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Abstract: This paper selects daily stock market trading data of RCEP member countries
from 3 December 2007 to 9 December 2024 and employs the Time-Varying Parameter
Vector Autoregression (TVP-VAR) model and transfer entropy to measure the time-varying
volatility spillover effects among the stock markets of the sampled countries. The results
indicate that the signing of the RCEP has strengthened the interconnectedness of member
countries’ stock markets, with an overall upward trend in volatility spillover effects, which
become even more pronounced during periods of financial turbulence. Within the structure
of RCEP member stock markets, China is identified as a net risk receiver, while countries
like Japan and South Korea act as net risk spillover contributors. This highlights the
current “fragility” of China’s stock market, making it susceptible to risk shocks from the
stock markets of economically developed RCEP member countries. This analysis suggests
that significant changes in bidirectional risk spillover relationships between China’s stock
market and those of other RCEP members coincided with the signing and implementation
of the RCEP agreement.

Keywords: RCEP stock markets; risk spillover effect; TVP-VAR model; transfer entropy

1. Introduction
With the rapid development of economic globalization and financial integration,

the interconnections among global stock markets have become increasingly complex. Inter-
national capital flows are influenced by these growing linkages, offering investors more
diverse opportunities but also deepening risk transmission across markets. While this
interconnectedness optimizes global resource allocation, it also facilitates the spread of
financial volatility. Notably, risks from one market can quickly propagate to others, as ev-
idenced by past events like the Asian financial crisis, the dot-com bubble, and the U.S.
subprime mortgage crisis, which began in individual markets but rapidly affected global
stock markets, causing widespread economic disruption.

The world is undergoing profound changes, with the COVID-19 pandemic intensifying
the complexity of the international environment and increasing instability and uncertainty
in the global economy. Tensions in international trade have escalated, global trade and
investment rules are evolving, and the challenges of globalization have become more
pronounced. In recent years, unilateralism has risen, U.S.–China trade tensions have
intensified, and the pandemic has caused severe economic impacts across countries. Against
this backdrop, the ten ASEAN countries, together with China, Japan, South Korea, Australia,

Entropy 2025, 27, 81 https://doi.org/10.3390/e27010081

https://doi.org/10.3390/e27010081
https://doi.org/10.3390/e27010081
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1493-677X
https://orcid.org/0000-0001-9402-9020
https://doi.org/10.3390/e27010081
https://www.mdpi.com/article/10.3390/e27010081?type=check_update&version=1


Entropy 2025, 27, 81 2 of 17

and New Zealand, formally concluded the Regional Comprehensive Economic Partnership
(RCEP), a multilateral free trade agreement, on 15 November 2020. The RCEP covers
30% of the world’s population, 30% of the global economic output, and 27.4% of total
global trade. From an economic perspective, the signing of the RCEP facilitates regional
economic integration in East and Southeast Asia, thereby driving global economic growth.
As of 2 June 2023, following the agreement’s official implementation in the Philippines,
all 15 member states of the RCEP have completed the ratification process. As a result,
the RCEP has surpassed the European Union to become the world’s largest free trade
agreement, based on the total GDP of its member countries.

With the agreement’s implementation, the capital markets of RCEP member countries
have become increasingly interconnected. However, as most RCEP members are developing
countries with relatively immature and less stable domestic capital markets, the overall
financial risks are pronounced, making them more susceptible to external shocks. Therefore,
accurately measuring the changes in financial market volatility spillovers among RCEP
member countries before and after the agreement’s signing is crucial. This not only deepens
our understanding of the transmission mechanisms of financial crises but also helps RCEP
member countries develop relevant policies, improve the agreement framework, and better
prevent the spread of global financial crises.

How to measure financial market volatility spillover effects and identify their gen-
eration process has always been a focal issue in financial risk research. In theory, Solnik
(1974), Stulz (1981), and Adler and Dumas (1983) pointed out the reasons for the intercon-
nectedness of stock markets, i.e., cross-border investors allocate global assets based on
the global economic development and the fundamentals of stock markets in each coun-
try [1–3]. King and Wadhwani (1990) proposed the concept of market contagion, arguing
that economic fundamentals cannot explain the massive U.S. stock market crash in 1987
and the subsequent global stock market plunge [4]. Further, they established a multi-factor
pricing model to analyze stock market volatility spillovers by examining the impact of each
factor on return correlations. The results show that the economic fundamentals of each
market did not play a significant role in the financial risk factors influencing the volatility
spillovers among stock markets [5].

In terms of methodology, there have been continuous innovations in the analysis meth-
ods for measuring financial market volatility spillover effects. Among them, the Copula
function method and the spillover index method are widely applied. Copula functions
can effectively measure the dependency between variables. By leveraging this property to
calculate CoVaR, one can examine the risk spillover relationships among different financial
markets [6–9]. However, although Copula functions can accurately measure nonlinear
spillover relationships, they are less effective in reflecting the time-varying nature of non-
linear risk correlations and cannot provide the direction of risk spillovers between financial
markets. To address these limitations, Diebold and Yilmaz (2009) constructed a spillover
index based on the variance decomposition of the VAR model. The method uses a matrix
form to reflect the magnitude and direction of overall spillover risks and can calculate the
net spillover and net inflow effects of different markets [10].

However, the spillover effects of financial markets’ volatility evolve with the changes
in the global economic situation and financial market structures. To obtain time-varying
financial market volatility spillover effects, Diebold and Yilmaz further employed a rolling-
window VAR approach to estimate the corresponding parameters within fixed-window
samples, enabling time-varying spillover indices to be calculated [11–13]. This method
has significant advantages, as it can estimate the time-varying total spillover effects across
all financial markets in the sample range and analyze the time-varying net spillover and
net inflow effects among different markets [14–20]. Despite its widespread application,
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the rolling-window method also reveals certain limitations, the most notable of which is
the need to manually set the window width. An excessively long or short window can
significantly impact the estimation results. To address this shortcoming, Antonakakis and
Gabauer (2017) proposed a spillover index calculation method based on the Time-Varying
Parameter Vector Autoregression (TVP-VAR) model [21]. This method eliminates the need
for rolling windows and can accurately measure risk spillover effects at any point in time.

The TVP-VAR model has pioneered new avenues in studying financial risk spillover
effects. Subsequently, many empirical studies have used this method to validate existing
conclusions and gradually extend its application to other areas. For instance, Balcilar et al.
introduced a new extended joint connectivity method based on the TVP-VAR model to
analyze the connectivity of 11 agricultural commodities and crude oil futures prices between
1 July 2005 and 1 May 2020. The results indicate that system-wide dynamic connectivity
changes over time and is driven by economic events [22]. Gabauer and Gupta employed
the extended TVP-VAR connectivity method from Antonakakis and Gabauer (2017) [21] to
study the spillover effects of internal and external categories of economic policy uncertainty
(EPU) between the United States and Japan. Their results show that monetary policy
uncertainty is the primary driver, followed by uncertainties related to fiscal, monetary
market, and trade policies [23]. Adekoya and Oliyide applied the TVP-VAR method to
examine the volatility spillover effects between commodities and financial assets while
employing linear and nonlinear (quantile causal) causality tests to assess the impact of
COVID-19 on inter-market connectivity. Their findings demonstrate that the two indicators
of the COVID-19 pandemic (equity market volatility based on infectious diseases and
the growth rate of reported U.S. COVID-19 cases) have significant causal effects on inter-
market connections, particularly at low to mid-quantiles [24]. Khoury et al. employed the
TVP-VAR and DCC-GARCH t-Copula models to analyze the impact of the Russia–Ukraine
conflict on financial markets. Their results indicated that in developed economies, ESG
(environmental, social, and governance) assets and the MSCI Index were net transmitters of
risk, while gold and renewable energy were net recipients before and during the conflict [25].
Chen et al. used a TVP-VAR model combined with the spillover index to study the dynamic
spillover effects of trade policy uncertainty (TPU) on the precious metals market during
the U.S.–China trade war. The findings reveal that TPU from both China and the U.S. has
significant spillover effects on the precious metals market, with the strength and direction
of the spillover effects showing time-varying and asymmetric characteristics [26].

In addition to the connectedness approach based on statistical regression, recent stud-
ies have introduced entropy-based methods to analyze stock market dynamics [27–31].
Methods such as mutual information and transfer entropy offer several advantages, in-
cluding being data-driven, model-free, and applicable in both linear and nonlinear con-
texts [32–34]. Transfer entropy, a metric rooted in information theory, measures the flow
of information or causal relationships within a system [35,36]. Specifically, it quantifies
the amount of information (or risk) transmitted from one market to another [37–39]. As a
non-parametric, model-free approach, transfer entropy does not rely on specific statistical
models, providing greater flexibility in handling complex data [40–42].

Therefore, this paper, based on the above considerations, utilizes the Time-Varying
Parameter Vector Autoregression (TVP-VAR) model and transfer entropy to study the
volatility spillover effects between China’s stock market and the stock markets of RCEP
member countries. This research has significant academic and practical value. On one
hand, it helps analyze the size and direction of risk transmission between stock markets of
countries with close capital flows within the agreement, providing a reference for financial
regulatory authorities to improve the agreement’s rules and framework. On the other hand,
it aids in accurately understanding the external shocks faced by China’s capital market in
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the current complex and changing international environment, enabling better responses to
and avoidance of external risks.

The remainder of this paper is organized as follows: Section 2 presents the construction
method of the time-varying volatility spillover model; Section 3 introduces the data and
their descriptive statistics; Section 4 discusses the empirical analysis results; and Section 5
provides the main conclusions of the paper.

2. Methodology
2.1. Time-Varying Parameter Vector Autoregression (TVP-VAR) Model

In recent years, using the spillover index method to examine the risk spillover effects
between stock markets in various countries has become a research focus. The traditional
decomposition spillover index model is easily affected by factors such as variable sorting.
Based on this, Antonakakis and Gabauer proposed a method based on the Time-Varying
Parameter Vector Autoregression (TVP-VAR) model. This method combined with the
Diebold and Yilmaz (DY) method [10,11,13] can construct a new time-varying spillover
index and avoid the problem of information loss caused by artificially setting rolling
windows. Therefore, this article mainly draws on the TVP-VAR model constructed by
Antonakakis and Gabauer to measure the volatility risk spillover effect between the stock
markets of China and RCEP member countries. The construction process of this method is
as follows: A TVP-VAR model with a lag length of order p is expressed as

yt = a0 + A1yt−1 + · · ·+ Apyt−p + εt, (1)

where yt is the vector of log returns of N stock markets, a0 is the intercept vector, A1, . . . , Ap

are the coefficient matrices, and εt is the error vector. The components are independent and
identically distributed.

Let βt = vec(a0, A1, . . . , Ap) and xt = I ⊗ (1, yt−1, . . . , yt−p). Let us assume that the
coefficients βt follow a random walk process:

yt = βtxt + εt, (2)

βt = βt−1 + δt, (3)

where δt ∼ N(0, Ω). After determining the form of the TVP-VAR model, Monte Carlo
simulation is used to estimate the time-varying parameters.

Next, based on the above model, the variance share is divided into self-variance share
and cross-variance share by performing variance decomposition on the covariance matrix.
This process is called generalized forecast error variance decomposition (GFEVD) and was
proposed by Koop et al. (1996) [43] and Pesaran and Shin (1998) [44]. In this process, the H
step forecast variance of xi is impacted by part xj and can be expressed as

dij(h) =
σ−1

ii ∑H
h=0

(
eT

i Ah ∑ ej
)2

∑H
h=0

(
eT

i Ah ∑ AT
h ej

)2 , (4)

where Σ is the variance matrix of error vector εt; σii is the variance sequence of error
vector εt; ei is an N × 1 vector, where the i element is 1 and the rest are 0; H represents
the prediction step; and Ah is the coefficient of the moving average. The above variance
decomposition matrix dij(h) is formed by stacking the variance contributions of different
markets, that is,
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Dij(h) =


d11 · · · d1N

...
. . .

...
dN1 · · · dNN

, (5)

This matrix is an asymmetric matrix, whose diagonal elements represent the spillover
intensity to itself, and the elements other than the diagonal elements represent the spillover
intensity to other markets. Therefore, the intensity of market k receiving risk spillovers from
other markets can be obtained by adding the elements other than the diagonal elements in
the k row of the matrix, and the intensity of market k receiving risk spillovers from other
markets can be obtained by adding the diagonal elements in the k column.

Next, we use CH
k←j to represent the directional spillover effect that market k receives

from other markets (From), that is,

CH
k←j =

N

∑
j=1,j ̸=k

dkj. (6)

Let CH
i→k represent the directional spillover effect of market k on other markets (To),

that is,

CH
i→k =

N

∑
i=1,k ̸=i

dik, (7)

then, by subtracting the risk spillover effect of market k from other markets, we can obtain
the net risk spillover effect of market k:

CH
k = CH

i→k − CH
k←j. (8)

By summing up the risk spillover effects of all markets, we can obtain the total risk
spillover effect of stock markets in various countries or regions, that is,

CH =
1
N

N

∑
i,j=1

dij. (9)

2.2. Transfer Entropy

The concept of thermodynamic entropy was introduced by Rudolf Clausius in 1850 as a
physical quantity to measure the uniformity of energy distribution within a system [45]. The
idea of incorporating entropy into information transmission was introduced by Shannon in
1948 with the concept of information entropy [46]. In 2000, Schreiber provided the definition of
transfer entropy, which analyzes the interactions between systems and captures the direction
of information flow between them [47]. Therefore, transfer entropy contains directional and
dynamic information. The construction process of transfer entropy is as follows.

If there is a single random variable X and the corresponding probability distribution
is p(x) = Prob(X = x], then the information entropy is defined as the average value of
information under the whole probability distribution, which is

H(X) = − ∑
x∈X

p(x) log p(x), (10)

When the joint probability distribution of multiple random variables (e.g., X and Y) is
p(x, y), the joint entropy is defined as

H(X, Y) = − ∑
x∈Y

∑
y∈Y

p(x, y) log p(x, y), (11)
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and the conditional entropy is defined as

H(Y|X) = − ∑
x∈Y

∑
y∈Y

p(x, y) log p(y|x), (12)

which represents the uncertainty of Y under the condition of given X.
Based on these basic concepts, the transfer entropy is defined as follows:

TEY→X = − ∑
xn+1,xk

n ,yj
n

p(xn+1, xk
n, yl

n) log
p(xn+1|xk

n, yl
n)

p(xn+1, xk
n)

, (13)

where xk
n refers to a k-order delay subsequence of X and yl

n refers to a l-order delay
subsequence of Y, respectively. TEY→X indicates the degree of reduction in the uncertainty
of X when Y is known, which quantifies the ability of Y to predict X.

In the stock market, TEi→j denotes the degree of reduction in the uncertainty of stock
j when the logarithmic return series of stock i is known. In the specific computational
process, we divide the logarithmic return series into five symbolic bins as s1, s2, s3, s4, s5

according to the 0∼20%, 20%∼40%, 40%∼60%, 60%∼80%, and 80%∼100% fractions of the
return interval, and then use these symbolic sequences to calculate TE between each pair of
stocks [36,48]. Note that we set k = l = 1 for simplicity.

3. Data and Descriptive Statistics
3.1. Data

This paper selects the daily closing prices of stock price indices from 10 RCEP member
countries as sample data, based on the level of regional economic development and data
availability. The full sample period spans from 3 December 2007 to 9 December 2024,
as shown in Table 1. The total market capitalization of the 10 stock markets selected in
this study accounts for more than half of the total market capitalization of RCEP member
countries’ stock markets, making the sample data both broad and representative. All data
are sourced from the Wind database.

Table 1. Sample country selection and stock index.

Country/Region Stock Index Country/Region Stock Index

China SSE Composite Index South Korea KOSPI

Vietnam MSCI Vietnam Index Japan Nikkei 225

Singapore Singapore REITS Index New Zealand S&P/NZX 50 Index

Indonesia Jakarta Composite Index Thailand Thailand SET Index

Malaysia FTSE Malaysia KLCI Australia S&P/ASX 200 Index
Note: All data are sourced from the Wind database.

3.2. Descriptive Statistics

This paper follows the general method of financial risk measurement and uses the
logarithmic returns of stocks as sample data. The specific processing method is as follows:

Rt = ln(yt)− ln(yt−1), (14)

where Rt is the return on the t-th trading day, yt is the closing price on the t-th trading day,
and yt−1 is the closing price on the previous trading day.

Table 2 presents the descriptive statistics of stock return data. In terms of return
volatility, the stock return rates of each country exhibit varying degrees of fluctuation.
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Among them, the standard deviation of the return rates for the MSCI Vietnam Index and
Japan’s Nikkei 225 index are the largest, showing the most dramatic fluctuations, while
the standard deviation of the return rate for the FTSE Malaysia Composite Index is the
smallest, indicating the least volatility. In addition, the skewness of the daily return rates
for the sample countries is all less than 0, exhibiting a distinctly left-skewed distribution,
and the kurtosis of the returns is all greater than 3, showing significant leptokurtic (fat-tail)
characteristics. According to the JB_Stat statistic, all series are non-normally distributed,
further confirming that the stock markets of the sample countries exhibit a leptokurtic
distribution. Moreover, after conducting the ADF test, the return rates of the stock indices
from the 10 countries are stationary at the 1% significance level.

Table 2. Descriptive statistics of stock index returns.

Country Mean Median Max Min Std_Dev Skewness Kurtosis JB_Stat ADF_Stat

China 0.000 0.000 0.090 −0.089 0.014 −0.571 6.391 7774.574 −15.961 ***
Vietnam 0.000 0.000 0.075 −0.109 0.015 −0.423 3.214 2038.154 −15.930 ***
Singapore 0.000 0.000 0.103 −0.137 0.011 −0.171 18.889 65,815.525 −13.533 ***
Indonesia 0.000 0.000 0.097 −0.113 0.012 −0.601 11.425 24,338.786 −15.312 ***
Malaysia 0.000 0.000 0.066 −0.100 0.007 −0.746 15.654 45,601.178 −16.180 ***
South Korea 0.000 0.000 0.113 −0.112 0.012 −0.539 10.644 21,107.137 −16.604 ***
Japan 0.000 0.000 0.132 −0.132 0.015 −0.546 9.675 17,481.940 −16.358 ***
New Zealand 0.000 0.000 0.069 −0.079 0.007 −0.556 10.516 20,623.057 −15.952 ***
Thailand 0.000 0.000 0.077 −0.115 0.011 −1.260 16.344 50,431.017 −14.654 ***
Australia 0.000 0.000 0.068 −0.102 0.011 −0.692 8.371 13,278.582 −16.339 ***

Note: JB_Stat denotes the Jarque–Bera test statistic, and ADF_Stat denotes the unit root test result. “***” indicates
the 1% significance level.

4. Empirical Results
4.1. Static Risk Spillover Analysis

The static risk spillover index refers to the average value obtained by summing the
spillover indices at each time point. According to the AIC, the lag order of the TVP-VAR
model is set to 4, and the forecast horizon for the generalized variance decomposition is set
to 10. The static spillover indices for the stock markets of various countries during the full
sample period are shown in Table 3. Since the risk spillover index matrix is asymmetric, its
diagonal elements represent the intensity of the spillover risk within each stock market.
Therefore, in Table 3, the row data, excluding the diagonal elements, represent the intensity
of risk spillovers received by a particular stock market from other stock markets (From
values), while the column data, excluding the diagonal elements, represent the intensity of
risk spillovers from a particular stock market to others (To values). The Net value, obtained
by subtracting the From value from the To value, is used to identify the role each stock
market plays in the risk spillover system. Specifically, when the Net value is greater than 0,
the stock market is a net risk transmitter, and when the Net value is less than 0, it is a net
risk receiver.

From the results in Table 3, it can be observed that there are significant risk spillover
effects between the stock markets of the RCEP countries. First, the intensity of the risk
spillover from the South Korean stock market to the Japanese stock market (13.06%) is
the highest, while the intensity of risk spillovers received from the Japanese stock market
(12.24%) is also the highest. For China, among all the sample countries, the intensity of the
risk spillover from the Chinese stock market to the South Korean stock market is the largest,
reaching 4.91%, while the intensity of risk spillovers received from the South Korean stock
market is also the largest, reaching 6.88%.
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Table 3. Results of static risk spillover index.

China Vietnam Singapore Indonesia Malaysia South Korea Japan New Zealand Thailand Australia From

China 57.98 2.78 6.32 4.68 4.24 6.88 4.83 2.94 4.56 4.81 42.02
Vietnam 3.44 68.14 3.92 3.12 3.79 3.73 3.92 3.02 3.49 3.44 31.86

Singapore 4.74 2.7 44.04 7.07 6.81 7.9 6.18 5.22 6.93 8.4 55.96
Indonesia 3.73 2.3 7.76 49.07 8.74 7.1 4.84 3.54 7.36 5.57 50.93
Malaysia 3.39 2.53 7.42 8.95 47.61 7.59 5.64 3.93 6.88 6.07 52.39

South Korea 4.91 2.2 7.39 6.14 6.5 40.33 12.24 3.98 5.77 10.53 59.67
Japan 3.81 2.62 6.35 4.58 5.16 13.06 43.07 4.88 4.64 11.81 56.93

New Zealand 2.83 2.56 6.66 4.03 4.45 5.26 6.1 52.89 3.96 11.25 47.11
Thailand 3.86 2.6 7.83 7.72 7.09 7 5.07 3.33 50.37 5.13 49.63
Australia 3.49 2.32 8.07 5.05 5.35 10.65 11.25 8.73 4.54 40.56 59.44

To 34.2 22.61 61.73 51.34 52.13 69.17 60.07 39.57 48.11 67.01 505.93
Net −7.82 −9.26 5.77 0.41 −0.26 9.5 3.14 −7.54 −1.52 7.57

Second, from the To and From values, the South Korean stock market is the most active
in the overall stock market risk spillover system, with the largest total risk spillover value
(69.17%) and the largest total risk inflow value (59.67%). In terms of ranking, the intensity of
risk spillovers from the South Korean stock market to other stock markets is ranked as Japan
(13.06%), Australia (10.65%), Singapore (7.9%), and Malaysia (7.59%), which corresponds to
the ranking of risk spillovers received from these countries’ stock markets: Japan (12.24%),
Australia (10.53%), Singapore (7.39%), and Malaysia (6.5%).

Except for Vietnam, the Chinese stock market has the lowest total risk spillover value
(34.2%) and total risk inflow value (42.02%). Finally, from the perspective of the Net
value of risk spillovers, the stock markets of Singapore, Indonesia, South Korea, Japan,
and Australia all have Net values greater than 0, playing the role of net risk transmitters
in the system. On the other hand, the stock markets of China, Vietnam, Malaysia, New
Zealand, and Thailand all have Net values less than 0, indicating that these markets are
risk receivers in the system, more susceptible to risk shocks from other stock markets.

4.2. Dynamic Risk Spillover Analysis

The above static volatility spillover index does not fully reflect the time-varying
characteristics of the risk spillover index, and may overlook the impact of significant
events on volatility spillover effects. Therefore, it is necessary to study the time-varying
characteristics of stock market risk spillovers from a dynamic perspective. From Figure 1,
it can be observed that the overall risk spillover index exhibits obvious time-varying
characteristics, which can be roughly divided into the following stages.

Stage 1: November 2008–November 2009. During this stage, a severe global financial
crisis erupted, and before November 2009, the overall spillover index remained at its peak.
Afterward, with countries gradually implementing adjustment measures, the impact of the
financial crisis eased, and the overall volatility spillover index dropped significantly.

Stage 2: November 2009–May 2015. In this stage, due to frequent crisis events, the over-
all spillover index fluctuated between increases and decreases. For example, in early March
2010, the Greek sovereign debt crisis broke out, which led to a sharp rise in the overall
spillover index, exceeding 70%. However, during the period from December 2012 to May
2015, the overall spillover index showed a significant and continuous decline compared
with earlier periods.

Stage 3: June 2015–January 2019. During this phase, the overall spillover index also
exhibited sharp fluctuations. First, affected by events such as the UK’s Brexit, the overall
spillover index peaked around December 2016, reaching 75%. After that, from December
2016 to early 2018, the overall spillover index steadily declined, reaching a low of 32%.
Starting from March 2018, with the outbreak of the Sino-U.S. trade conflict and a series of
international events, the overall spillover index continued to rise.

Stage 4: February 2020–December 2024. Due to the negative impact of the COVID-19
pandemic, panic spread across global stock markets, and the overall risk spillover intensity
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of various stock markets surged to its highest point, reaching 83%. Afterward, as the
COVID-19 vaccine was developed and became available, the panic situation gradually
eased, and the global stock market risk spillover intensity began to adjust, with the overall
dynamic spillover index showing a declining trend. However, since January 2022, with the
outbreak of the Russia–Ukraine conflict, global stock markets again experienced panic,
and the overall spillover index surged once more, continuing to fluctuate at a large scale.

40

60

80

2007 2009 2011 2013 2015 2017 2019 2021 2023

Figure 1. Dynamic total connectedness. Note: This figure shows the time-varying total dependency
across RCEP stock markets using TVP-VAR model.

4.3. Directional Spillover Effects of China’s Stock Market

To better understand the time-varying spillover volatility characteristics between
China and the other sample countries, we calculated the directional spillover index between
China and each country over the full sample period. The magnitude of this index indicates
the strength of the spillover effect, while the sign (positive or negative) indicates the
direction of the spillover. The results are shown in Figure 2.

Throughout the full sample period, the directional spillover values between China and
other stock markets fluctuate significantly around 0, indicating the presence of bidirectional
volatility spillover effects between China and other RCEP member countries. Before 2015,
the volatility of the directional spillover index between China and countries such as South
Korea, Australia, Singapore, Japan, Indonesia, Malaysia, and Thailand was relatively low,
with the index being positive at a few points in time and negative most of the time. This
suggests that during this period, China’s stock market exhibited a positive risk spillover
effect on the stock markets of other RCEP member countries, while the Chinese stock
market maintained a relatively stable situation.

During this period, the directional spillover index between China and countries like
Vietnam and New Zealand showed more frequent fluctuations, indicating a significant
bidirectional risk spillover relationship between China and these countries. In the period
around the outbreak of the COVID-19 pandemic in 2019, the directional spillover index
between China and other stock markets experienced significant up-and-down fluctuations.
In particular, the directional spillover index between China and countries like Vietnam,
Indonesia, New Zealand, and Malaysia fluctuated most frequently.

After the formal signing of the RCEP in 2022, the directional spillover index between
China’s stock market and those of other countries mostly stayed below 0, indicating that the
signing of the RCEP had, to some extent, altered the significant bidirectional risk spillover
relationship between China’s stock market and those of other countries.
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Figure 2. Net pairwise directional connectedness. Note: This figure only shows the directional
spillover effect between China and other countries’ stock markets.

4.4. Risk Spillover Network of Stock Markets

To further characterize the risk spillover relationships between the sample countries,
we follow the approach of Demirer et al. [49], utilizing complex network theory and the
threshold method to construct a risk spillover network for the 10 RCEP member countries
over the full sample period. This approach represents the risk spillover effects between
stock markets in spatial dimensions. We use the median value of the spillover values
(To values) in each stage as the threshold, ensuring that all network nodes are connected
and that no local independent networks are formed. This allows for the filtering of risk
spillover information between stock markets and the construction of an effective risk
spillover network. Figure 3a shows the risk spillover network of the stock markets of the
sample countries before the singing of the RCEP. The directed edges between two countries
represent the mutual spillover effects, with the spillover effect values serving as the weights
of each edge. The thicker and darker the arrow of the edge, the greater the spillover value
between the two nodes. From Figure 3a, it can be observed that in the overall risk spillover
network, Australia has the largest risk spillover to New Zealand, indicating that New
Zealand receives the highest degree of risk spillover from Australia. Secondly, among the
sample countries, South Korea is the major risk spillover country, with high spillover values
to New Zealand, Vietnam, Thailand, and China. Vietnam and China are major risk input
countries. For China, aside from receiving lower risk spillovers from Thailand and New
Zealand, the ranking of risk inflows from other countries’ stock markets is as follows: South
Korea, Singapore, Japan, and Australia.

After the formal implementation of the RCEP, significant changes occurred in the risk
spillover relationships between the stock markets of the sample countries, as shown in
Figure 3b. First, the number of risk spillover countries decreased from six countries during
the full sample period to four countries. Indonesia, Singapore, and Malaysia shifted from
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risk spillover countries to risk-receiving countries. Second, among the main risk spillover
countries, South Korea is no longer the largest risk spillover country and has been replaced
by Australia. China remains a major risk-receiving country, but the intensity of risk inflows
from other countries has decreased. Except for the high risk spillover value from South
Korea, the risk inflows from other countries’ stock markets to China have all decreased.

China

Vietnam

SingaporeIndonesia

Malaysia

South_Korea

Japan

New_zealand Thailand

Australia

(a)

China

Vietnam

SingaporeIndonesia

Malaysia

South_Korea

Japan

New_zealand Thailand

Australia

(b)
Figure 3. Risk spillover network of RCEP member countries’ stock markets. Note: In this figure, blue
nodes represent the main risk-exporting countries, and yellow nodes represent the risk-receiving
countries, and the thickness of the links represents the intensity of risk spillovers. (a) Before the
signing of the RCEP. (b) After the signing of the RCEP.

4.5. Transfer Entropy Matrix

This paper calculates the transfer entropy between the stock market series of the
10 RCEP member countries over the full sample period to depict the transmission of risk
information between different countries. The transfer entropy for the entire sample period
is analyzed, and the countries are ranked based on the outflow, inflow, net outflow, and net
inflow of risk information. The formulas for these categories are as follows.

Risk information flow out measures the intensity of risk information transmitted from
one country to another. For country i to country j, it is calculated as

Flow Outi→j = TEij (15)

where TEij represents the transfer entropy from country i to country j, indicating the
amount of risk information transmitted from i to j.

Risk information flow in measures the intensity of risk information received by a coun-
try from others. For country j receiving risk information from country i, it is calculated as

Flow Inj→i = TEji (16)

where TEji represents the transfer entropy from country j to country i, indicating the
amount of risk information received by i from j.

Net risk information flow out represents the difference between the risk information
transmitted by a country and the risk information it receives from others. For country i, it
is calculated as

Net Flow Outi = ∑
j ̸=i

TEij −∑
j ̸=i

TEji (17)

where ∑j ̸=i TEij is the total amount of risk information transmitted from country i to all
other countries, and ∑j ̸=i TEji is the total amount of risk information received by country i
from all other countries.
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Net risk information flow in represents the difference between the risk information
received by a country and the risk information it transmits to others. For country i, it is
calculated as

Net Flow Ini = ∑
j ̸=i

TEji −∑
j ̸=i

TEij (18)

where ∑j ̸=i TEji is the total amount of risk information received by country i from all other
countries, and ∑j ̸=i TEij is the total amount of risk information transmitted by country i to
all other countries.

Table 4 shows the results of the above analysis, which provide valuable insights into
the flow of financial risks within the RCEP region. Firstly, countries such as Singapore and
New Zealand act as significant hubs for both the outflow and inflow of risk information.
Their roles in financial networks, either as transmitters or absorbers of risk, highlight the
interconnectedness of regional economies and the importance of monitoring risk transmis-
sion channels. Secondly, China stands out as a critical player in absorbing risk information,
which may point to its vulnerability to regional financial shocks despite its economic domi-
nance. The high level of risk inflow into China suggests that its financial markets are highly
sensitive to external shocks, underscoring the importance of robust risk management and
monitoring systems to mitigate potential financial crises. Lastly, countries like Australia and
South Korea have more balanced roles in both the inflow and outflow of risk information,
indicating that they are both transmitters and receivers of risk signals. Their positioning in
the global economy makes them key players in the flow of financial risks, which is crucial
to understanding the broader regional risk dynamics.

Table 4. Risk information flow and net flow analysis for RCEP countries based on transfer entropy matrix.

Rank Risk Information Flow Out Risk Information Flow In Risk Information Net Flow Out Risk Information Net Flow In

1 Singapore New Zealand Singapore New Zealand
2 South Korea Australia Indonesia Australia
3 Thailand South Korea Thailand Japan
4 Vietnam Singapore South Korea Malaysia
5 Indonesia Vietnam China Vietnam
6 Malaysia Malaysia Vietnam China
7 Australia Thailand Malaysia South Korea
8 New Zealand Japan Japan Thailand
9 Japan Indonesia Australia Indonesia
10 China China New Zealand Singapore

For an intuitive comparison, we use heat maps to represent the transfer entropy
between countries, as shown in Figure 4a,b, which represent the period before the singing
of the RCEP and the period after the signing of the RCEP, respectively. The direction of
the transfer entropy in this figure is from the vertical axis to the horizontal axis, and the
numbers on the coordinate axis are the serial numbers of the RCEP countries. For ease of
comparison, the colors of each heat map are adjusted to the same range.

By comparing the characteristics of stock market information transmission during
the full-sample period and after the signing of the RCEP, several key differences can be
observed. First, before the singing of the RCEP, China exhibited significant risk spillovers to
Vietnam (2) and New Zealand (8), indicating that fluctuations in the Chinese market had a
considerable impact on these countries. After the signing of the RCEP, China’s information
transmission to Vietnam (2) and New Zealand (8) further intensified, which may reflect the
deepening of regional economic cooperation brought about by the RCEP agreement. This is
particularly evident in China’s increasing economic influence on Southeast Asian countries.
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Figure 4. Heat maps of transfer entropy between different sectors (a) before the singing of the RCEP
and (b) after the signing of the RCEP. Note: 1–10 in this figure represent the stock markets of the
following 10 countries: China, Vietnam, Singapore, Indonesia, Malaysia, South Korea, Japan, New
Zealand, Thailand, and Australia (arranged in order).

Second, before the singing of the RCEP, China received relatively little risk information
from other countries, demonstrating strong autonomy and relatively low dependence.
However, after the signing of the RCEP, the strength of risk information transmission
received by China from economically developed countries such as Singapore (3) and
South Korea (6) increased. This may indicate that financial ties between China and these
countries have further deepened, especially following the implementation of the regional
trade agreement.

Finally, before the singing of the RCEP, the transmission of risk information was
relatively dispersed, particularly among South Pacific countries (such as Australia and
New Zealand), where information flows were relatively weak. In contrast, after the signing
of the RCEP, regional risk information transmission became more concentrated, with China,
Singapore, and South Korea emerging as key financial hubs that played greater roles in
both transmitting and receiving information. This suggests that the signing of the RCEP
agreement has facilitated regional economic and financial market integration.

4.6. Network Construction by Transfer Entropy

We calculate TE between each pair of stocks through their symbolic sequences divided
from logarithmic return series and then obtain TE matrices with a size of 10× 10. Any
element ai,j in each TE matrix denotes TEi→j. Meanwhile, by using the threshold method,
we filter the TE matrices to obtain time-varying information flow networks, as shown in
Figure 5a,b.

By comparing the RCEP stock market networks before and after the signing of the
RCEP, we find the following: Firstly, the risk spillover relationship between China and
Southeast Asian countries has increased. For example, the risk spillover relationship between
China and countries like Vietnam, Malaysia, and Indonesia has strengthened. However,
the risk spillover relationship between China and developed countries such as Japan and
New Zealand has remained relatively stable, even though the RCEP has strengthened
regional cooperation.

Secondly, the financial risk transmission between China and other emerging markets
has increased. The risk spillover relationship between China and countries like South
Korea, Thailand, and Singapore has increased. After the signing of the RCEP, China, as the
largest economy in the region, has seen a significant increase in the impact of its financial
market volatility on neighboring countries, especially in terms of risk transmission with
Southeast Asian countries like Vietnam, Malaysia, and Indonesia.
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Figure 5. The stock market network constructed based on the transfer entropy matrix. This figure
shows a directed network, and the arrows on the edges indicate the direction of information flow.
(a) Before the singing of the RCEP. (b) After the signing of the RCEP.

Lastly, after the signing of the RCEP, the network connections have become denser.
The risk spillover relationship between China and more countries, especially Southeast
Asian nations, has strengthened. Additionally, from the perspective of network centrality,
China’s centrality in the risk spillover network has increased after the RCEP was signed.
In the event of a financial crisis within the region, China’s market may be more susceptible
to volatility from other countries.

5. Conclusions and Policy Recommendations
5.1. Conclusions

This paper uses the spillover index method based on the Time-Varying Parameter
Vector Autoregression (TVP-VAR) model and transfer entropy to construct the risk spillover
index matrix of the RCEP member countries’ stock markets and analyzes the risk spillover
effects between the sample countries’ stock markets. First, the roles and positions of the
stock markets in the risk spillover system are analyzed from a static perspective. Second,
the time-varying characteristics of the stock market risk spillover indices are characterized,
and the net spillover effect of the Chinese stock market during the entire sample period,
as well as the risk spillover effects between China and other countries’ stock markets, is
explored in depth. Finally, risk spillover networks for the full sample period and after the
formal signing of the RCEP are constructed, and a comparative analysis of the differences
in stock market risk spillover effects in different periods is performed.

Our findings are as follows: Developed RCEP member states play an important role
in the risk spillover system. The South Korean stock market is the most active in the
overall risk spillover system, with the highest spillover intensity and the highest spillover
inflow intensity. Except for Vietnam, China has the lowest risk spillover intensity and
risk spillover inflow intensity. There are significant bidirectional volatility spillover effects
between China and other stock markets. Before the signing of the RCEP, the Chinese stock
market exhibited a positive risk spillover effect on other countries’ stock markets. After the
formal signing of the RCEP in January 2022, the directional spillover indices between
China’s stock market and those of other countries mostly remained below 0, indicating
that the signing of the RCEP has, to some extent, altered the bidirectional risk spillover
relationship between China’s stock market and those of other countries. The risk spillover
network analysis shows that the signing of the RCEP changed the risk spillover structure of
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the sample countries. Although China remains a major risk-receiving country, the intensity
of risk inflows from other countries has decreased.

5.2. Policy Recommendations

Based on the above conclusions, we believe that the RCEP member countries should
take a holistic approach to jointly strengthening financial market supervision, proactively
preventing and responding to both internal and external financial risks, and formulating
policy measures to address unexpected events. This will provide a solid guarantee for
the stable development of the financial markets in RCEP member countries. Additionally,
as a large developing economy in the region, China should enhance its ability to prevent
financial risk inflows from developed countries within the region. While developing trade,
China should also implement measures to further reduce the financial risks imported from
other countries.

Table 5 summarizes the changes in the stock market risk spillover network (constructed
based on transfer entropy) among the RCEP countries before and after the signing of the
RCEP agreement, along with corresponding policy recommendations. The results indicate
significant shifts in the in-degree and out-degree of various countries, reflecting changes in
their roles as risk transmitters or receivers within the regional financial network. For ex-
ample, China and Vietnam demonstrated increased in-degree values after the agreement,
highlighting their growing influence as risk receivers, while countries like Australia and
Japan saw reduced in-degree values, indicating decreased external risk dependence. Based
on these findings, targeted policies are proposed, including strengthening risk monitoring
and management, optimizing domestic financial structures, enhancing cross-border capital
flow regulation, and reducing reliance on external markets to ensure greater financial
stability and resilience within the RCEP region.

Table 5. Policy recommendations after signing of RCEP.

Country
Before Signing of RCEP After Signing of RCEP

Policy Recommendations
In_Degree Out_Degree In_Degree Out_Degree

China 0 2 6 4 Strengthen the monitoring of external financial risks, especially the financial links with
other RCEP member countries.

Vietnam 3 0 7 5 Strengthen the control of inbound financial risks, especially the regulation of capital
inflows.

Singapore 5 5 6 6 Continue to leverage its advantages as a regional financial center, strengthen the
regulation of financial markets, and ensure market transparency and stability.

Indonesia 5 4 2 4 Focus on changes in the transmission of risks within the region and reduce the spillover
effects of potential financial shocks.

Malaysia 5 2 6 5 Focus on enhancing the risk management capabilities of domestic financial institutions to
reduce the impact of external financial volatility.

South Korea 7 7 6 5 Further optimize the structure of the capital market to reduce the impact of regional
financial volatility on the domestic market.

Japan 8 7 4 6 Reduce dependence on external market fluctuations and enhance the independence and
stability of the domestic market.

New Zealand 5 4 7 7 Strengthen the management of cross-border capital flows to avoid excessive dependence
on external capital.

Thailand 5 4 8 6 Strengthen the early warning mechanism for external financial risks to reduce the impact
of external risks on the domestic market.

Australia 7 8 2 4 Shift the policy focus to the domestic financial market to reduce sensitivity to regional
financial risks.
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