̸= κi, (27)

lim
τ→τ−f

κ̃(τ) = κ f −
1
τf

(
1 −

√
κ f

κi

)
̸= κ f . (28)
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Similar discontinuities in the control parameter have repeatedly been found in stochas-
tic thermodynamics [21,42,46,50,54]. Note that the continuity at the boundaries is recovered
in the quasi-static limit, in which τf → ∞.

The corresponding optimal work is obtained by substituting {κ̃, ỹ} in Equation (16),

W̃i→ f = WQS
i→ f +

θ

τf

(
1

√
κ f

− 1√
κi

)2

. (29)

The optimal work depends not only on the initial and final equilibrium states but
also on the process duration. The minimum irreversible work W̃i→ f −WQS

i→ f scales as

τ−1
f , which vanishes in the quasi-static limit τf → ∞. Although the extracted work is

maximum in the quasi-static limit, it leads to a vanishing power output. The opposite limit,
i.e., τf → 0+, leads to the least energetically advantageous case: infinite work is required to
perform such an instantaneous isothermal process.

3.2. Isochoric Processes

In macroscopic heat engines operating with fluids, isochoric processes keep the volume
constant, and thus, no work is performed on—or extracted from—the system. In analogy
with this situation, isochoric processes for a confined Brownian particle are defined as
those in which the stiffness κ is kept constant since they also give zero work [14]. Thus,
isochoric processes are represented by curves with a fixed value for the trap stiffness κ in
phase space.

Isochoric processes are particularly simple: since work always vanishes, heat is fully
determined by the temperature difference between the final and initial states,

Wi→ f = 0, Qi→ f = ∆Ei→ f = θ f − θi. (30)

As one may intuitively expect, the system delivers heat to the bath in cooling processes,
θ f < θi, whereas it absorbs heat from the bath in heating processes, θ f > θi.

We recall that our final goal is to build a maximum-power Stirling-like heat engine.
Therefore, given that work vanishes for any isochoric process, optimality here is associated
with minimum connection time. In the following, we analyse quasi-static and optimal
isochoric processes separately.

3.2.1. Quasi-Static Isochoric Processes

To sweep the equilibrium curve, the control parameter, which now is the bath tem-
perature θ(τ), must be varied infinitely slowly—i.e., the connection time τf must be very
long. Aside from that, the energetics of such a quasi-static isochoric process is still given
by Equation (30), since the reasoning leading thereto is independent of the duration of the
process—i.e., independent of the intermediate states being equilibrium ones or not.

3.2.2. Optimal Isochoric Processes

We now aim at studying the thermal optimal protocol that minimises the connection
time between the equilibrium initial and final states for fixed stiffness. This optimal
shortcut—the thermal brachistochrone—has been investigated in depth in Ref. [46]. Therein,
the problem was solved for arbitrary dimensions, which yielded a rich phenomenology.
Hereupon, we restrict ourselves to the one-dimensional case we are considering throughout.

The external control θ(τ) is submitted to physical constraints, θ(τ) ≥ 0, ∀τ. Moreover,
tighter bounds might be brought up by technical limitations in practice. Thus, we consider
the general constraints θmin ≤ θ(τ) ≤ θmax for the bath temperature, particularising later
for the ideally relaxed conditions θmin → 0+, θmax → ∞. The addressed optimisation
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problem with non-holonomic constraints cannot be solved with the tools of variational
calculus. Instead, less restrictive methods of optimal control theory, like Pontryagin’s
maximum principle, are needed [47,48].

The minimum-time isochoric connection is a bang–bang protocol without switchings—i.e.,
a protocol in which θ(τ) is equal to one of its bounds for the whole duration or the process.
Specifically, the optimal control θ̃(τ) is [46]

θ̃(τ) = θ̃ ≡

θmax, if θi < θ f ,

θmin, if θi > θ f ,
∀τ ∈

(
0, τ̃f

)
. (31)

Again, the optimal control presents finite jumps at the initial and final times: θ̃ ̸= θi, f .

Since the optimal control is constant in the open interval
(

0, τ̃f

)
, the evolution of the

variance is simply given by Equation (22). Enforcing that yi must evolve up to y f in a time
τ̃f , the latter is found to be

τ̃f =


1

2κ
ln

(
θmax − θi
θmax − θ f

)
, if θi < θ f ,

1
2κ

ln

(
θi − θmin

θ f − θmin

)
, if θi > θ f .

(32)

It is worth highlighting that although the control parameter θ̃(τ) is not continuous at
both ends of the isochoric process, the associated optimal variance ỹ is continuous in the
whole time interval.

The energetics of the above optimal isochoric process is again given by Equation (30),
that is, it equals the quasi-static one—recall that work identically vanishes and thus heat
equals the energy variation. As previously mentioned, the key difference between quasi-
static and optimal isochoric processes is the latter’s lasting a finite time.

In our discussion, we are particularly interested in the ideal situation θmin →
0+, θmax → ∞, for which Equation (32) simplifies to

τ̃f =


0, if θi < θ f ,

1
2κ

ln

(
θi
θ f

)
, if θi > θ f .

(33)

In the ideal limit of infinite heating power, our relaxing of the upper bound θmax → +∞
leads to an optimal instantaneous connection for heating processes, whereas the phys-
ical lower bound θmin → 0+ leads to a non-instantaneous optimal connection for
cooling processes.

4. Stochastic Stirling Heat Engine
In this section, we study the stochastic version of a Stirling cycle performed by our

model system. Experimental versions of such engines have been experimentally built in
recent decades [7,14].

Analogous to the classical Stirling heat engine, our cyclic process encompasses four
strokes, which are illustrated in Figure 1:

1. Isothermal expansion at the hot bath temperature θh ≡ θA = θB, connecting the
phase points A and B, i.e., (κA, yA, θA) and (κB, yB, θB). The confining harmonic
potential is modified by controlling its stiffness κ(τ); the term lexpansion (lcompression)
refers to the sign of the stiffness increment, i.e., to ∆k < 0 (∆k > 0).
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2. Isochoric cooling at lloose stiffness κl ≡ κB = κC, starting from the state-point
B ≡ (κB, yB, θB) up to C ≡ (κC, yC, θC), with θC < θB. The time dependence of the
temperature of the heat bath θ(τ) is now controlled.

3. Isothermal compression at the cold bath temperature θc ≡ θC = θD < θh, linking
states C ≡ (κC, yC, θC) and D ≡ (κD, yD, θD). As in process 1, the control variable is
the time-dependent stiffness of the harmonic trap.

4. Isochoric heating at ltight stiffness κt ≡ κD = κA > κl , departing from state
D ≡ (κD, yD, θD) and closing the cycle by returning to the initial point
A ≡ (κA, yA, θA); thus θA > θD. As in process 2, the control variable is the time-
dependent temperature of the bath.

Figure 1. Scheme of the stochastic Stirling cycle. The harmonic confining potential at the operating
points of the cycle, from (A–D), is represented by the purple curves. The filled red and blue areas
correspond to the probability density functions at those state points, where red (blue) refers to the hot
(cold) equilibrium temperatures. The representation of the heat engine in the (κ, y) plane corresponds
to the quasi-static version of the described cycle.

On the one hand, in the isotherms 1 and 3, the absorbed (released) heat equals the
delivered (consumed) work,

WAB = −QAB < 0, WCD = −QCD > 0. (34)

as given by Equation (23). On the other hand, in the isochores 2 and 4 of our cycle,

WBC = 0, QBC = θC − θB = θc − θh < 0; (35)

WDA = 0, QDA = θA − θD = θh − θc > 0. (36)

as given by Equation (30).
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We are interested in building a heat engine, and thus we want our device to convert
heat extracted from the baths to work. The absorbed heat corresponds to the first isothermal
branch A → B: QAB. The total work in the Stirling-like cycle is

W ≡ WAB +��>
0

WBC +WCD +��>
0

WDA = WAB +WCD. (37)

The efficiency of our stochastic heat machine is defined, in analogy with macroscopic
thermodynamics, as the ratio of the performed work over the extracted heat,

η ≡ −W
QAB

=
−(WAB +WCD)

QAB
= 1 − WCD

QAB
< 1, (38)

where we bring to bear Equation (34).
It must be remarked that we do not include the absorbed heat in the isochore D → A

in our definition of the efficiency. As expressed by Equations (35) and (36), QBC and QDA

are equal in absolute value but differ in sign. Therefore, a regeneration mechanism may
recycle the heat yielded in the isochore B → C for being subsequently absorbed in the
isochore D → A [41]. The inclusion of this regeneration mechanism increases the efficiency,
making it possible to reach Carnot’s limit in the quasi-static regime, as shown in Section
Quasi-Static Stirling Cycle. The use of a regenerator is common in Stirling and Ericsson
cycles [55]. In classical designs with working fluids, the regenerator serves as a temporary
thermal energy storage device that absorbs heat during one part of the cycle and later
transfers it back to the working fluid.

Let us denote the time duration of each branch by τAB, τBC, τCD, τDA, respectively.
Thence, the delivered power in the cycle is

P ≡ −W
τAB + τBC + τCD + τDA

=
−(WAB +WCD)

τAB + τBC + τCD + τDA
. (39)

If we were to temporarily forget about the constraints to which our engine is submitted,
we would expect that 4 × 3 = 12 parameters would be necessary to fully depict the
cycle characterised by four points in a three-dimensional phase space. Nonetheless, we
now consider normalisation on the phase space coordinates with respect to the initial
state, which is equivalent to taking kref = kA and Tref = TA in Equation (12), and thence
point A is fixed: (κA, yA, θA) = (1, 1, 1). Furthermore, the operating points describe
equilibrium states, and thus, the corresponding condition, given in Equation (13), imposes
three additional constraints:

κByB = θB, κCyC = θC, κDyD = θD. (40)

Moreover, as a consequence of the branches being isothermal and isochoric, two more
pairs of restrictions are added:

θA = θB, θC = θD, (41)

κB = κC, κA = κD. (42)

The above discussion entails that the operating points of the Stirling cycle are uniquely
defined by two parameters. We characterise thus the cycle by (i) the temperature ratio

ν ≡ θc

θh
= θc < 1, (43)
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and (ii) the compression ratio

χ ≡ κl
κs

= κl < 1. (44)

The phase coordinates of the operating points of the cycle as a function of the chosen
variables (ν, χ) are collected in Table 1. Our choice of dimensionless units and parameters
to describe the Stirling-like heat engine make it possible to compare its performance with
that of the Carnot-like heat engine analysed in Ref. [21] directly in dimensionless variables
since the dimensionless units to describe the two cycles are the same.

Table 1. Operating points of the stochastic Stirling heat engine. See also Figure 2.

κ y θ

A 1 1 1
B χ χ−1 1
C χ νχ−1 ν
D 1 ν ν

Quasi-Static Stirling Cycle

For later reference, we first study the quasi-static limit of the designed cycle. Therein,
the system is always at equilibrium and the time required to sweep the cycle is infinite.
The analysis of isothermal and isochoric quasi-static processes discussed in the previous
section allows us to directly evaluate work, heat and energy increments over each branch.
The obtained values are collected in Table 2. The total quasi-static work corresponding is

WQS ≡ 1 − ν

2
ln χ < 0. (45)

Table 2. Quasi-static energetics of the Stirling cycle.

WQS
i→ f QQS

i→ f ∆EQS
i→ f

(1) A → B 1
2

ln χ −1
2

ln χ 0

(2) B → C 0 ν − 1 ν − 1

(3) C → D −ν

2
ln χ

ν

2
ln χ 0

(4) D → A 0 1 − ν 1 − ν

Total 1 − ν

2
ln χ

ν − 1
2

ln χ 0

Since the required time for this engine to operate is infinite, it does not deliver any
power. Nonetheless, the efficiency of such a device attains the Carnot value,

ηQS = ηC ≡ 1 − θc

θh
= 1 − ν, (46)

which is the maximum achievable thermal efficiency, as stated by Carnot’s theorem, which
is derived as a consequence of the second law of thermodynamics [52].

The projection of the quasi-static Stirling cycle onto the (κ, y) plane in phase space is
illustrated in the left panel of Figure 2 for the particular choice of parameters ν = χ = 0.5.
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Figure 2. Projection onto the (κ, y) plane of the phase trajectory in the Stirling heat engine. The left
(right) panel corresponds to the reversible (irreversible) cycle. In both panels, ν = χ = 0.5; for the
irreversible case, we consider ideal bounds for the temperature, i.e., θmin → 0+, θmax → ∞.

5. Optimal Irreversible Stirling Cycle
Let us consider now the irreversible version of the above described stochastic Stirling

cycle. In contrast to the Carnot-like heat engine, where the irreversibility adds degrees of
freedom to the operating points [21], here the irreversible Stirling cycle is still fully defined
by the same parameters (ν, χ) of the quasi-static case. The four irreversible branches are
different from those of the quasi-static case—as depicted in the right panel of Figure 2. The
irreversible branches are swept in a finite time and the heat engine thus delivers a non-zero
output power.

As anticipated in the previous sections, we aim at building the optimal irreversible
cycle in the sense of maximising the delivered power. First, we derive the optimal cycle
for given (ν, χ), i.e., fixed operating points, and fixed temperature bounds (θmin, θmax) in
Section 5.1. Second, we further optimise the cycle with respect to the operating points and
the temperature bounds in Section 5.2.

5.1. Optimal Cycle for Fixed Operating Points and Temperature Bounds

Henceforth, our objective is to maximise the output power of the cycle, which is given
by Equation (39). Inasmuch as the isochoric branches only contribute to the delivered
power through their time spans, we must minimise their duration in order to achieve our
goal. We already addressed this problem in detail in Section 3.2.2 of the previous section.
Therein, we obtained that the optimal temperature protocol is of the bang–bang type, and
it consists of applying the minimal bath temperature in the cooling isochore (i.e., B → C)
and the maximum bath temperature in the heating isochore (i.e., D → A).

The above line of reasoning leads to the following optimal times for the isochores:

τ̃BC(θmin) =
1

2χ
ln
(

1 − θmin

ν − θmin

)
, τ̃DA(θmax) =

1
2

ln
(

θmax − ν

θmax − 1

)
, (47)

which are directly obtained from Equation (33) for the branches B → C and D → A,
respectively. Here, we explicitly show the dependence of these optimal times on the
temperature bounds. Note that

θmin < θc = ν < θh = 1 < θmax (48)
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in our dimensionless units: the temperatures over the isotherms must be within the interval
of admissible values, which ensures that both τ̃BC and τ̃DA are non-negative. The total
optimal time for the isochores is

τ̃isoc(θmin, θmax) ≡ τ̃BC(θmin) + τ̃DA(θmax). (49)

Regarding the isothermal branches, we need to maximise the work performed by the
system −W , i.e., minimise W . In Section 3.1.2, we revisited the corresponding optimal
protocol for arbitrary time duration of the isotherms [42,53], in which the stiffness κ has
finite jump discontinuities at both the initial and final times. This behaviour is illustrated
on the right panel in Figure 2, where the dashed lines represent the aforementioned jumps.
The optimal work over the isotherms as a function of their time span is directly obtained
from Equation (29):

W̃AB(τAB) =
1
2

ln χ +
1

τAB

(
1√
χ
− 1
)2

, (50)

W̃CD(τCD) = −ν

2
ln χ +

ν

τCD

(
1 − 1√

χ

)2
. (51)

Since we are considering both (κ, χ) and (θmin, θmax) to be fixed, the minimum times
for the isochores are also fixed, whereas the optimal work for the isotherms only depends on
their respective times. Now, we may ask what times τ̃AB, τ̃CD make the power maximum:

P̃ = max
τAB ,τCD

P(τAB, τCD), (52)

where

P(τAB, τCD) ≡ −W̃AB(τAB) + W̃CD(τCD)

τAB + τ̃BC + τCD + τ̃DA
= −W̃AB(τAB) + W̃CD(τCD)

τAB + τ̃isoc + τCD
. (53)

To answer this question, it is useful to rewrite Equation (53) as follows:

P(τAB, τCD) = − 1
τcyc

[
WQS + α

(
1

τAB
+

ν

τCD

)]
, (54)

where WQS is the total work corresponding to the quasi-static cycle, given by Equation (45),

τcyc ≡ τAB + τ̃isoc + τCD (55)

is the total duration of the cycle, and the coefficient α is defined as

α ≡
(

1√
χ
− 1
)2

, (56)

for the sake of compactness.
We maximise the power by imposing that the partial derivatives of P with respect to

τAB and τCD be equal to zero. A quadratic equation is found which only has one physical
solution, with τ̃AB > 0 and τ̃CD > 0:

τ̃AB = − α

WQS

(
1 +

√
ν
)
(1 + σ), τ̃CD = τ̃AB

√
ν, (57)

where we employ the definition of a new parameter
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σ ≡

√√√√1 − WQS

α
(
1 +

√
ν
)2 τ̃isoc > 1. (58)

Therefore, we have solved the optimisation problem presented in Equation (52), and
the optimal irreversible Stirling cycle is fully characterised for any given operation points
and extremal bath temperatures (θmin, θmax). The corresponding protocols for the trap
stiffness κ(τ) in the isothermal branches and the bath temperature θ(τ) in the isochoric
connections are described in detail in Section 3.

The energetics of the designed optimal irreversible Stirling cycle can be readily calcu-
lated. In analogy with Table 2, which collects the energetics description of the quasi-static
limit, we present the corresponding description for the optimal irreversible cycle in Table 3.
Note that the total work in the irreversible case is

W̃ =
σ

1 + σ
WQS. (59)

This result exhibits a strong parallelism to that in Ref. [21] for an optimal irreversible
Carnot engine. As pointed out therein, the form of Equation (59) yields a physical interpre-
tation for the parameter σ: it measures the deviation of the total irreversible work from the
value corresponding to the quasi-static case. In the limit σ → ∞, one has W̃ → WQS. From
the definition of σ in Equation (58), it is clear that the limit σ → ∞ corresponds, indeed, to
infinitely slow isochoric processes: τ̃isoc → ∞. Consistently, Equation (57) evinces that the
duration of the optimal isothermal branches also diverge in the limit σ → ∞.

Table 3. Energetics of the optimal irreversible Stirling cycle.

W̃i→ f Q̃i→ f ∆Ẽi→ f

(1) A → B
√

ν + σ

(1 − ν)(1 + σ)
WQS −

√
ν + σ

(1 − ν)(1 + σ)
WQS 0

(2) B → C 0 ν − 1 ν − 1

(3) C → D −
√

ν
(
1 +

√
νσ
)

(1 − ν)(1 + σ)
WQS

√
ν
(
1 +

√
νσ
)

(1 − ν)(1 + σ)
WQS 0

(4) D → A 0 1 − ν 1 − ν

Total σ

1 + σ
WQS − σ

1 + σ
WQS 0

Therefore, the optimal power for given operating points, as defined by (ν, χ), and
limiting temperatures (θmin, θmax) is

P̃(ν, χ; θmin, θmax) = −
[
WQS(ν, χ)

]2
α(χ)

(
1 +

√
ν
)2
[1 + σ(ν, χ; θmin, θmax)]

2
, (60)

where we explicitly show the dependence on the system parameters of the different quanti-
ties involved. The associated efficiency at maximum power is obtained by particularising
Equation (38) to the optimal cycle:

η̃(ν, χ; θmin, θmax) = 1 − W̃CD

Q̃AB
= 1 +

W̃CD

W̃AB
= 1 − ν︸ ︷︷ ︸

ηC

−
√

ν(1 − ν)√
ν + σ(ν, χ; θmin, θmax)︸ ︷︷ ︸

>0

. (61)

Therefore, the Carnot efficiency ηC = 1 − ν is an upper bound for η̃, and this bound is
only attained in the quasi-static limit σ → ∞, as expected.
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Equation (61) can also be used to show that the Curzon–Ahlborn efficiency [32]

ηCA ≡ 1 −
√

ν (62)

is not an upper but a lower bound for the efficiency of the optimal irreversible Stirling cycle.
Indeed, after some calculations, it is possible to write

η̃ = ηCA +

√
ν
(
1 −

√
ν
)
[σ(ν, χ; θmin, θmax)− 1]√

ν + σ(ν, χ; θmin, θmax)︸ ︷︷ ︸
>0

. (63)

Our optimal Stirling-like engine is thus found to operate always above the Curzon–
Ahlborn efficiency at its maximum power.

Curzon and Ahlborn found ηCA to be the efficiency of a Carnot engine operating
at maximum power when limitations in the rates of heat transfer were considered [32].
This result was derived for an endoreversible heat engine, generating a long-standing
debate about its universality as an upper bound for the efficiency at maximum power. Its
generality as an upper bound has been discarded since efficiencies at maximum power
below and above ηCA have been reported in the literature [21,34,35,42].

To illustrate the results obtained in this section, density plots of the maximum power
P̃ and the corresponding efficiency η̃ are presented in Figure 3 as a function of (ν, χ) in the
ideal case of θmin → 0+, θmax → ∞. It is worth stressing that the order of magnitude of P̃
is 10−2. The experimental realisation of a Stirling engine in Ref. [14] reported a delivered
power of the order of 10−4—after translating the results therein to our dimensionless
variables. Therefore, our optimal Stirling heat engine gives a 102 improvement factor
in terms of extracted output power. (For the estimation of the delivered power in the
experiment reported in Ref. [14], we take into account that the typical drag coefficient of a
micrometre-sized bead in water solution is around λ = 10−8 kg s−1, whereas the stiffness
in that experiment was around k = 10−6 kg s−2 and the cold and hot bath temperature
were 22 ◦C and 86 ◦C.)

Figure 3. Density plots of the optimal power (left) and the corresponding efficiency (right) in the
(ν, χ) plane. We consider the loosest bounds for the temperature: θmin → 0+ and θmax → ∞.

5.2. Further Optimisation of the Irreversible Stirling Cycle

Hitherto, we have studied the optimisation of the irreversible Stirling cycle for fixed
operating points, i.e., given values of (ν, χ), and fixed limiting temperatures (θmin, θmax).
The question of what choice of these parameters renders maximal power naturally arises,
and this section is devoted to answering this question. In particular, we investigate the
optimal values of the compression and temperature ratios (χ, ν). First, we consider the
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case of ideal temperature bounds (θmin → 0+, θmax → +∞) in Section 5.3. Second, we
investigate more realistic bounds for the temperature in Section 5.4.

5.3. Further Optimisation with Ideal Temperature Bounds

Here, we consider ideal temperature bounds, i.e., the temperature has no upper bound,
θmax → ∞, and the lower bound corresponds to absolute zero, θmin → 0+. The optimal
power for given operating points thus depends only on (ν, χ), P̃ = P̃(ν, χ), and has already
been presented in the left panel of Figure 3. Therein, it is clearly observed that P̃ for fixed ν

vanishes both for χ → 0+ and χ → 1−, which implies that there appears a maximum of P̃
as a function of χ at fixed ν. (In the limit χ → 0+, the minimum time over the isochores
diverges, whereas in the limit χ → 1−, the maximum work vanishes.) This motivates the
two-step procedure followed below to find the overall maximum of P̃ .

The optimisation of the power over (χ, ν) is carried out in two steps. First, we look
into its optimisation over the compression ratio χ for a fixed temperature ratio ν, i.e., we
look for

P̃∗(ν) ≡ max
χ∈(0,1)

P̃(ν, χ). (64)

We denote by χ∗(ν) the value of the compression ratio at which the maximum of
P̃(ν, χ) is attained for a given value of ν. So we can write

P̃∗(ν) = P̃(ν, χ∗(ν)). (65)

Second, we seek the overall optimal Stirling cycle by maximising P̃∗(ν) over the
temperature ratio ν, i.e., we look for

P̃∗∗ ≡ max
χ∈(0,1)
ν∈(0,1)

P̃(ν, χ) = max
ν∈(0,1)

P̃∗(ν). (66)

We denote by ν∗ the temperature ratio at which P̃∗(ν) reaches its maximum. Moreover,
we define χ∗∗ ≡ χ∗(ν∗) to write

P̃∗∗ = P̃∗(ν∗) = P̃(ν∗, χ∗∗). (67)

This maximisation over (χ, ν) has to be performed numerically, since the involved
formula for P̃(ν, χ) does not allow us to obtain closed-form expressions for the optimal values.

To illustrate the numerical optimisation of the power, we present the density plot of the
optimal power in the (ν, χ) plane in Figure 4 together with the curve χ = χ∗(ν)—as well as
two plots showing the behaviour of the optimal power as a function of the compression ratio
χ for two values of the temperature ratio ν. We find χ∗(ν) to be monotonically increasing
with ν. The overall maximum power is P̃∗∗ ≃ 0.041, which is attained at ν∗ ≃ 0.060 and
χ∗∗ ≡ χ∗(ν∗) ≃ 0.507.

Similar to the optimal power, the efficiency at maximum power for fixed operating
points only depends on (ν, χ), η̃ = η̃(ν, χ) and has already been presented in the right panel
of Figure 3. The efficiencies corresponding to the power optimisation over the compression
ratio and to the overall maximum power are denoted in an analogous manner,

η̃∗(ν) ≡ η̃(ν, χ∗(ν)), η̃∗∗ ≡ η̃(ν∗, χ∗∗) ≃ 0.842. (68)

In the previous section, we proved that the efficiency is always below Carnot’s, as
expected, but above Curzon–Ahlborn’s—for arbitrary values of the temperature and com-
pression ratios (ν, χ). Therefore, these bounds also apply after optimising over χ:
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ηCA < η̃∗ < ηC. (69)

This behaviour is illustrated in Figure 5. Furthermore, it shows that the upper bound
at low-dissipation of η for engines reaching the Carnot efficiency in the reversible limit [35],

η+ ≡ ηC
2 − ηC

=
1 − ν

1 + ν
(70)

holds for our optimal Stirling engine—despite not working in the low-dissipation regime.

Figure 4. Density plot of the optimal power in the (ν, χ) plane (left) and vertical sections for fixed
values of the temperature ratio ν (right). The curve χ = χ∗(ν) (dotted line) gives the compression
ratio yielding optimal power for every temperature ratio. On the right, the upper panel corresponds
to ν = 0.5 and the bottom one to ν = ν∗. The points at which maximum power is reached in each
case are also displayed (squares).

Figure 5. Efficiency at maximum power in our approach (black solid line), Carnot efficiency (red
dotted line), Curzon–Ahlborn efficiency (blue dashed line) and η+ (green dash-dotted line), defined
in Equation (70), as a function of the temperature ratio ν.
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Let us now consider the efficiency at maximum power η̃∗ in the limit ν → 1−, i.e.,
ηC = 1 − ν ≪ 1. In order to obtain an analytical expression for χ∗ in this regime, our
approach is the following: we expand χ∗ in powers of ηC and introduce this expansion
in η̃∗(ν) = η̃(ν, χ∗(ν)) to obtain the power expansion of η̃∗ up to the desired order in ηC.
Specifically, we introduce the following ansatz for χ∗:

χ∗ = 1 + a1 ηC + a2 η2
C + a3 η3

C + O
(

η4
C

)
, (71)

where the coefficients (a1, a2, a3) are determined by enforcing the first three terms in the
expansion of ∂P̃/∂χ to vanish at χ∗ since it corresponds to the optimal output power. The
zero-order value of χ∗ stems from having χ∗ → 1 for ν → 1, as shown by the dotted line in
Figure 4. The described procedure yields

a1 = −1
2

, a2 = − 1
48

, a3 =
11

1152
. (72)

In Figure 6 we check the accuracy of this theoretical prediction for χ∗ up to the third
order in ηC. Its agreement with the numerically found values of χ∗ is quite good, even
when considering values of ηC not so close to zero. The inset shows the deviation from the
linear approximation χ∗ = 1 + a1ηC, which is very small—consistent with the smallness of
the non-linear coefficients, where a2 ≃ 0.021 and a3 ≃ 0.001.

Figure 6. Optimal compression ratio χ∗ as a function of the Carnot efficiency ηC = 1− ν. We compare
numerical results (black circles) with the theoretical expansion in ηC up to cubic order, as given by
Equations (71) and (72) (blue solid line). The inset shows the difference between the numerical results
and the first-order approximation 1 + a1ηC, which is very small, of the order of 10−3, up to ηC ≃ 0.4.

The corresponding expansion for the efficiency at maximum power,

η̃∗ =
ηC
2

+
3

16
η2

C +
41
384

η3
C + O

(
η4

C

)
. (73)

follows after inserting the above expansion for χ∗ into η̃∗(ν) ≡ η̃(ν, χ∗(ν)). Note that the
linear response approximation η̃∗ = ηC/2 has been proved to be a general result for the
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efficiency at maximum power as a consequence of the Onsager reciprocity theorem—which
has been considered as the fourth law of thermodynamics [33].

The expansion of the Curzon–Ahlborn efficiency in powers of ηC is

ηCA =
ηC
2

+
η2

C
8

+
η3

C
16

+ O
(

η4
C

)
, (74)

and the corresponding expansion of the upper bound η+ is

η+ =
ηC
2

+
η2

C
4

+
η3

C
8

+ O
(

η4
C

)
. (75)

As expected, Equations (73)–(75) coincide to first order in ηC due to the universality of
the linear response term. Nevertheless, the quadratic terms do not; this is not surprising
since we proved in the previous section that our efficiency at maximum power lies above
ηCA but below η+. Consistently, the quadratic coefficient in Equation (73) for η̃∗ lies
between the corresponding values for ηCA and η+: 1/8 < 3/16 < 1/4.

5.4. Further Optimisation for Arbitrary Temperature Bounds (θmin, θmax)

Now we move on to considering arbitrary bounds (θmin, θmax) in the temperature
control. Restrictions concerning these parameters and the temperatures of the cold and hot
branches of the cycle arise, as expressed by Equation (48).

Intuitively, one expects the most beneficial scenario to correspond to the ideal bounds
studied in Section 5.3, i.e., (θmin → 0+, θmax → ∞). To illustrate how more realistic bounds
for the thermal control impinge on the optimal power, we present the behaviour of P̃ as
a function of χ in Figure 7 for multiple non-ideal values of one of the bounds while the
other one remains ideal. We do so for two meaningful values of the temperature ratio:
ν = 0.5 and ν = ν∗id, where ν∗id denotes the temperature ratio yielding the overall maximum
power in the ideal limit θmin → 0+, θmax → ∞. (In the previous section, this parameter was
simply written as ν∗.) Indeed, the optimal power for the ideal bounds is always above the
corresponding value for more realistic limits in the thermal control.

In what follows, the optimisation procedure and the notation employed is completely
analogous to that in Section 5.3 for ideal temperature bounds. First, we address the
optimisation of P̃(ν, χ; θmin, θmax), given by Equation (60), over the compression ratio χ.
Here, the optimal compression ratio χ∗ depends not only on ν but also on the temperature
bounds, i.e., χ∗ = χ∗(ν; θmin, θmax). Therefore, we have the associated maximum power
for fixed ν

P̃∗(ν; θmin, θmax) ≡ max
χ∈(0,1)

P̃(ν, χ; θmin, θmax) = P̃(ν, χ∗; θmin, θmax) (76)

which is also a function of the temperature ratio and the bounds in the thermal control.
Again, similar to the analysis in Section 5.3, it is relevant to carry out a further optimisation
over the temperature ratio ν, i.e., to look for the value ν∗ that maximises Equation (76):

P̃∗∗(θmin, θmax) ≡ max
χ∈(0,1)

ν∈(θmin,1)

P̃(ν, χ; θmin, θmax) = max
ν∈(θmin,1)

P̃∗(ν; θmin, θmax). (77)

The maximum of P̃∗ is reached at ν∗, which now depends on the temperature bounds,
ν∗ = ν∗(θmin, θmax). Once more, similar to the notation in Section 5.3, we introduce
χ∗∗(θmin, θmax) ≡ χ∗(ν∗; θmin, θmax). In this way, one has

P̃∗∗(θmin, θmax) = P̃∗(ν∗; θmin, θmax) = P̃(ν∗, χ∗∗; θmin, θmax). (78)
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Finally, and consistently, the efficiency at overall maximum power is η̃∗∗(θmin, θmax) ≡
η̃(ν∗, χ∗∗; θmin, θmax).

Figure 7. Optimal power P̃ as a function of the compression ratio χ for fixed temperature ratio ν and
different values of the temperature bounds (θmin, θmax). In the four panels, we consider two values
of ν, ν = 0.5 (top) and ν = ν∗id (bottom) together with θmax → +∞ (left) and θmin → 0+ (right). In
this way, we have the ideal upper (lower) bound of the temperature in the left (right) panels, whereas
several different values of the other, non-ideal, temperature bound are considered. The optimal
power corresponding to the ideal limit of both bounds is also displayed in all the panels (dotted black
line), which is reached when the non-ideal temperature bound approaches its ideal value.

Figure 8 shows the overall optimal values ν∗, χ∗∗, P̃∗∗ and the corresponding ef-
ficiency at maximum power η̃∗∗ as a function of (θmin, θmax). Specifically, we consider
the parallelogram defined by the inequalities 0 < θmin < 0.4 and 1.15 < θmax < 2.50,
inside which we numerically solve the optimisation problem. The maximum power P̃∗∗

is reduced as the tightest temperature bounds are imposed, i.e., as θmin increases or θmax

decreases, as expected on a physical basis.
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Figure 8. Density plots of the temperature and compression ratios (top panels) yielding optimal
power (bottom-left panel), and the corresponding efficiency (bottom-right panel) in the (θmin, θmax)

plane. We consider the region defined by intervals 0 < θmin < 0.4, 1.15 < θmax < 2.50.

6. Discussion
In the present work, we theoretically designed and optimised an irreversible Stirling-

like heat engine, modelled by an overdamped Brownian particle trapped in a harmonic
potential. This model describes accurately the actual dynamics of trapped colloidal parti-
cles [5], supporting the realisation of experiments as those in Ref. [14]. It is worth remarking
that the analysis carried out here is exact and has been performed for arbitrary irreversible
processes in all the branches of the cycle. No assumptions, such as the low-dissipation
limit [41], have been introduced to simplify the problem.

In the optimisation procedure, the existence of bounds on the temperature of the baths
were taken into account. Specifically, we considered that the bath temperature θ verifies
θmin ≤ θ ≤ θmax. Our Stirling-like engine was analysed both in the ideal case of the loosest
possible physical bounds, (θmin → 0+, θmax → +∞), and in the realistic case of θ being
restricted to a finite interval.

Remarkably, the values obtained for the optimal value of the power in the ideal case
beat those found in both the original experimental realisation of a Brownian Stirling-like
heat engine [14]—by a factor 100—and the theoretical proposal for a Brownian Carnot-like
heat engine [21]—by a factor 10. Regarding the comparison with the latter, the Stirling-
like cycle’s outperforming Carnot’s makes physical sense: although the temperatures of
the isotherms are the same in both cycles, the use of more extreme temperatures during
the isochoric branches, θmin for the cooling one and θmax) for the heating one, can be
understood as having better thermal resources in the Stirling engine—thus leading to a
better performance in terms of power.
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The hypothesis of overdamped dynamics is expected to break down as the inertial
effects become more relevant, e.g., by increasing the stiffness of the trap. However, since
the stiffness scale is freely chosen at the beginning through the choice of the operating point
A—fixing the reference units, see Table 1—the underdamped regime can be avoided with a
careful choice thereof.

Interestingly from a practical point of view, the efficiency at maximum power for the
optimal Stirling-like engine is quite high, η ≃ 0.8, for ideal temperature bounds. Moreover,
we showed that the efficiency at maximum power always surpasses the Curzon–Ahlborn
value for arbitrary operating points and temperature bounds. It is important to keep in
mind that this is not a violation of any physical law, since the Curzon–Ahlborn value
represents a bound just for specific conditions. When considering systems with strong
coupling between work and heat fluxes [33] in the linear response at maximum power, the
Curzon–Ahlborn efficiency turns out to be an upper bound for the efficiency at maximum
power in the linear-response regime. A clear identification of the microscopic ingredients
leading to the Curzon–Ahlborn efficiency as an upper bound for Brownian heat engines
was recently carried out [56].

Possible future research work stemming from the results derived in this paper is
discussed in the following. Present-day experimental techniques make it possible to con-
trol both the stiffness of the trap—by using optical tweezers—and the temperature of
the bath—by applying a random electric field with controlled amplitude. As discussed
above, experimental realisations of micrometre-sized stochastic Stirling engines have al-
ready been carried out [14]. Therefore, it would be interesting to implement the pro-
posed optimal Stirling-like engine in an actual experiment. On another note, investigating
exactly—beyond the low-dissipation regime—the irreversible analogue of other classical
thermodynamic cycles, such as Otto’s, Diesel’s or Ericsson’s, may lead to interesting results,
both in theoretical and experimental contexts.
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