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Abstract: This paper focuses on differentiating between ideal and non-ideal chemical
systems based on their kinetic behavior within a closed isothermal chemical environment.
Non-ideality is examined using the non-ideal Marcelin–de Donde model. The analysis
primarily addresses ‘soft’ non-ideality, where the equilibrium composition for a reversible
non-ideal chemical system is identical to the corresponding composition for the ideal
chemical system. Our approach in distinguishing the ideal and non-ideal systems is based
on the properties of the special event, i.e., event, the time of which is well-defined. For the
single-step first-order reaction in the ideal system, this event is the half-time-decay point,
or the intersection point. For the two consecutive reversible reactions in the ideal system,
A ↔ B ↔ C, this event is the extremum obtained within the conservatively perturbed
equilibrium (CPE) procedure. For the non-ideal correspondent models, the times of chosen
events significantly depend on the initial concentrations. The obtained difference in the
behavior of the times of these events (intersection point and CPE-extremum point) between
the ideal and non-ideal systems is proposed as the kinetic fingerprint for distinguishing
these systems.

Keywords: non-ideal chemical systems; Marcelin–de Donde kinetic; one- and two-step
mechanism; intersection point; CPE-extremum point; fingerprint

1. Introduction
A big problem in physical chemistry and chemical engineering is distinguishing the

ideal and non-ideal chemical systems. Typically, the chemical ideality is verified assuming
a weak interaction between the molecules of the composition under the condition that the
solution is diluted enough.

The fundamental properties of the ideal closed chemical system are the uniqueness
and stability of the chemical equilibrium composition at fixed amounts of the chemical
elements and a fixed temperature. The chemical kinetics of the ideal chemical system
are described by Mass Action Law (MAL) dependences. For this system, the uniqueness
and stability of the equilibrium were first qualitatively proven by Zeldovich in 1938 [1,2];
from 1960 onwards, many researchers studied these problems and presented rigorous
proofs of the uniqueness and stability of the equilibrium composition, such as Shapiro and
Shapley [3], Aris [4,5], Horn and Jackson [6], Vol’pert and Khudyaev [7,8], and Gorban and
Yablonsky [9,10]. It is essential that the equilibrium of the reversible complex reaction is
the detailed equilibrium—i.e., for every step considered separately, the rate of the forward
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reaction equals the rate of the corresponding reverse reaction. Reviews of these results are
available in books [11].

As for the non-ideal chemical isothermal system, in which the MAL is violated,
the generalized Marcelin–de Donder (MDD) model was proposed in terms of non-ideal
chemical potentials [12–14]. The uniqueness and stability of the non-ideal system were
proven under special assumptions on the non-ideality coefficients [11]. For the non-ideal
system, the principle of the detailed equilibrium is fulfilled as well.

In this paper, we are going to develop fingerprints for comparing and distinguishing
the ideal and non-ideal systems assuming some simple chemical mechanisms as examples.
For this purpose, some recent findings in formal chemical kinetics will be used, the so-called
“joint kinetics” approach, i.e., the properties of the intersections of kinetic dependencies
and transition regimes from the special initial conditions.

In [15], the effect of the conservatively perturbed equilibrium (CPE) was found, de-
scribed, and studied in the closed ideal chemical system obeying MAL kinetics. The
essence of the effect is the specific kinetic behavior of a chemical system in response to
the replacement of the initial concentrations of one or several (but not all) reactants by
the corresponding equilibrium concentrations at the same total amount of each chemical
element and a fixed temperature. A distinctive feature of the CPE effect is the unavoidable
appearance of a concentration extremum during relaxation to the final equilibrium. This is
observed for the substance whose initial concentration is taken as the equilibrium one, as
shown in Figure 1.
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Figure 1. CPE effect in ideal two-step mechanism A ↔ B ↔ C. Dynamics of reactant concentrations at
A(t) + B(t) + C(t) = 1 (conservation law); B0, Beq—initial and equilibrium concentrations of the reagent B.

This extremum may be an instantaneous partial equilibrium of some steps of the
chemical mechanism. In [16], the CPE effect was experimentally confirmed for the reaction
of ethanol and benzyl alcohol with acetic acid to form esters in a batch reactor. The CPE
effect provides new information about the detailed mechanism of this complex reaction.

This article discusses the possibility of observing this effect in non-ideal isothermal
systems with the generalized Marcelin–de Donder kinetic law. The CPE phenomenon is
studied for different types of non-ideal chemical potentials, provided that the uniqueness
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and stability of the chemical equilibrium composition are preserved. The case of ‘soft’ non-
ideality is analyzed, when, for any reversible chemical reaction, the equilibrium constant
for ideal chemical potentials is equal to the “non-ideal” equilibrium constant. As a result,
the equilibrium composition of the non-ideal and ideal system must be identical. This
creates additional requirements for non-ideal parameters that affect the reaction dynamics.
The main goal of this work is to analyze, under the conditions of the CPE phenomenon,
the dynamic properties of a kinetic model of the non-ideal system and compare it with a
corresponding model of the ideal one.

2. Kinetic Model
A chemical reaction is described by a set of elementary steps, as follows:

∑jαij Aj ↔ ∑jβij Aj, (1)

where αij and βij—stoichiometric coefficients of the j-th component in the i-th step and
Aj—initial components and reaction products. The kinetic model of this reaction in a
closed gradientless isothermal reactor is described by the system of ordinary differential
equations [11,17–20], as follows:

Aj
′ = ∑i(βij − αij)ri, Aj(0) = Aj0, (2)

where Aj = Aj(t)—reactant concentrations, mol/L; t—time, s; ri—the rate of any step reac-
tion (ideal or non-ideal) that satisfies the natural requirement (ri = 0 at Aj = 0), mol/(L s);
ri = ri

+ − ri
−, where ri

+ and ri
− are the rates of the forward and reverse reactions, respec-

tively, mol/(L s); and Aj0—initial concentrations, mol/L. In model (2), at any time, the
conservation law is satisfied, i.e., the system is conservative, as follows:

∑j Aj(t) = ∑j Aj0 = 1. (3)

In our paper, the difference between the ideal and non-ideal systems is expressed in
terms of chemical potentials.

In the ideal kinetics of the MAL, the rate of a reversible isothermal reaction [1,11,17–20]
is equal to ri = r+i − r−i, where r+i = k+i ∏Aj

αij, r−i = k−i∏Aj
βij— the rate of forward and

reverse reactions, respectively, 1/s.
In the non-ideal kinetics of MDD, which is a generalization of the ideal kinetics of the

MAL, the rate of any step of a reversible isothermal reaction [9–14,18–20] is the following:

ri = ri
0[exp(∑j αijµj) − exp(∑j βijµj)], i = 1, 2, . . ., (4)

where ri
0 > 0—the rate, forward or reverse, under the equilibrium conditions, mol/(L s) and

µj—the pseudo-chemical potential (hereinafter referred to as the potential) of the reactant
Aj, dimensionless, as follows:

µj= µ0
j + ln Aj + gj, j = 1, 2, . . ., (5)

where µ0
j > 0—constants; gj—correction terms for the non-ideality of reactants (gj = 0 for

the ideal system); µj = µ*j/RT, µ*j—the chemical potential of the reactant Aj, J/mol; R—the
universal gas constant, J/(mol ◦K); and T—temperature, ◦K.

The goal of this paper is to find the difference between the ideal and non-ideal cases
based on kinetic behavior.

Let us assume that the non-ideal correction terms gj = ∑ajkAj are linear regarding
the concentrations of reactants, where ajk are non-ideality coefficients of reactant Aj,
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k = 1, 2. . . In an ideal system, all coefficients of non-ideality are equal to 0, ajk = 0, and
gj = 0. In a particular case, the coefficients of non-ideality and the corresponding correction
terms are equal (‘uniform’ non-ideality). In a general case, ajk may have any values, and at
least one of the correction terms may be not equal to 0 (‘non-uniform’ non-ideality). In our
calculations, such values of ajk are chosen that the non-ideal constituent is at least about
20% of the ideal one.

The stability of the system (2)–(5) is determined by the eigenvalues λj of the Jacobian
matrix J = JγJµ near the equilibrium, where Jγ = (βij − αij)—the matrix of stoichiometric
coefficients related to the scheme of transformations; Jµ = (µjk) is a matrix of potentials
which describes the non-ideality of reactants. It was proved [5–8] that, if the matrix of
partial derivatives (Jacobi matrix) for potentials M = (∂µj/∂Ak) is symmetric and positively
definite, i.e., non-negative, all its main minors are non-negative, det(M) ≥ 0, then the
equilibrium is unique and stable globally. Any violation of these conditions can lead to
incorrect conclusions about the multiplicity of equilibria or the instability of the single
equilibrium in the closed system [21,22].

Chemical dynamics are characterized by relaxation times [23–26]. Generally, the
relaxation time reflects the dynamics of the system at any moment in time (near and
far from the equilibrium) and depends on the moment of the occurrence of the event
(intersection, extremum, etc.) and the initial conditions of the reaction t = t(Aj, Aj0). As is
well known, a set of eigenvalues λj (linear relaxation times) present the robust characteristic
of relaxation. Typically, the slowest relaxation is characterized by the linear relaxation time,
τ = 1/min|Re λj|, where Re is the real part of the eigenvalue λj.

As is indicated above, the relaxation characteristics of typical chemical mechanisms
will be studied in detail, comparing the ideal and non-ideal cases and distinguishing them.
Our analysis will be focused on different events of interest, i.e., the intersection of kinetic
curves for the single reaction and the CPE phenomenon for the two-step reaction.

3. Linear One-Step Mechanism
In this case, the simplest mechanism is the following one-step isomerization reaction:

A ↔ B,

where A and B are reactants, the initial reactant and product. The corresponding kinetic
model is written as follows:

A′ = −r+ + r−, B′ = r+ − r−, A(0) = A0,

where A = A(t) and B = B(t)—reactant concentrations, t—reaction time; and r+, r−—reaction
rates, forward and reverse, respectively. In this system, the mass conservation law is
fulfilled A(t) + B(t) = 1. It does not depend on whether the system is ideal or non-ideal.

The special kinetic event for this simple system is an intersection of the kinetic dependencies
A(t) and B(t). It is easy to show that, under this condition, k+ is bigger than k−, so this intersection
is unavoidable. The concentration at this intersection point A(t*) = B(t*) = 1/2. Consequently, in
this case, the time of intersection of reactant–product dependencies is the half-life time, which is
well known in chemical kinetics.

This fact does not depend on the details of the kinetic behavior, whether the system is
reversible or irreversible, linear or non-linear, and, finally, ideal or non-ideal.

Also, the ’swapped equilibrium’ (SE) experiment can be performed when the initial
concentrations of two chemical species are taken as their equilibrium concentrations but
swapped, see [27]. In this experiment, another intersection of kinetic dependencies can be
obtained as well.
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3.1. Ideal System

The kinetic model is as follows:

A′ = −k+A + k−(1 − A) = −(k+ + k−)A + k−.

Therefore, A(t) = Aeq + (A0 − Aeq)exp(λt), B(t) = Beq + (B0 − Beq)exp(λt), Aeq = k−/(k+ + k−)
= 1/(Keq + 1), Beq = k+/(k+ + k−) = Keq/(Keq + 1), and λ = −(k+ + k−).

The linear time of relaxation is as follows:

τ = 1/|λ|= 1/(k+ + k−).

The relaxation time for reaching the concentration A(t) when starting from the concentration
A0 is as follows:

t = t(A, A0) = τ ln((A0 − Aeq)/(A − Aeq)).

For the half-life point, (A0 − Aeq)/(A − Aeq) = 2 and t1/2 = τ ln2.
For the intersection point, A(t) = B(t) = ½. Therefore, the intersection point is the

half-life-point as well. At A0 = 1, the time to reach the intersection point is as follows:

tint = ln[2Keq/(Keq − 1)]/(k+ + k−) = τ ln[2Keq/(Keq − 1)].

In the ‘swapping equilibrium’ experiment, for the intersection point, tswap, at A0 = Beq,

tswap = ln(2)/(k+ + k−) = τ ln2.

Therefore, tswap coincides with t1/2.
Then, the two-time ratio,

tint/tswap = ln[2Keq/(Keq − 1)]/ln2.

Example 1. Consider a system with k+ = 2 s−1, k− = 1 s−1, Keq = 2, Aeq = 1/3, Beq = 2/3,
λ = −3 s−1, and τ = 1/3 s. For A0 = 1, the half-life is t = tint = 0.46 s. In the “swapping equilibrium”
experiment, A0 = Beq and tswap = 0.23 s. Therefore, the ratio is tint/tswap = 2, illustrating the
difference between these times.

The main result of this section is the following: in this ideal system with the single
reaction, there are some primary characteristics of general interest, i.e., the intersection
time, tint, the ‘swap’ time, tswap, and the ratio, tint/tswap.

3.2. Non-Ideal System

In the Marcelin–de Donde (MDD) model, the reaction rates are expressed by the
relationships r+ = k+exp µA and r− = k−exp µB, where k+ and k− are kinetic coefficients;
µA= µA0 + ln A + gA, µB= µB0 + ln B + gB are the potentials of the reactants; µA0 and µB0 are
the initial potentials of the reactants; and gA = gA(A, B) and gB = gB(A, B) are the corrections
for the non-idealities of the reactants. If the non-ideality corrections are linear with respect
to the reactant concentrations, gA = a11A + a12B; gB = a21A + a22B, where a11, a12 and a21, a22

are the coefficients of the non-idealities of reactants A and B. Then, the kinetic model can
be written as follows:

A′ = −k+Aexp(a11A + a12B) + k−Bexp(a21A + a22B).
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The reaction dynamics were investigated for different combinations of non-ideality co-
efficients considering ‘soft’ non-ideality with a11 = a21, a12 = a22. As mentioned earlier,
this condition ensures the constancy of the equilibrium, meaning that the equilibrium
composition does not change in comparison with the ideal system. The following cases are
considered:

1. The non-ideality functions of the reactants are the same, with all individual non-
ideality coefficients being equal, i.e., a11 = a21 = a12 = a22 ≡ p ̸= 0 (uniform non-ideality).
In this case, λ* = − (k+ + k−)exp(p) and τ* = 1/[(k+ + k−)exp(p)] = τ exp(−p). Therefore,
when p > 0, the linear relaxation time decreases by a factor of exp(p), and when p < 0,
it increases by the same factor.

Accordingly,

t*int = τ* ln[2Keq/(Keq − 1)] = τ exp(−p) ln[2Keq/(Keq − 1)].

t*swap = τ* ln2 = τ exp(−p) ln 2.

t*int/t*swap = ln[2Keq/(Keq − 1)]/ln2 = tint/tswap.

Thus, for the uniform non-ideality, the ratio of the intersection time to the ‘swap’ time
remains unchanged.

2. The non-ideality functions of the reactants are the same, but the individual non-ideality
coefficients are different, i.e., a11 = a21 ̸= a12 = a22 (the non-uniform non-ideality
coefficients). In this case,

τ* = τ exp(−p*), where p* ≡ a11Aeq + a12Beq.

Consequently, in this case, the characteristic p* is a function of both the non-ideality
coefficients and the equilibrium concentrations.

Here, τ* decreases when p* > 0 and the reaction speeds up by a factor of exp(p*), while
when p* < 0, τ∗ increases and the reaction slows down by the same factor.

The kinetic model becomes the following:

A′ = (k−B − k+A)exp(a11A + a12B).

Integrating this equation over the intervals t ∈ [0, t*], A ∈ (A0, A*), and B ∈ (B0, B*) gives
the relaxation duration from the initial conditions of A0, B0 to the intersection point of A*,
B* for non-uniform non-ideality, as follows:

t* = τ τ*[Ei(1, (a12 − a11)(k−B* − k+A*)τ) − Ei(1, (a12 − a11)(k−B0 − k+A0)τ)],

where Ei is the exponential integral [28], see our Appendix A. Note that this relationship
allows for calculating the time of intersection of curves A(t) and B(t) only if k+ > k−;
otherwise, these curves do not intersect, meaning that point A* does not exist.

For the intersection point with A0 = 1, B0 = 0,

t*int = τ τ*[Ei(1, (a12 − a11)(k− − k+)τ/2) − Ei(1, (a12 − a11)(−k+)τ)].

In the ‘swapping equilibrium’ experiment, for the intersection point with A0 = Beq, B0 = Aeq,

t*swap= τ τ*[Ei(1, (a12 − a11)(k− − k+)τ/2) − Ei(1, (a12 − a11)(k−B0 − k+Beq)τ)].
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The two-time ratio is a function of the non-ideality coefficients and initial conditions,
as follows:

t*int/t*swap = Ei(1, (a12 − a11)(k− − k+)τ/2) − Ei(1, (a12 − a11)(− k+)τ)]/

[Ei(1, (a12 − a11)(k− − k+)τ/2) − Ei(1, (a12 − a11)(k−B0 − k+Beq)τ)].

Thus, in the case of non-uniform non-ideality, the two-time ratio changes in comparison
with the ideal system. This represents a fingerprint of the non-ideal system that can be
detected experimentally.

Example 2. Evolution of the times to reach the given concentration.

Let us analyze some non-ideal cases at Keq = 2, Aeq = 1/3, Beq = 2/3, and A = 1/2, as
follows: (1) a11 = 0 and a12 = 0 (‘zeroth’ non-ideality); (2) a11 = ¼ and a12 = −1/2 (‘weak’
non-ideality); (3) a11 = ½ and a12 = −1 (non-ideality is ‘stronger’,); and (4) a11 = 1 and
a12 = −2 (‘strong’ non-ideality). For these cases, the following dependences for t* from
ln((A0 − Aeq)/(A − Aeq)) are shown in Figure 2.
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For the ideal system, the relaxation time depends linearly on the logarithm of the scaled
initial conditions, while for the non-ideal system, a similar dependence becomes non-linear.
The bigger the non-ideality coefficients, the stronger is the apparent non-linearity.

Example 3. Rapid test. The evolution of the two-time-ratio is shown in Table 1.

In the table, each of the two-time ratios t*int/t*swap represents a rapid, single-point
test that can be used for identifying non-ideality. The more the experimental ‘swap’ value
t*int/t*swap deviates from the ideal value of 2.0, the more likely it is that the system is
non-ideal.

As can be seen from these examples, for the non-ideal system, the two-time ratio, i.e.,
the ratio of the intersection time to the ‘swap’ time, differs from the same ratio for the ideal
system. Such a difference can be used as a fingerprint for distinguishing these systems. As
mentioned, in all cases, the equilibrium concentrations for the ideal and corresponding
non-ideal system are identical. We emphasize that, for approximating the real conditions,
corrections for the non-ideality were taken to be moderate, i.e., about 20%.
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Table 1. Evolution of the two-time ratio.

Coefficients of the Non-Ideality t*int t*swap t*int/t*swap

a11 = 0, a12 = 0 0.46 0.23 2.0

a11 = 1/4, a12 = −1/2 0.4553 0.2479 1.8366

a11 = 1/2, a12 = −1 0.4533 0.2663 1.7025

a11 = 1, a12 = −2 0.4629 0.3084 1.5008

a11 = 1/10, a12 = −1/10 0.4587 0.2376 1.9307

a11 = 1/4, a12 = 2/4 0.3336 0.1618 2.0622

a11 = 5/4, a12 = 10/4 0.0918 0.0389 2.3580

a11 = −1/4, a12 = ½ 0.5791 0.2489 2.33

4. Linear Two-Step Mechanism
The detailed mechanism analyzed is the following consecutive scheme:

A ↔ B ↔ C, (6)

where A, B, and C—reactants. For this mechanism, the kinetic model (2) is represented
as follows:

A′ = −r1, B′ = r1 − r2, C′ = r2, A(0) = A0, B(0) = B0, C(0) = C0, (7)

where A = A(t), B = B(t), and C = C(t)—reactant concentrations and r1 and r2—the rates of the
first and second steps, respectively. In this system, the conservation law A(t) + B(t) + C(t) = 1
is satisfied. For this system, the phenomenon of conservatively perturbed equilibrium (CPE),
described in the introduction, will be compared for the ideal and non-ideal cases. The ideal
system behavior was studied in detail in [15].

A special kinetic event for this system is the appearance of the over-equilibrium, i.e., the
concentration extremum, which is observed if the kinetic reactant dependence starts from its
equilibrium concentration. Some other concentrations remain as the equilibrium ones.

As mentioned, this experiment is performed at the same total amount of each chemical
element and a fixed temperature.

For the closed system, this over-equilibrium (extremum) is unavoidable.

4.1. Ideal System

In an ideal system, the kinetic model can be represented as follows:

A′ = −k+1A + k−1B, C′ = k+2B − k−2C, B = 1 − A − C.

The equilibrium composition is determined by the expressions Aeq = k−1k−2/∆,
Beq = k+1k−2/∆, Ceq = k+1k+2/∆, and ∆ ≡ k+1k+2 + k+1k−2+ k−1k−2. The equilibrium con-
stants take the values K1 = Beq/Aeq and K2 = Ceq/Beq. The linear relaxation time is calculated
as follows τ = 1/min|Re(λ1, λ2)| = 2/|σ + D|, where the eigenvalues λ1, λ2 = (σ ± D)/2,
σ = −(k1 + k−1+ k2 + k−2), D = (σ2 − 4∆)1/2, and the equilibrium is stable.

In this two-step mechanism, under ideal assumptions, the time of CPE depends only
on the eigenvalues which are functions of kinetic coefficients t = ln(λ1/λ2)/(λ2 − λ1). De-
tailed computer experiments demonstrated that this time does not depend on the reactant
concentrations [15]. Consequently, it is a kinetic fingerprint of the ideal system.
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Example 4. Let us set the rate coefficients arbitrarily k+1 = 4; k−1 = 3; k+2 = 2; and k−2 = 1,
then, with the ideal kinetics, the equilibrium constants of the stages are K1 = 1.33 and K2 = 2.00,
the equilibrium composition is Aeq ≈ 0.20, Beq ≈ 0.27, Ceq ≈ 0.53, σ = −10, D = 40, ∆ = 15, λ1,
λ2 = (−8.16, −1.83), and the linear relaxation time is τ ≈ 0.54. The time of appearance of CPE is
t* ≈ 0.24 and does not depend on the initial concentrations of the reactants.

4.2. Non-Ideal System

The chemical potentials (5) of the reactants of this system are presented as follows:

µA = µ0
A + ln A + gA, µB = µ0

B + ln B + gB,

µC = µ0
C + ln C + gC, (8)

where gA (A, B, C), gB (A, B, C), and gC (A, B, C)—correction functions for the non-ideal
reactants.

The thermodynamic conditions for these potentials are the following:

∂gB/∂A = ∂gA/∂B, ∂gA/∂C = ∂gC/∂A, ∂gB/∂C = ∂gC/∂B, (9)

∂gA/∂A ≥ 0, (∂gA/∂A) (∂gB/∂B) ≥ (∂gA/∂B)2, det(M) ≥ 0.

The rates of steps (4) for the potentials (8) are the following:

r1 = r1
0[exp(µ0

A) A exp(gA) − exp(µ0
B) B exp(gB)], (10)

r2 = r2
0[exp(µ0

B) B exp(gB) − exp(µ0
C) C exp(gC)].

Considering (7)–(10), the kinetic model of the non-ideal system can be written as follows:

A′ = −k+1Aexp(gA) + k−1Bexp(gB), C′ = k+2Bexp(gB) − k−2Cexp(gC), (11)

where B = 1 − A − C, k+1 = k0
+1exp(µ0

A), k−1 = k0−1exp(µ0
B), k+2 = k0

+2exp(µ0
B),

k−2 = k0−2exp(µ0
C) and k0

+1, k0−1, k0
+2, k0−2—pre-exponential coefficients. Under the

equilibrium conditions, the rates of all steps are zero, and

k+1Aexp (gA) = k−1Bexp(gB), k+2Bexp(gB) = k−2Cexp(gC). (12)

The ‘non-ideal’ equilibrium constants of the steps are determined as follows:

K*1 = B/A = (k+1/k−1) exp(gA − gB) = K1exp(gA − gB), (13)

K*2 = C/B = (k+2/k−2) exp(gB − gC) = K2 exp(gB − gC),

where K1 and K2 are the “ideal” equilibrium constants.
In accordance with our requirement (‘soft’ non-ideality), the equilibrium composition

of the non-ideal system does not change compared with the ideal one.
It follows from (12) and (13) that this requirement is fulfilled if, and only if, the

correction functions for the non-ideality of the reactants are equal, as follows:

gA = gB = gC. (14)

If these requirements are met, the ‘non-ideal’ equilibrium constants and the equilib-
rium composition necessarily coincide with the ideal ones, respectively, as follows:

K*1 = K1 = Beq/Aeq, K*2 = K2 = Ceq/Beq, (15)
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Relationships (15) define the conditions of ‘soft’ non-ideality for the analyzed system.
If the conditions (14) are not met, the equilibrium composition is obviously changed.

Let us detail criterion (14) for linear non-ideal correction functions. These functions
regarding the reactant concentrations are assumed as follows:

gA = a11A + a12B + a13C,

gB = a21A + a22B + a23C, (16)

gC = a31A + a32B + a33C,

where a11, a12, a13, a21, a22, a23, a31, a32, and a33—coefficients of the non-ideality. Then, the
potentials (8) are the following:

µA = lnA + a11A + a1µB = lnB + a21A + a22B + a23C, (17)

µC = lnC + a31A + a32B + a33C. (18)

Considering (16)–(18), a kinetic model (11) is presented as follows:

A′ = −k+1 A exp (a11A + a12B + a13C) + k−1Bexp (a21A + a22B + a23C), (19)

C′ = k+2 B exp (a21A + a22B + a23C) − k−2 C exp (a31A + a32B + a33C).

For the non-ideal equilibrium (12), equations will be written as follows:

k+1Aexp(a11A + a12B + a13C) = k−1Bexp(a21A + a22B + a23C), (20)

k+2Bexp(a21A + a22B + a23C) = k−2Cexp(a31A + a32B + a33C).

Consequently, Equation (13) will be written as follows:

K*1 ≡ B/A = K1exp[(a11 − a21)A + (a12 − a22)B + (a13 − a23)C)], (21)

K*2 ≡ C/B = K2exp[(a21 − a31)A + (a22 − a32)B + (a23 − a33)C)],

where the exponential factors express the non-ideality coefficients of the equilibrium
constants.

Introducing the ‘soft’ non-ideality. From (14)–(21), it follows that, for the linear non-
ideality functions, the equilibrium constants of the steps do not change if, and only if,
the equalities are satisfied (if only one of them is satisfied, then only one corresponding
equilibrium constant is preserved).

a11A + a12B + a13C = a21A + a22B + a23C, (22)

a21A + a22B + a23C = a31A + a32B + a33C,

where a11, a21, and a31—non-ideality coefficients related to the reactant A. Similarly, the
coefficients a12, a22, and a32 are related to the reactant B, and the coefficients a13, a23,
and a33 are related to reactant C. These three groups of coefficients can be named as the
individual non-ideality coefficients, which correspond to the chosen substances A, B, and
C, respectively. So, the ‘soft’ non-ideality is defined by Equation (22).

The following conditions

a11 = a21 = a31, a12 = a22 = a32, a13 = a23 = a33 (23)
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can be interpreted as sufficient conditions of ‘soft’ non-ideality.
The thermodynamic conditions (9) for the potentials (18) can be presented as follows:

a12 = a21, a13 = a31, a23 = a32, (24)

a ≥ 0, ab − a12a21 ≥ 0, abc + a12a23a31 − ba13a31 − ca21a12 − aa23a32 ≥ 0, (25)

where a ≡ 1/A + a11, b ≡ 1/B + a22, and c ≡ 1/C + a33.
It should be mentioned that the non-ideality coefficients a11, a12, and a13 can be different.

Assuming the equality of symmetric coefficients (24) and comparing them with (23), is easy to
show that individual non-ideality coefficients are equal. In the general case, criterion (22) can
be satisfied even if conditions (23) are violated.

For the non-ideal system, all or some non-ideality coefficients are nonzero. The linear
relaxation times are determined by the following expressions, respectively:

τ* = 2/|σ* + D*|, (26)

where σ* and D* depend on the non-ideality coefficients and equilibrium concentrations of
the reactants, as follows:

σ* = −{[1 + A(a12 − a11)]k1p1 − [k−1 + k2 + k−1B(a22 − a21) + k2B(a22 − a23)]p2 − [1 − C(a32 − a33)]k−2p3}, (27)

where p1 = exp(a11A + a12B + a13C), p2 = exp(a21A + a22B + a23C), and p3 = exp(a31A + a32B +
a33C).

Obviously, these characteristics can change the sign. The expression for D* is not
presented, since it is too big for this paper. However, readers can easily derive this equation
using the computer algebra methods. Consequently, in the general case, i.e., for arbitrary
non-ideality coefficients, the relaxation process may exhibit quite complicated behavior,
say relaxation with damped oscillations.

In a particular case, with equal non-ideality coefficients (aij = p), σ* and D* are ex-
pressed by the following simple relationships: σ* = σ exp(p) < 0, D* = D exp(p) > 0,
respectively. Therefore, λ*1, λ*2 < 0, i.e., the system equilibrium remains stable. From (25)
and (26), the following can be observed:

τ*/τ =|σ + D|/|σ* + D*| = exp(−p), (28)

where τ and τ* are linear relaxation times for the ideal and non-ideal systems, respectively.
Considering ‘soft’ non-ideality, we will investigate the influence of the non-ideality

coefficients and initial conditions for mechanism (6) with the potentials (18) on the time of
the CPE-extremum and its parameters.

5. Different Scenarios of Non-Ideal Dynamics
1. All coefficients of non-ideality are equal: aij = p (the ‘equal’ non-ideality). Then, the

‘soft’ non-ideality conditions (22) and (23) are satisfied for any p, and the thermody-
namic conditions (24) and (25) are valid only for p ≥ 0. Hence, based on (28), τ* = τ

exp(−p), the reaction should accelerate by a factor of ep when p ≥ 0 and decelerate
when p ≤ 0. Consequently, the observation time of the CPE effect should also shift by
a factor of ep.

2. Not all non-ideality coefficients are equal (the ‘nonequal’ non-ideality). In this more
general case, the conditions of ‘soft’ non-ideality (22) and (23) and the thermodynamic
conditions (24) and (25) may be violated. The equilibrium composition is maintained
only if the conditions of the ‘soft’ non-ideality (22) are satisfied. In addition, from
(27) and (28), it follows that the linear relaxation time τ* depends on the values of all
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non-ideality coefficients. Accordingly, the moment of observation of the CPE effect
should also shift.

3. Non-ideality coefficients may have any value (the ‘arbitrary’ non-ideality). In this
most general case, conditions (22)–(25) are certainly not satisfied. Equilibrium and
nonequilibrium characteristics can differ significantly from the characteristics of ‘equal’
and ‘non-equal’ non-ideality. As shown above, regarding the note after (27), this case
can lead to non-physical results and, therefore, is not considered here.

6. Computer Calculations
In our calculations, all scenarios mentioned will be analyzed regarding the features

of CPE and comparing the non-ideal cases with the ideal ones. Let assume that k+1 = 4;
k−1 = 3; k+2 = 2; and k−2 = 1 and K1 = 1.33, K2 = 2.00, Aeq ≈ 0.20, Beq ≈ 0.27, and Ceq ≈ 0.53,
respectively. In an ideal system, τ = 0.54, τε ≈ 2.50, and the CPE time is t* ≈ 0.24.

Case 1. The non-ideality coefficients are equal and non-zeroth, as shown in Figure 3.
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Figure 3. The ‘uniform’ non-ideality. Evolution of concentration of ideal (A, B) and non-ideal (A*, B*)
components, respectively, at aij = p: (a) A0 = Aeq; p = +1; (b) B0 = Beq; p = +1; (c) A0 = Aeq; p = −1; and
(d) B0 = Beq; p = −1.

In this case, the non-ideal equilibrium constants are K*1 = 1.33 = K1 and K*2 = 2.00 = K2,
respectively. Comparing the ‘non-ideal’ equilibrium composition with the ‘ideal’ one, it remains
the same, A*eq ≈ 0.20 = Aeq, B*eq ≈ 0.27 = Beq, and C*eq ≈ 0.53 = Ceq.

In Figure 3a,b, it is shown that, considering equal positive coefficients of non-ideality
p = 1, the concentration of reactant A goes through the extremum at the temporal point t*,
which is observed earlier than the corresponding one for the ideal system. Therefore, the
CPE effect is shifted “to the left”.

From (26)–(28), it follows that σ* = −27.18, D* = 108.73, λ*1, λ*2 = (−22.19, −4.99);
τ ≈ 0.20, τε ≈ 0.90, which means that the relaxation times decrease by a factor of ep = e; τ*
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from 0.54 to 0.20 and τ*ε from 2.50 to 0.90, respectively. The appearance time of the CPE
t* ≈ 0.09 also decreases accordingly, but does not depend on the initial concentrations of
the reactants

The computer calculations demonstrated that, if A0 = Aeq, the reactant concentrations
at the CPE point t* are A*(t*) ≈ 0.14, B(t*) ≈ 0.18, and C(t*) ≈ 0.68. Then, the ratio B(t*)/A*(t*)
≈ 1.35 ≈ K*1 = 1.33 is approximately equal to the equilibrium constant of the first step. An
error is (1.35 − 1.33)/1.35 ≈ 0.01%. Hence, the CPE point of component A is the momentary
equilibrium of the first step. This is understandable, because component A participates
in the single reaction. As for the ratio C(t*)/B(t*) ≈ 3.67, it is not equal to the equilibrium
constant of the second step K*2. The error is (3.67 − 2.00)/3.67 = 45.57%. In contrast to
component A, component B participates in two reactions, and its extremum cannot be
considered as the momentary equilibrium of the single reaction.

If B0 = Beq, at the CPE point, A(t*) ≈ 0.45, B*(t*) ≈ 0.39, and C(t*) ≈ 0.16. The ratios
B*(t*)/A(t*) ≈ 0.88 and C(t*)/B*(t*) ≈ 0.40 are not equal to the equilibrium constants of the
first and second step, K*1 and K*2, respectively, e.g., the error for the second step is (2.00 −
0.40)/2 = 79.98%. As mentioned, this is caused by the fact that B participates in two steps,
not in the single one.

Analogously, if C0 = Ceq, at the corresponding CPE point, A(t*) ≈ 0.26, B(t*) ≈ 0.25, and
C*(t*) ≈ 0.49 and the ratio B(t*)/A(t*) ≈ 0.95 is not equal to K*1. The error is
(1.33 − 0.95)/1.33 = 28.62%. However, in this case, the ratio C*(t*)/B(t*) ≈ 1.98 is equal
to the equilibrium constant of the second step K*2. The error is (2.00 − 1.98)/2 ≈ 0.01%.
Therefore, based on the CPE experiment, it can be concluded that component C participates
in the single reaction, i.e., in the second one.

In Figure 3c,d, it is shown that, under assumptions on the equal but negative coef-
ficients of non-ideality p = −1, the CPE effect causes a shift ‘to the right’. The relaxation
times increase by e times: τ* from 0.54 to 1.48 and τ*ε from 2.5 to 6.80, respectively.

The time of appearance of CPE, t* ≈ 0.64, increases accordingly. It also does not
depend on the initial concentrations of the reactants.

Case 2. Let us assume that the non-ideality coefficients are different, but satisfy the
criterion of ‘soft’ non-ideality. The dynamics are shown in Figure 4.

In this case, as in the previous ones, the non-ideal equilibrium constants and the
non-ideal equilibrium composition do not change compared with the ideal ones.

In Figure 4a,b, it is demonstrated that at ‘non-uniform’ positive non-ideality coeffi-
cients, the concentrations of the reactants exhibit an extremum (minimum) earlier than the
corresponding concentrations in an ideal system.

From (26)–(28), it follows that σ* = −103.12, D* = 65.22, (λ*1, λ*2) = (−84.17, −18.95),
τ ≈ 0.05, τε ≈ 0.25. This means that the relaxation times significantly decrease compared
to ‘equal’ non-ideality: τ* from 0.54 to 0.05 and τ*ε from 2.50 to 0.25, respectively. The
time of appearance of CPE, t* also decreases accordingly, but now depends on the initial
concentrations of the reactants, see Figure 4a. It is different from the ideal system.

At A0 = Aeq, the concentrations of the reactants at the point t* are A*(t*) ≈ 0.14, B(t*) ≈ 0.19,
and C(t*) ≈ 0.67. In this case, the ratio B/A* ≈ 1.35 is equal to the equilibrium constant of the
first step K*1, with an error of (1.35 − 1.33)/1.35 ≈ 1.46%. As for the ratio C/B ≈ 3.53, it is not
equal to the equilibrium constant of the second step K*2. The error is about (3.53 − 2.00)/2.00 ≈
76.50%.
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Figure 4. The ‘non-uniform’ non-ideality. Kinetic dependencies for ideal and non-ideal cases at
a11 = a21 = a31 = 1, a12 = a22 = a32 = 2, a13 = a23 = a33 = 3: (a) A0 = Aeq; (b) B0 = Beq and at a11 = −2,
a12 = 1, a13 = −4, a21 = −2, a22 = 1, a23 = −4, a31 = −2, a32 = 1, a33 = −4; (c) A0 = Aeq; and (d) B0 = Beq.

At B0 = Beq, the concentrations of the reactants at point t* are A(t*) ≈ 0.58, B*(t*) ≈ 0.40,
and C(t*) ≈ 0.02. According to this experiment, the ratio B*/A ≈ 0.69 is not equal to the
equilibrium constant of the first step K*1. The error is (1.33 − 0.69)/1.33 ≈ 48.12%, and the
ratio C/B* ≈ 0.14 is not equal to the equilibrium constant of the second step K*2. The error
is (2.00 − 0.14)/2.00 ≈ 93.00%.

Figure 4c,d show that at ‘non-uniform’ negative non-ideality coefficients, the concentra-
tions of the reactants pass through an extremum (maximum) later than the concentrations of
the reactants of the ideal system. The relaxation times are increased significantly compared
to the ‘equal’ non-ideality and, according to (26)–(28), are τ* ≈ 5.25 and τ*ε ≈ 20.0.

The time of CPE extremum t∗ is increased accordingly, becoming dependent on the
initial reactant concentrations. It is different from the behavior of corresponding ideal
system, where the time of the CPE-extremum does not depend on these concentrations.
Such a difference can be considered as a fingerprint of non-ideal behavior, see Figure 5a,b.

The CPE extremum significantly depends on the initial conditions. It can be considered
as the fingerprint of the non-ideality of this system.
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2/4, a23 = 3/4, a31 = 1/4, a32 = 2/4, a33 = 3/4, t* ≈ 0.050 → 0.033. 
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Figure 5. ‘Non-uniform’ non-ideality. The time of CPE extremum, t*, at different initial conditions:
A0 = Aeq, B0 = 0 (lower curve) and A0 = Aeq, B0 = 0.1 (upper curve): (a) a11 = 1, a12 = 2, a13 = 3,
a21 = 1, a22 = 2, a23 = 3, a31 = 1, a32 = 2, a33 = 3, t* ≈ 0.018 → 0.013; and (b) a11 = 1/4, a12 = 2/4, a13 = 3/4,
a21 = 1/4, a22 = 2/4, a23 = 3/4, a31 = 1/4, a32 = 2/4, a33 = 3/4, t* ≈ 0.050 → 0.033.

7. Conclusions
For the closed gradientless reactor, two cases of reversible first-order reactions were

analyzed, i.e., the single-step reaction and the two-step consecutive reaction. In both cases,
two models were investigated, the ideal one and non-ideal one (Marcelin–de Donder).

For the single-step ideal and non-ideal models, the behavior of the intersection point
time was chosen as the fingerprint of the non-ideality. For the non-ideal model, it depended
on the initial conditions.

For the ideal two-step model, the Conservatively Perturbed Extremum (CPE)-
extremum time was well-defined. For the non-ideal two-step model, the thermodynamic
restrictions and linear corrections for non-ideality were considered under the assumption
of ‘soft’ non-ideality. For this model, the CPE effect was observed for any coefficients of
non-ideality, equal and nonequal. For both ideal and non-ideal systems, the equilibrium
composition remained the same, however, the relaxation times changed.

When some nonideality coefficients were not equal, the time of the appearance of the
CPE point (over-equilibrium) depended on the initial concentrations significantly. This case
can be considered as the more general one. The obtained difference in the CPE-extremum
time between the ideal and non-ideal systems was a proposed kinetic fingerprint for
distinguishing these systems

Positive non-ideality coefficients always sped up the relaxation, while negative co-
efficients slowed it down. The CPE-extremum time decreased or increased, respectively,
compared to the ideal system. With equal coefficients of non-ideality, the chemical system
behaved like an ideal one. This case can be considered rather as an exception.
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Appendix A
The kinetic model of the reaction A ↔ B is as follows:

A′ = −k+Aexp(a11A + a12B) + k−Bexp(a21A + a22B),

where B = 1 − A. Assuming the ‘soft non-uniform’ non-ideality, this model can be written as

dA/dt = (k−(1 − A) − k+A)exp(a11A + a12(1 − A)) ≡ F(A).

Let us rewrite this equation in an equivalent form

dt = dA/F(A), F(A) ̸= 0.

Integrating both parts of the resulting equation for t ∈ [0, t*], A ∈ (A0, A*), B ∈ (B0, B*)
we will obtain the relaxation duration from the initial conditions A0, B0 to the intersection
point A*, B*:

t* = exp(−(k+ a12 + k−a11)/(k+ + k−))[Ei(1, (a12 − a11)(k−B* − k+A*)τ) −

Ei(1, (a12 − a11)(k−B0 − k+A0)τ)]/(k+ + k−). (A1)

Considering the following:

τ = exp(−p*)/(k+ + k−), τ* = 1/[(k+ + k−)exp(p)] = τ exp(−p*), p* = a11A + a12(1 − A)),

relationship (A1) is presented as follows:

t* = τ τ*[Ei(1, (a12 − a11)(k−B* − k+A*)τ) − Ei(1, (a12 − a11)(k−B0 − k+A0)τ)]. (A2)

where Ei is the exponential integral [28].
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