
Academic Editor: Antonio M.

Scarfone

Received: 14 December 2024

Revised: 10 January 2025

Accepted: 14 January 2025

Published: 17 January 2025

Citation: Thach, T.T. Forecasting

Stock Market Indices Using

Integration of Encoder, Decoder, and

Attention Mechanism. Entropy 2025,

27, 82. https://doi.org/10.3390/

e27010082

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Forecasting Stock Market Indices Using Integration of Encoder,
Decoder, and Attention Mechanism
Tien Thanh Thach

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
thachthanhtien@tdtu.edu.vn

Abstract: Accurate forecasting of stock market indices is crucial for investors, financial
analysts, and policymakers. The integration of encoder and decoder architectures, coupled
with an attention mechanism, has emerged as a powerful approach to enhance prediction
accuracy. This paper presents a novel framework that leverages these components to
capture complex temporal dependencies and patterns within stock price data. The encoder
effectively transforms an input sequence into a dense representation, which the decoder
then uses to reconstruct future values. The attention mechanism provides an additional
layer of sophistication, allowing the model to selectively focus on relevant parts of the
input sequence for making predictions. Furthermore, Bayesian optimization is employed to
fine-tune hyperparameters, further improving forecast precision. Our results demonstrate
a significant improvement in forecast precision over traditional recurrent neural networks.
This indicates the potential of our integrated approach to effectively handle the complex
patterns and dependencies in stock price data.

Keywords: recurrent neural networks; long short-term memory; gated recurrent units;
encoder–decoder architecture; attention mechanism; Bayesian optimization

1. Introduction
The stock market is a complex and dynamic system influenced by numerous factors,

making accurate prediction a challenging task. While traditional models have been widely
used, their ability to capture the complex, non-linear, and time-varying dynamics of stock
market behavior is often limited. The emergence of deep learning has opened new avenues
for more sophisticated and accurate forecasting models [1]. Deep learning models have
shown great promise in various domains, such as language modeling, machine translation,
and image and speech recognition. An increasing number of studies have explored the
application of deep learning techniques for stock price prediction [2–4]. These models
leverage advanced architectures, such as Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Gated Recurrent
Units (GRU) and more recently, attention-based mechanisms, to better understand and
predict stock market movements.

Recent advancements in sequence-to-sequence modeling, particularly the develop-
ment of encoder–decoder architectures, have demonstrated remarkable success in various
domains, including language modeling and machine translation. These architectures
excel at capturing long-range dependencies within sequential data by effectively process-
ing input sequences and generating corresponding output sequences. Inspired by these
successes, this research investigates the applicability of encoder–decoder architectures,

Entropy 2025, 27, 82 https://doi.org/10.3390/e27010082

https://doi.org/10.3390/e27010082
https://doi.org/10.3390/e27010082
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7238-8778
https://doi.org/10.3390/e27010082
https://www.mdpi.com/article/10.3390/e27010082?type=check_update&version=1

Entropy 2025, 27, 82 2 of 21

including those incorporating attention mechanisms, for predicting stock price indices in
the Vietnamese market.

This research addresses the following key research questions:

1. Given their effectiveness in language modeling, such as predicting the next word in a se-
quence, can encoder–decoder architectures also excel in stock price prediction contexts?

2. Can encoder–decoder architectures, including those with and without attention mech-
anisms, outperform traditional recurrent neural networks in predicting stock price
indices in the Vietnamese market?

3. What is the impact of attention mechanisms on the predictive performance of encoder–
decoder architectures for stock price forecasting in the Vietnamese context?

This research contributes to the existing literature in several key ways:

• Application to the Vietnamese market: This study extends the application of
advanced deep learning models, specifically encoder–decoder architectures with
and without attention mechanisms, to the Vietnamese stock market, a market
with unique characteristics and limited prior research on the application of these
sophisticated models.

• Comparative analysis: We conduct a comprehensive comparative analysis of the
performance of encoder–decoder models with and without attention mechanisms
against traditional recurrent neural networks, providing valuable insights into the
relative strengths and weaknesses of these different approaches.

• Rigorous methodology: We employ a rigorous experimental framework, includ-
ing hyperparameter tuning using Bayesian optimization, to ensure optimal model
performance and robust evaluation.

This research focuses on two major Vietnamese stock market indices: the VN-Index
of the Ho Chi Minh Stock Exchange (HOSE) and the HNX-Index of the Hanoi Stock
Exchange (HNX). These indices serve as crucial benchmarks for the Vietnamese stock
market, providing a comprehensive overview of market performance. The findings of
this study have the potential to inform investment decisions, enhance risk management
strategies, and contribute to a deeper understanding of the dynamics of the Vietnamese
stock market.

The rest of the paper is structured as follows: Section 2 reviews early deep learning
models for stock price prediction, encoder–decoder architectures, and attention mecha-
nisms, highlighting the research gap addressed by this paper. Section 3 discusses various
types of recurrent neural networks, including RNN, LSTM, and GRU. Section 4 introduces
the encoder–decoder architecture and attention mechanism. Section 5 describes the experi-
mental setup, covering data processing, hyperparameter settings, and model performance
measures. Section 6 presents the results. Finally, Section 7 concludes the paper.

2. Related Work
2.1. Significant Early Contributions to Deep Learning Models for Stock Price Prediction

Over the years, researchers have proposed various deep learning models to tackle
the challenges of stock price prediction. Here, we review some of the most significant
contributions that have laid the foundation for contemporary research in this field.

In 2020, Lu et al. [5] presented a novel forecasting model that combines CNN and
LSTM networks to predict stock prices. The model leverages the CNN’s ability to extract
spatial features from data and the LSTM’s capability to analyze temporal dependencies.
The combined CNN-LSTM model effectively captures both spatial and temporal patterns in
stock price data, leading to improved prediction accuracy compared to traditional models.
In 2021, Lu et al. [6] introduced a refined method utilizing CNN, Bi-directional LSTM

Entropy 2025, 27, 82 3 of 21

(BiLSTM), and an attention mechanism (AM) to enhance the prediction accuracy of stock
prices. The integration of CNN for feature extraction, BiLSTM for capturing temporal
dependencies, and attention mechanisms for focusing on crucial information significantly
improved the model’s predictive performance.

In 2022, Wang et al. [7] proposed a deep learning model based on the Transformer
architecture to predict stock market indices. The model leverages the self-attention mecha-
nism of Transformers to capture complex patterns and dependencies in stock price data.
The experimental results demonstrate that the Transformer-based model outperforms
traditional methods and other deep learning models, such as RNN, LSTM and CNN, in
terms of prediction accuracy. The study highlights the potential of Transformer models
in financial time series forecasting. Kanwal et al. [8] introduced a hybrid deep learning
model called BiCuDNNLSTM-1dCNN for predicting stock prices. The model combines a
Bidirectional Cuda Deep Neural Network LSTM (BiCuDNNLSTM) with a one-dimensional
CNN (1dCNN). This hybrid approach leverages the strengths of both architectures to
improve the accuracy and efficiency of stock price predictions.

In 2023, Yang et al. [9] introduced a novel model integrating modern machine learning
techniques to enhance the accuracy of stock price predictions. The model features a memory
attention module to better capture long-term dependencies in time series data and a unique
long-distance loss function to improve predictive precision. Wang et al. [10] introduced a
novel prediction model called the Localized Graph Convolutional Network (LoGCN) for
stock index forecasting. This model leverages a well-designed convolution mechanism to
capture intricate local spatial-temporal connections, significantly improving the accuracy
of stock market index predictions compared to traditional models.

In 2024, Zhu et al. [11] introduced PMANet, an advanced hybrid model designed for
stock price prediction in the Chinese market. PMANet incorporates Multi-scale Timing
Feature Attention, combining Multi-scale Timing Feature Convolution and Ant Particle
Swarm Optimization to enhance the understanding of dependencies and interrelations
within stock data sequences. The model also features a Probabilistic Positional Attention
mechanism to better handle anomaly points in stock sequences. Chen et al. [12] proposed
the CED-PSO-StockNet model to address the challenges of low prediction accuracy in
noisy stock market environments. The model uses Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) to decompose raw stock data and
remove noise. The components are then reconstructed using the extreme point method
to enhance stability. An encoder–decoder framework with an attention mechanism is
employed to predict the reconstructed components accurately.

Xie et al. [13] introduced a novel model called the Deep Convolutional Transformer
(DCT) for predicting stock movements. The DCT model combines CNN and transformer
architectures with a multi-head attention mechanism. It features an inception convolutional
token embedding architecture and separable fully connected layers. Results show that the
DCT model achieves the highest accuracy and outperforms other models. Li and Xu [14]
proposed a new approach to enhance stock price prediction by leveraging Generative
Adversarial Networks (GANs) and transformer-based attention mechanisms. GANs are
used to generate synthetic stock price data, incorporating market sentiment and volatility.
The attention mechanisms selectively focus on important features and patterns in the data,
aiding in the identification of key market indicators. By integrating market social media
news, the proposed model outperforms conventional approaches.

2.2. Historical Developments in Encoder–Decoder Architecture and Attention Mechanism

The concept of attention mechanisms in neural networks has evolved significantly
over time. Early attempts to incorporate attention into neural networks date back to the

Entropy 2025, 27, 82 4 of 21

late 1980s, with studies such as the improved version of the Neocognitron with selective
attention [15]. The encoder–decoder architecture itself was developed in the early 2010s,
with pivotal contributions from papers published in 2014 that applied this architecture to
sequence-to-sequence tasks like machine translation [16,17]. The integration of attention
mechanisms into these architectures, as demonstrated by Bahdanau et al. [18], further
enhanced their performance by enabling the model to focus on relevant parts of the input
sequence during decoding. This method, known as the Bahdanau attention mechanism,
significantly improved the basic encoder–decoder architecture by addressing the bottleneck
of using a fixed-length vector to represent the entire input sequence.

Later, Cho et al. [19] introduced attention-based encoder–decoder networks for de-
scribing multimedia content. The authors focus on tasks such as machine translation, image
caption generation, video clip description, and speech recognition. The model leverages
GRUs and CNNs, along with trained attention mechanisms, to learn to attend to different
parts of the input for each element of the output. However, the modern attention-based
encoder–decoder framework gained prominence with the introduction of the Transformer
model in the 2017 paper “Attention is All You Need” by Vaswani et al. [20], which laid the
foundation for many subsequent advancements in attention-based models. The success of
these models in handling sequential data inspired researchers to explore their potential in
time series prediction [21–23].

In 2020, Du et al. [24] proposed a novel attention-based encoder–decoder framework
for multivariate time series forecasting. The model integrates traditional encode context
vectors with temporal attention vectors for joint temporal representation learning. It uses
BiLSTM layers with a temporal attention mechanism as the encoder network to adaptively
learn long-term dependencies and hidden correlation features of multivariate temporal
data. The model was tested on five typical multivariate time series datasets and showed
superior forecasting performance compared to baseline methods.

In 2021, Jin et al. [25] proposed a novel deep-learning model for short-term electric
power load forecasting. The model uses an attention-based encoder–decoder architecture
with GRU to capture temporal dependencies in time-series data. A temporal attention layer
is employed to focus on key features, enhancing prediction accuracy. Bayesian optimization
is used to fine-tune the model’s hyperparameters, ensuring optimal performance. The
model was tested on real power load data from American Electric Power (AEP) and
demonstrated superior accuracy and stability compared to existing methods.

In 2023, Wu and Zhang [26] proposed a new model using attention-based encoder–
decoder networks to estimate the state of charge (SOC) of lithium-ion batteries under
complex ambient temperature conditions. The model employs a BiLSTM encoder to obtain
the hidden state vector from an input sequence. The attention mechanism helps in focusing
on relevant features, improving the accuracy of SOC estimation. Klaar et al. [27] proposed
an optimized model for predicting faults in insulators using Empirical Wavelet Transform
(EWT), Sequence-to-Sequence (Seq2Seq) architecture, LSTM networks, and an attention
mechanism. The model aims to reduce the influence of non-representative variations in the
data and improve prediction accuracy. The Optuna framework is used for hyperparameter
optimization, resulting in a significant reduction in MSE compared to standard LSTM
models and models without optimization.

In 2024, Jayanth and Manimaran [28] introduced a hybrid model that combines Double
Exponential Smoothing (DES) with a deep learning model called Dual Attention encoder–
decoder-based Bi-directional Gated Recurrent Unit (DA-ED-Bi-GRU), optimized using
Bayesian Optimization. The model aims to efficiently identify patterns and trends in
stock data. The DES method handles trends and seasonality, while the DA-ED-Bi-GRU
captures intricate patterns in the stock data. The parameters are optimized using Bayesian

Entropy 2025, 27, 82 5 of 21

optimization to maximize the model’s performance. The proposed hybrid model was tested
on stock price data from General Electric, Microsoft, and Amazon, showing reasonable
accuracy in predictions.

There are limited existing studies that integrate the encoder, decoder, and attention
mechanism for stock market forecasting, with none focusing on the Vietnamese stock
market. Our research addresses this gap by adapting this innovative architecture into
novel models to predict the next trading day’s stock price index, which is distinct from
previous studies.

3. Recurrent Neural Networks
Stock market index forecasting poses several challenges that require advanced mod-

eling techniques. One key challenge is capturing the temporal dependencies inherent in
stock price data, which fluctuates over time and can exhibit complex patterns. Additionally,
managing the noise present in these data is crucial, as it can obscure the underlying trends
and lead to inaccurate predictions.

To address these challenges, researchers often employ RNNs and their variants, such
as LSTM networks and GRUs. These models are particularly well-suited for capturing
temporal dependencies due to their ability to maintain and update hidden states over time.
They can also implicitly learn to filter out noise in the input data. By training on noisy stock
price data, the network can identify and de-emphasize irrelevant fluctuations, focusing on
the underlying trends and patterns. Leveraging these advanced techniques enables more
accurate and robust forecasts of stock market indices, effectively addressing the specific
challenges of temporal dependency and data noise.

3.1. RNN

A Recurrent Neural Network (RNN) is a fundamental type of neural network designed
for processing sequential data, making it suitable for tasks such as language modeling,
machine translation, speech recognition, and time series prediction. Its core feature is the
hidden state, given by Equation (1), which captures information from previous inputs to
influence the current output, essentially giving the network a form of memory (Figure 1).

ht = σ(Wh · [ht−1, yt] + bh) (1)

where σ is the activation function (commonly tanh or ReLU), Wh is the weight matrix, bh is
the bias term, ht−1 is the previous hidden state, and yt is the current input.

RNN Cell

ht−1 ht

ht

Tanh

yt

RNN Cell

ht−2

ht−1

Tanh

yt−1

RNN Cell

ht+1

ht+1

Tanh

yt+1

Figure 1. RNN architecture.

Figure 2 illustrates the process of using the RNN architecture to predict the next
trading day’s stock price index. The RNN transforms the input sequence {y1, y2, . . . , yT}
into a final hidden state (hT) that represents the information of the entire input sequence.

Entropy 2025, 27, 82 6 of 21

The final hidden state is then passed through an affine transformation to produce the
forecast value for the next trading day ŷT+1.

y1 y2 yT

h0 RNN RNN · · · RNN hT wTh ŷT+1

h1 h2 hT

h1 h2 hT−1

Figure 2. Illustration of an RNN architecture for forecasting the next trading day’s stock price index.

3.2. LSTM

Long Short-Term Memory (LSTM) network, introduced by Hochreiter and Schmidhu-
ber in 1997, is a type of recurrent neural network capable of learning order dependence
in sequence prediction problems. Unlike a standard RNN that struggles with long-term
dependencies due to the vanishing gradient problem, LSTM has a unique architecture that
allows it to remember information for longer periods. This architecture is composed of
three gates: the forget gate, which determines what information is discarded from the cell
state; the input gate, which controls the flow of new information into the cell; and the
output gate, which decides what information is going to be output based on the cell state
and the input [29]. The update steps of LSTM can be expressed as follows (Figure 3):

ft = σ
(

W f · [ht−1, yt] + b f

)
(2)

it = σ(Wi · [ht−1, yt] + bi) (3)

ot = σ(Wo · [ht−1, yt] + bo) (4)

c̃t = tanh(Wc · [ht−1, yt] + bc) (5)

ct = ft ⊙ ct−1 + it ⊙ c̃t (6)

ht = ot ⊙ tanh(ct) (7)

where σ is the sigmoid function, W and b are weights and biases, respectively, ht−1 is
the previous hidden state, and yt is the current input, ⊙ denotes the Hadamard product
(element-wise product).

LSTM Cell

ct−1 � +++ ct

ht

σ σ Tanh

Tanh

�

ht−1 σ ht�

yt

ft
it c̃t

ot

LSTM Cell

ct−2 � +++

ht−1

σ σ Tanh

Tanh

�

ht−2 σ �

yt−1

ft
it c̃t

ot

LSTM Cell

� +++ ct+1

ht+1

σ σ Tanh

Tanh

�

σ ht+1�

yt+1

ft
it c̃t

ot

Figure 3. LSTM architecture.

Given an input sequence {y1, y2, . . . , yT}, the LSTM transforms it into a final hidden
state (hT) that captures the information of the entire sequence. This final hidden state is
then passed through an affine transformation to generate the forecast value for the next
trading day’s stock price index (Figure 4).

Entropy 2025, 27, 82 7 of 21

y1 y2 yT

h0 LSTM LSTM · · · LSTM hT wTh ŷT+1

h1 h2 hT

h1 h2 hT−1

Figure 4. Illustration of an LSTM architecture for forecasting the next trading day’s stock price index.

3.3. Gated Recurrent Units

Gated Recurrent Unit (GRU) is another type of RNN that was introduced by Cho
et al. in 2014. GRU is simpler than LSTM but still effective at capturing long-term de-
pendencies in sequences. Unlike the LSTM, which utilizes three gates (input, forget, and
output), GRU simplifies the architecture by employing only two gates: the reset gate, which
determines how much of the previous hidden state to forget and the update gate, which
controls how much of the previous hidden state and the new candidate hidden state to use
(Figure 5). This streamlined design not only reduces the computational complexity but also
accelerates the training process while maintaining comparable performance to LSTM [30].
The update steps of GRU can be expressed as follows:

rt = σ(Wr · [ht−1, yt] + br) (8)

zt = σ(Wz · [ht−1, yt] + bz) (9)

h̃t = tanh(Wh[rt ⊙ ht−1, yt] + bh) (10)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (11)

where σ is the sigmoid function, W and b are weights and biases, respectively, ht−1 is the
previous hidden state, and yt is the current input.

GRU Cell

yt

σ σ

Tanh

�

1−

�

ht−1 � +++ ht

ht

h̃t

ztrt

Reset Gate Update Gate

GRU Cell

yt+1

σ σ

Tanh

�

1−

�

� +++ ht+1

ht+1

h̃t

ztrt

Reset Gate Update Gate

GRU Cell

yt−1

σ σ

Tanh

�

1−

�

ht−2 � +++

ht−1

h̃t

ztrt

Reset Gate Update Gate

Figure 5. GRU architecture.

The efficacy of GRU has been demonstrated across various applications, including
natural language processing, time series forecasting, and speech recognition. Their ability
to efficiently manage long-term dependencies makes them a valuable tool in the arsenal of
deep learning techniques. Figure 6 illustrates the process of using the GRU architecture to
predict the next trading day’s stock price index. The process follows the same methodology
as described for the RNN and LSTM architectures.

Entropy 2025, 27, 82 8 of 21

y1 y2 yT

h0 GRU GRU · · · GRU hT wTh ŷT+1

h1 h2 hT

h1 h2 hT−1

Figure 6. Illustration of a GRU architecture for forecasting the next trading day’s stock price index.

4. Encoder–Decoder Architecture
The encoder–decoder architecture is a fundamental framework in deep learning,

particularly effective for sequence-to-sequence tasks such as machine translation, text
summarization, and image captioning. This architecture consists of two main components:
the encoder and the decoder, each typically implemented using RNN, LSTM, or GRU.
Figure 7 illustrates the flow of information from the encoder to the decoder.

y1 y2 yT

Encoder

Decoder

h0
GRU
Cell 1

GRU
Cell 1

· · · GRU
Cell 1

hT
GRU
Cell 2

h1 h2 hT

hT+1

wTh

ŷT+1

h1 h2 hT−1

Figure 7. Encoder–decoder architecture for forecasting the next trading day’s stock price index. In
this architecture, the encoder’s final hidden state is used as the initial hidden state for the decoder,
and the decoder’s input value is the last value of the input sequence.

4.1. Encoder

The encoder processes the input sequence and compresses it into a final hidden state
(hT), which encapsulates the essential information of the input sequence. Formally, given
an input sequence {y1, y2, . . . , yT}, the encoder generates a sequence of hidden states
{h1, h2, . . . , hT} using the following recurrence relation:

ht = f (yt, ht−1), (12)

where ht is the hidden state at time step t, yt is the input at time step t, and f is a non-linear
function such as an RNN, LSTM or GRU cell, and in this study, it is the GRU cell (Figure 7).

4.2. Decoder

For a one-step forecast, the decoder generates the output (ŷT+1) based on the final
hidden state (hT) of the encoder and the last input (yT):

hT+1 = f (yT , hT) (13)

ŷT+1 = g(hT+1) (14)

Entropy 2025, 27, 82 9 of 21

where f is a non-linear function such as an RNN, LSTM or GRU cell. In this study, it is also
the GRU cell, and g is an affine transformation (Figure 7).

4.3. Attention

The encoder–decoder architecture is quite fascinating, but it faces a limitation (a bot-
tleneck): the entire input sequence is compressed into one hidden state, the encoder’s final
hidden state. Consequently, the decoder produces the output with minimal information.
To enhance the performance of the encoder–decoder architecture, an attention mechanism
can be incorporated. This mechanism allows the decoder to focus on different parts of the
encoder’s hidden state at the decoding step, rather than relying solely on the final hidden
state of the encoder. The attention mechanism computes a context vector (cT+1) for the
output of the decoder as follows: Each encoder’s hidden state (hi) is transformed into a key
(Ki) using an affine transformation and into a value (Vi) using an identity transformation,
and the decoder’s hidden state (hT+1) is transformed into a query (QT+1) using another
affine transformation. Then, the alignment score (si) that measures the relevance of the
encoder hidden state hi to the decoder’s state hT+1 is computed as the dot product of the
query vector and the key vector:

si = QT+1 · Ki (15)

The dot product is then scaled by the square root of the dimension of the key vectors (dk) to
prevent the gradients from becoming too small during backpropagation:

si =
QT+1 · Ki√

dk
(16)

The attention scores (αi) are calculated by using the softmax function:

αi =
exp(si)

∑T
k=1 exp(sk)

(17)

Finally, the context vector is calculated as a weighted sum of the values (the encoder’s
hidden states):

cT+1 =
T

∑
i=1

αiVi (18)

The context vector (cT+1) is concatenated with the decoder’s hidden state (hT+1) and then
passed through an affine transformation to generate the forecast value (ŷT+1), as illustrated
in Figure 8.

For stock price forecasting, the encoder reads and compresses the input sequence
(historical stock prices) into a fixed-length hidden vector. The decoder then generates the
output (future stock price) from this vector. This architecture is beneficial for handling
variable-length input and output sequences, capturing dependencies across different time
scales, and being flexible in addressing complex forecasting tasks. Attention mechanisms
enhance the encoder–decoder architecture by allowing the model to focus on the most
relevant parts of the input sequence when making predictions. This is particularly beneficial
for stock price forecasting, where certain past data points may be more indicative of
future trends than others. By dynamically weighing the importance of these data points,
the attention mechanism improves the model’s ability to capture intricate patterns and
dependencies, leading to potentially more accurate forecasts.

Entropy 2025, 27, 82 10 of 21

y1 y2 yT

Encoder

Decoder

Attention

h0
GRU
Cell 1

GRU
Cell 1

· · · GRU
Cell 1

hT
GRU
Cell 2

h1 h2 hT

hT+1wTh

hT+1cT+1

Context

wTh wTh wTh

s1 s2 sT

∗∗∗ ∗∗∗ ∗∗∗

a1 a2 aTAlignments

+++ +++

wTh

ŷT+1

h1 h2 hT−1

V1 V2 VTK1 K2 KT

QT+1 QT+1 QT+1

Figure 8. Encoder–decoder architecture with a single-head attention mechanism for forecasting the
next trading day’s stock price index. In this architecture, the encoder’s final hidden state is used
as the initial hidden state for the decoder, and the decoder’s input value is the last value of the
input sequence.

5. Experiments
We conduct an experiment to study the performance of the proposed models and

compare them with the RNN, LSTM and GRU models. Table 1 details the hardware
and software configurations used for the stock price prediction experiments to ensure
reproducibility and to highlight the computational environment.

Table 1. Hardware and software configurations for experiments.

Component Specification

CPU AMD Ryzen 7 7435HS (3.10 GHz up to 4.50 GHz, 8 cores)
GPU NVIDIA GeForce RTX 4060 (8 GB GDDR6)
Miniconda Version Conda 24.9.2
Python Version Python 3.12.7
PyTorch Version PyTorch 2.5.1
Operating System Window 11
CUDA Version CUDA 11.6

Other Libraries NumPy 1.26.4, Pandas 2.2.2, scikit-learn 1.5.1,
scikit-optimize 0.10.2

5.1. Datasets

In this study, we use two main Vietnamese stock market indices, the VN-Index and
HNX-Index, to demonstrate the performance of integrating the encoder, the decoder, and
the attention mechanism. We collected the daily closing prices of both indices over the
period from 1 January 2013, to 31 December 2023. We retrieved the data at the start of 2024,
making 2023 the ending point to ensure we had the most recent full year of data available.

Entropy 2025, 27, 82 11 of 21

We selected 2013 as the starting point due to the limitations of our computational resources
for training the models. This period covers a decade, allowing us to capture and analyze
long-term trends and significant market shifts, providing a comprehensive analysis for
our research. The summaries of these datasets are provided in Table 2. Figure 9 displays
the time series plots for the VN-Index and HNX-Index data, highlighting the training and
test sets.

Table 2. Descriptive statistics.

Index Mean Std Min Q1 Q2 Q3 Max

VN-Index 873.0339 283.2851 418.3500 596.8300 899.9200 1064.0300 1528.5700
HNX-Index 146.9450 98.5540 57.6100 82.8200 104.5150 207.4400 493.8400

20
14

20
16

20
18

20
20

20
22

0

200

400

600

800

1000

1200

1400

1600
Training data (VN-Index)
Test data (VN-Index)
Training data (HNX-Index)
Test data (HNX-Index)

Date[1D]

Pr
ic

e

Figure 9. Time series plots for VN-Index and HNX-Index data.

5.2. Data Preprocessing

Each dataset is divided into two sets: the first 80% of the data is used for training,
while the remaining 20% is used for testing. The training and test sets are standardized to
have zero mean and unit variance. This process improves the stability and efficiency of
training, enhances the performance of optimization algorithms, helps prevent overfitting,
and leads to better model performance and generalization. The standard score of a sample
y is calculated as:

z =
y − ȳ

s
(19)

where ȳ and s are the mean and standard deviation of the training set respectively. After
making predictions, it is crucial to inverse-transform the predicted values back to their
original scale. This step ensures that the predicted values can be interpreted in the context
of the original data. To reverse the standardization and retrieve the original scale, we use
the formula:

y = z · s + ȳ (20)

Suppose {y1, y2, . . . , yn} represents the standardized data of the training set or test set.
We use a sliding window approach to generate the input and target output from this data,
thereby transforming the time series data into a supervised learning problem, as illustrated
in Figure 10. In this study, we utilize a sliding window approach with a window size of 5,

Entropy 2025, 27, 82 12 of 21

meaning each prediction is based on the previous 5 time steps. Our pilot study determined
this window size by observing the test loss for various sizes until there was negligible
improvement. This choice helps capture local trends and temporal dependencies within the
data, enabling the model to learn from recent price history, and facilitates pair comparison
between models. According to [31], larger look-back periods may lead to poor stock price
prediction performance, wasting valuable training and prediction time.

Sliding Window Forecast

y1 y2 y3 y4 y5 · · · yT−1 yT yT+1 yT+2 yT+3 yT+4 yT+5 · · · yn−1 yn

Sliding Window Forecast

y1 y2 y3 y4 y5 · · · yT−1 yT yT+1 yT+2 yT+3 yT+4 yT+5 · · · yn−1 yn

Sliding Window Forecast

y1 y2 y3 y4 y5 · · · yT−1 yT yT+1 yT+2 yT+3 yT+4 yT+5 · · · yn−1 yn

Figure 10. A sliding window is used to generate the input and target output from the observed
time series.

5.3. Hyperparameters Setting

For the VN-Index, it was straightforward to determine the optimal hyperparameters
by observing the test loss curve through trial and error. However, this approach was not
effective for the HNX-Index, as the patterns in the training and test sets differed significantly,
as shown in Figure 9. Consequently, the optimal hyperparameters for the HNX-Index were
identified using Bayesian optimization, a probabilistic model that iteratively refines its
estimates to find the best set of parameters. Detailed information on this method can be
found in [25,28]. Table 3 details the hyperparameters used in RNN, LSTM, GRU, encoder–
decoder, and encoder–decoder attention architectures for the VN-Index and HNX-Index
predictions. Hyperparameters include hidden layers, hidden size, batch size, loss function,
optimizer type, learning rate, number of epochs, period for learning rate decay, and the
multiplicative factor of learning rate decay. Due to the limitation of computational resources,
we select a single hidden layer, a batch size of 32, MSE loss, and the Adam optimizer.

In Table 3, we employ Bayesian optimization to fine-tune the hidden size, learning
rate, learning rate decay period, and the multiplicative factor of learning rate decay. The pa-
rameter search space is defined as follows: hidden size (1–300), learning rate (0.00001–0.1),
learning rate decay period (1–400), and its multiplicative factor (0.1–1). The objective func-
tion aims to minimize the test loss. We set the stopping criteria based on a fixed number of
iterations, incrementally increasing this number until the test loss shows no improvement.
This comprehensive approach ensures optimal hyperparameters, enhancing the model’s
performance and robustness.

Choosing an optimal learning rate is quite challenging. On the one hand, a learning
rate that is too high can cause the optimizer to overshoot and miss the optimal point,
resulting in erratic behavior and a longer time to converge. On the other hand, a learning
rate that is too low can cause the optimizer to get stuck in a suboptimal solution. Therefore,
we set a scheduler to decrease the learning rate by defining the period of learning rate
decay and its multiplicative factor to ensure that all loss functions converge faster and
reach the optimal solution. The period of learning rate decay and its multiplicative factor
are also hyperparameters. That is why we include them in Bayesian optimization.

Entropy 2025, 27, 82 13 of 21

Table 3. Hyperparameter setting.

Model Hyper-Parameter VN-Index HNX-Index

RNN

Hidden layers 1 1
Hidden size 128 185
Batch size 32 32
Loss function MSE MSE
Optimizer Adam Adam
Learning rate 0.0001 0.0005
Number of epochs 1000 700
Period of learning rate decay 200 113
Multiplicative factor of learning rate decay 0.5 0.33

LSTM

Hidden layers 1 1
Hidden size 128 48
Batch size 32 32
Loss function MSE MSE
Optimizer Adam Adam
Learning rate 0.0001 0.0005
Number of epochs 1500 2000
Period of learning rate decay 200 253
Multiplicative factor of learning rate decay 0.6 0.5

GRU

Hidden layers 1 1
Hidden size 128 184
Batch size 32 32
Loss function MSE MSE
Optimizer Adam Adam
Learning rate 0.0001 0.0002
Number of epochs 1000 1600
Period of learning rate decay 200 300
Multiplicative factor of learning rate decay 0.5 0.43

Encoder-Decoder

Hidden layers 1 1
Hidden size 128 191
Batch size 32 32
Loss function MSE MSE
Optimizer Adam Adam
Learning rate 0.0001 0.00039
Number of epochs 402 1000
Period of learning rate decay 200 125
Multiplicative factor of learning rate decay 0.5 0.145

Encoder-Decoder-Attention

Hidden layers 1 1
Hidden size 128 128
Batch size 32 32
Loss function MSE MSE
Optimizer Adam Adam
Learning rate 0.0001 0.0001
Number of epochs 402 2400
Period of learning rate decay 200 200
Multiplicative factor of learning rate decay 0.5 0.6

Entropy 2025, 27, 82 14 of 21

5.4. Model Performance Measures

In the literature, mean absolute error (MAE), root mean square error (RMSE), and
mean absolute percentage error (MAPE) are commonly used metrics for evaluating the
performance of forecasting models. Their calculations are shown as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (21)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (22)

MAPE =
1
n

n

∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣× 100 (23)

where ŷi is the predicted value, and yi is the actual value. MAE provides a straightforward
measure of average error magnitude, making it easy to interpret. RMSE emphasizes larger
errors more due to the squaring of differences, which can be particularly useful when larger
errors are highly undesirable. MAPE gives a percentage error, offering a relative measure
of error that can be easier to interpret across different scales. Smaller values of MAE, RMSE,
and MAPE indicate better forecasting performance.

6. Results
Figure 11 shows the training loss curves for the VN-Index (a) and the HNX-Index

(b) when applying schedulers to decrease the learning rates. It is observed that with the
scheduler, the training loss functions converge faster within 1000 epochs. Table 4 presents
the means and standard errors of three metrics evaluated across 10 experiments on the
test sets of two datasets. This table illustrates the consistency and reliability of the models’
performance across different runs. It is evident that the encoder–decoder architectures,
both with and without the attention mechanism, generally perform better across both
datasets, achieving lower MAE, RMSE, and MAPE values compared to the RNN, LSTM,
and GRU models.

200 400 600 800

0.002

0.003

0.004

0.005

0.006

0.007

0.008 RNN
LSTM
GRU
Encoder-Decoder
Encoder-Decoder-Attention

Epoch

Lo
ss

(a)

200 400 600 800

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

RNN
LSTM
GRU
Encoder-Decoder
Encoder-Decoder-Attention

Epoch

Lo
ss

(b)

Figure 11. Training loss curves of the five models for VN-Index (a) and HNX-Index (b) using
schedulers to decrease the learning rate.

Entropy 2025, 27, 82 15 of 21

Table 4. The means and standard errors of three metrics (MAE, RMSE and MAPE) were evaluated
across 10 separate experiments on the test sets of both datasets.

Dataset Model MAE RMSE MAPE

VN-Index

RNN 11.1491 (0.0319) 15.6967 (0.0209) 0.0094 (0.0000)
LSTM 11.1006 (0.0268) 15.7524 (0.0518) 0.0094 (0.0000)
GRU 11.0749 (0.0129) 15.6599 (0.0164) 0.0093 (0.0000)
Encoder-Decoder 11.0512 (0.0091) 15.6529 (0.0132) 0.0093 (0.0000)
Encoder-Decoder-Attention 11.0602 (0.0083) 15.6494 (0.0071) 0.0093 (0.0000)

HNX-Index

RNN 3.8963 (0.0652) 5.4988 (0.1112) 0.0130 (0.0001)
LSTM 3.8539 (0.2091) 5.5601 (0.2694) 0.0133 (0.0005)
GRU 3.7678 (0.0148) 5.3455 (0.0095) 0.0132 (0.0001)
Encoder-Decoder 3.5612 (0.0478) 5.3473 (0.0725) 0.0122 (0.0001)
Encoder-Decoder-Attention 3.6273 (0.0395) 5.3463 (0.1265) 0.0127 (0.0001)

The results indicate that the encoder–decoder architecture without the attention mecha-
nism performs even better than with the attention mechanism for these one-step predictions.
This could be due to the nature of one-step forecasting. The encoder’s final hidden state
may already provide sufficient information for the decoder to generate the next forecast
value. Therefore, adding an attention mechanism to the architecture might not yield an im-
provement, and could potentially even degrade performance. Attention mechanisms may
be more appropriate for multi-step forecasting or seasonal data. Moreover, the GRU model
consistently outperforms the RNN and LSTM models across all metrics (MAE, RMSE, and
MAPE) for both the VN-Index and HNX-Index. Boxplots for the MAE, RMSE, and MAPE
calculated across 10 separate experiments on the VN-Index (a) and HNX-Index (b) test sets
are shown in Figures 12–14, respectively. It is again observed that the encoder–decoder
architectures, both with and without the attention mechanism, outperform the traditional
recurrent neural networks. The LSTM model shows the highest variance in terms of MAE,
RMSE, and MAPE among the models in most cases.

RN
N

GR
U

LST
M

Enc
ode

r-D
eco

der

Enc
ode

r-D
eco

der
-At

ten
tion

11.04

11.06

11.08

11.1

11.12

11.14

11.16

11.18

11.2

Model

M
A
E

(a)

RN
N

GR
U

LST
M

Enc
ode

r-D
eco

der

Enc
ode

r-D
eco

der
-At

ten
tion

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

Model

M
A
E

(b)

Figure 12. Boxplots for the MAE of the models across 10 separate experiments on the VN-Index (a)
and HNX-Index (b) test sets.

Entropy 2025, 27, 82 16 of 21

RN
N

GR
U

LST
M

Enc
ode

r-D
eco

der

Enc
ode

r-D
eco

der
-At

ten
tion

15.65

15.7

15.75

15.8

Model

R
M
S
E

(a)

RN
N

GR
U

LST
M

Enc
ode

r-D
eco

der

Enc
ode

r-D
eco

der
-At

ten
tion

5.2

5.4

5.6

5.8

6

Model

R
M
S
E

(b)

Figure 13. Boxplots for the RMSE of the models across 10 separate experiments on the VN-Index (a)
and HNX-Index (b) test sets.

RN
N

GR
U

LST
M

Enc
ode

r-D
eco

der

Enc
ode

r-D
eco

der
-At

ten
tion

0.00932

0.00934

0.00936

0.00938

0.0094

0.00942

Model

M
A
PE

(a)

RN
N

GR
U

LST
M

Enc
ode

r-D
eco

der

Enc
ode

r-D
eco

der
-At

ten
tion

0.012

0.0125

0.013

0.0135

0.014

Model

M
A
PE

(b)

Figure 14. Boxplots for the MAPE of the models across 10 separate experiments on the VN-Index (a)
and HNX-Index (b) test sets.

Predicted curves for the VN-Index (a) and the HNX-Index (b) using the RNN, LSTM,
GRU, encoder–decoder architecture, and encoder–decoder architecture with attention
mechanism are shown in Figures 15–19. It is observed that all the models fit well to the
datasets, and the encoder–decoder model, both with and without the attention mechanism,
demonstrates the best performance. Figure 20 shows the attention score matrices for the
first ten predictions on the test set made by the encoder–decoder architecture with the
attention mechanism, for both the VN-Index (a) and the HNX-Index (b). For each row, the
attention scores indicate how the decoder’s hidden state attends to each of the five hidden
states of the encoder. The attention score matrices reveal that for both the VN-Index and
HNX-Index test sets, the model primarily focuses on the most recent observations to make
predictions. This is particularly evident in cases where stock prices fluctuate sharply. This
behavior is consistent across both datasets, emphasizing the model’s reliance on the latest
data points. Consequently, we do not need an extensive history of inputs to forecast the
next trading day’s stock price.

Entropy 2025, 27, 82 17 of 21

20
14

20
16

20
18

20
20

20
22

400

600

800

1000

1200

1400

Training data
Test data
Fitted values
Predictions

Date[1D]

Pr
ic

e
(P

oi
nt

s)

(a)

20
14

20
16

20
18

20
20

20
22

100

200

300

400

500 Training data
Test data
Fitted values
Predictions

Date[1D]

Pr
ic

e
(P

oi
nt

s)

(b)

Figure 15. The predicted curves, along with the training and test data plots for the VN-Index (a) and
HNX-Index (b), were generated using the RNN architecture.

20
14

20
16

20
18

20
20

20
22

400

600

800

1000

1200

1400

Training data
Test data
Fitted values
Predictions

Date[1D]

Pr
ic

e
(P

oi
nt

s)

(a)

20
14

20
16

20
18

20
20

20
22

100

200

300

400

500 Training data
Test data
Fitted values
Predictions

Date[1D]

Pr
ic

e
(P

oi
nt

s)

(b)

Figure 16. The predicted curves, along with the training and test data plots for the VN-Index (a) and
HNX-Index (b), were generated using the LSTM architecture.

20
14

20
16

20
18

20
20

20
22

400

600

800

1000

1200

1400

Training data
Test data
Fitted values
Predictions

Date[1D]

Pr
ic

e
(P

oi
nt

s)

(a)

20
14

20
16

20
18

20
20

20
22

100

200

300

400

500 Training data
Test data
Fitted values
Predictions

Date[1D]

Pr
ic

e
(P

oi
nt

s)

(b)

Figure 17. The predicted curves, along with the training and test data plots for the VN-Index (a) and
HNX-Index (b), were generated using the GRU architecture.

Entropy 2025, 27, 82 18 of 21

20
14

20
16

20
18

20
20

20
22

400

600

800

1000

1200

1400

Training data
Test data
Fitted values
Predictions

VN Index Over Time

Date[1D]

Pr
ic

e
(P

oi
nt

s)

(a)

20
14

20
16

20
18

20
20

20
22

100

200

300

400

500 Training data
Test data
Fitted values
Predictions

Date[1D]

Pr
ic

e
(P

oi
nt

s)

(b)

Figure 18. The predicted curves, along with the training and test data plots for the VN-Index (a) and
HNX-Index (b), were generated using the encoder–decoder architecture.

20
14

20
16

20
18

20
20

20
22

400

600

800

1000

1200

1400

Training data
Test data
Fitted values
Predictions

Date[1D]

Pr
ic

e
(P

oi
nt

s)

(a)

20
14

20
16

20
18

20
20

20
22

100

200

300

400

500 Training data
Test data
Fitted values
Predictions

Date[1D]

Pr
ic

e
(P

oi
nt

s)

(b)

Figure 19. The predicted curves, along with the training and test data plots for the VN-Index (a) and
HNX-Index (b), were generated using the encoder–decoder architecture with an attention mechanism.

0.041 0.147 0.202 0.273 0.337

0.034 0.132 0.226 0.285 0.323

0.033 0.153 0.244 0.283 0.288

0.035 0.165 0.247 0.258 0.294

0.038 0.174 0.235 0.276 0.277

0.039 0.166 0.255 0.262 0.278

0.036 0.176 0.238 0.260 0.290

0.035 0.160 0.231 0.266 0.308

0.033 0.157 0.238 0.283 0.290

0.032 0.161 0.254 0.268 0.284

0 1 2 3 4

0

2

4

6

8

0.05

0.1

0.15

0.2

0.25

0.3

Keys

Q
ue

ri
es

(a)

0.006 0.023 0.049 0.170 0.752

0.004 0.020 0.036 0.174 0.766

0.005 0.019 0.048 0.229 0.699

0.004 0.022 0.057 0.198 0.719

0.003 0.018 0.036 0.154 0.788

0.006 0.026 0.061 0.340 0.568

0.004 0.024 0.079 0.159 0.734

0.003 0.027 0.034 0.183 0.753

0.004 0.013 0.039 0.195 0.749

0.002 0.017 0.050 0.233 0.697

0 1 2 3 4

0

2

4

6

8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Keys

Q
ue

ri
es

(b)

Figure 20. The attention score matrices for the first ten predictions on the test set, made by the
encoder–decoder architecture with an attention mechanism, are shown for both the VN-Index (a)
and the HNX-Index (b). For each row, the attention scores indicate how the decoder’s hidden state
focuses on each of the five hidden states of the encoder.

Entropy 2025, 27, 82 19 of 21

7. Conclusions
This study details the architecture of integrating the encoder, decoder and attention

mechanism, discusses its theoretical underpinnings, and demonstrates its effectiveness for
Vietnamese stock price prediction. Our experimental results indicate that this approach
significantly enhances forecasting accuracy compared to traditional models such as RNN,
LSTM, and GRU. These findings underscore the potential of advanced deep learning
techniques in financial forecasting. A notable advantage of our approach is the use of
Bayesian optimization, which efficiently determines the optimal set of hyperparameters,
significantly contributing to the model’s performance. However, due to limitations in
computational resources, we were unable to include all hyperparameters into the Bayesian
optimization process.

By delivering a more accurate forecasting model, this study provides valuable insights
for investors, financial analysts, and policymakers, enabling better-informed decisions
regarding future financial trends and strategies. However, our findings are limited to the
Vietnamese stock market. Future work is needed to evaluate the generalizability of this
approach to other financial markets and to incorporate additional data sources, such as
social media sentiment and financial news.

Furthermore, the results of the encoder–decoder architectures with and without the
attention mechanism are inconsistent. Adding an attention mechanism to the architecture
does not provide a significant improvement in one-step forecasting of the stock price index.
Further research can be conducted to investigate the factors that influence the effectiveness
of attention by conducting more extensive hyperparameter tuning, experimenting with
different attention mechanisms (e.g., location-based attention, multi-head attention), and
exploring multi-step forecasting.

Funding: This research received no external funding.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors upon request.

Acknowledgments: I would like to express my sincere gratitude to the assistant editor for her
support and guidance on this Special Issue. I am also deeply grateful to the anonymous referees
whose constructive feedback and critical comments have greatly contributed to the refinement of this
manuscript. Their time and effort in reviewing this work are truly appreciated.

Conflicts of Interest: The author declares no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
MAE Mean Absolute Error
MSE Mean Square Error
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
VN-Index Ho Chi Minh Stock Exchange Index
HNX-Index Hanoi Stock Exchange Index

References
1. Singh, R.; Srivastava, S. Stock prediction using deep learning. Multimed. Tools Appl. 2017, 76, 18569–18584. [CrossRef]
2. Nabipour, M.; Nayyeri, P.; Jabani, H.; Mosavi, A.; Salwana, E. Deep learning for stock market prediction. Entropy 2020, 22, 840.

[CrossRef]

http://doi.org/10.1007/s11042-016-4159-7
http://dx.doi.org/10.3390/e22080840

Entropy 2025, 27, 82 20 of 21

3. Ecer, F.; Ardabili, S.; Band, SS.; Mosavi, A. Training multilayer perceptron with genetic algorithms and particle swarm optimization
for modeling stock price index prediction. Entropy 2020, 22, 1239. [CrossRef] [PubMed]

4. Wu, D.; Wang, X.; Su, J.; Tang, B.; Wu, S. A labeling method for financial time series prediction based on trends. Entropy 2020,
22, 1162. [CrossRef] [PubMed]

5. Lu, W.; Li, J.; Li, Y.; Sun, A.; Wang, J. A CNN-LSTM-based model to forecast stock prices. Complexity 2020, 2020, 6622927.
[CrossRef]

6. Lu, W.; Li, J.; Wang, J.; Qin, L. A CNN-BiLSTM-AM method for stock price prediction. Neural Comput. Appl. 2021, 33, 4741–4753.
[CrossRef]

7. Wang, C.; Chen, Y.; Zhang, S.; Zhang, Q. Stock market index prediction using deep Transformer model. Expert Syst. Appl. 2022,
208, 118128. [CrossRef]

8. Kanwal, A.; Lau, M.; Ng, S.; Sim, K.; Chandrasekaran, S. BiCuDNNLSTM-1dCNN - A hybrid deep learning-based predictive
model for stock price prediction. Expert Syst. Appl. 2022, 202, 117123. [CrossRef]

9. Yang, S.; Ding, Y.; Xie, B.; Guo, Y.; Bai, X.; Qian, J.; Gao, Y.; Wang, W.; Ren, J. Advancing Financial Forecasts: A Deep Dive into
Memory Attention and Long-Distance Loss in Stock Price Predictions. Appl. Sci. 2023, 13, 12160. [CrossRef]

10. Wang, C.; Ren, J.; Liang, H.; Gong, J.; Wang, B. Conducting stock market index prediction via the localized spatial–temporal
convolutional network. Comput. Electr. Eng. 2023, 108, 108687. [CrossRef]

11. Zhu, W.; Dai, W.; Tang, C.; Zhou, G.; Liu, Z.; Zhao, Y. PMANet: A time series forecasting model for Chinese stock price prediction.
Sci. Rep. 2024, 14, 18351. [CrossRef] [PubMed]

12. Chen, X.; Yang, F.; Sun, Q.; Yi, W. Research on stock prediction based on CED-PSO-StockNet time series model. Sci. Rep. 2024,
14, 27462. [CrossRef]

13. Xie, L.; Chen, Z.; Yu, S. Deep Convolutional Transformer Network for Stock Movement Prediction. Electronics 2024, 13, 4225.
[CrossRef]

14. Li, S.; Xu, S. Enhancing stock price prediction using GANs and transformer-based attention mechanisms. Empir. Econ. 2024, 1–31.
[CrossRef]

15. Soydaner, D. Attention mechanism in neural networks: Where it comes and where it goes. Neural Comput. Appl. 2022, 34,
13371–13385. [CrossRef]

16. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. arXiv 2014, arXiv:1409.3215.
17. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
18. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
19. Cho, K.; Courville, A.; Bengio, Y. Describing multimedia content using attention-based encoder-decoder networks. IEEE Trans.

Multimed. 2015, 17, 1875–1886. [CrossRef]
20. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L.; Polosukhin, I. Attention is all you need.

In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017.

21. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence
time-series forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [CrossRef]

22. Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting.
Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430.

23. Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. Fedformer: Frequency enhanced decomposed transformer for long-term series
forecasting. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, MD, USA 17–23 July 2022;
pp. 27268–27286.

24. Du, S.; Li, T.; Yang, Y.; Horng, S.J. Multivariate time series forecasting via attention-based encoder–decoder framework. Neurocom-
puting 2020, 388, 269–279. [CrossRef]

25. Jin, X.B.; Zheng, W.Z.; Kong, J.L.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Lin, S. Deep-learning forecasting method for electric power load
via attention-based encoder-decoder with bayesian optimization. Energies 2021, 14, 1596. [CrossRef]

26. Wu, L.; Zhang, Y. Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery. Energy 2023,
268, 126665. [CrossRef]

27. Klaar, A.; Stefenon, S.; Seman, L.; Mariani, V.; Coelho, L. Optimized EWT-Seq2Seq-LSTM with attention mechanism to insulators
fault prediction. Sensors 2023, 23, 3202. [CrossRef] [PubMed]

28. Jayanth, T.; Manimaran, A. Developing a Novel Hybrid Model Double Exponential Smoothing and Dual Attention Encoder-
Decoder Based Bi-Directional Gated Recurrent Unit Enhanced with Bayesian Optimization to Forecast Stock Price. IEEE Access
2024, 12, 114760–114785. [CrossRef]

29. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

http://dx.doi.org/10.3390/e22111239
http://www.ncbi.nlm.nih.gov/pubmed/33287007
http://dx.doi.org/10.3390/e22101162
http://www.ncbi.nlm.nih.gov/pubmed/33286931
http://dx.doi.org/10.1155/2020/6622927
http://dx.doi.org/10.1007/s00521-020-05532-z
http://dx.doi.org/10.1016/j.eswa.2022.118128
http://dx.doi.org/10.1016/j.eswa.2022.117123
http://dx.doi.org/10.3390/app132212160
http://dx.doi.org/10.1016/j.compeleceng.2023.108687
http://dx.doi.org/10.1038/s41598-024-69303-9
http://www.ncbi.nlm.nih.gov/pubmed/39112563
http://dx.doi.org/10.1038/s41598-024-78984-1
http://dx.doi.org/10.3390/electronics13214225
http://dx.doi.org/10.1007/s00181-024-02644-6
http://dx.doi.org/10.1007/s00521-022-07366-3
http://dx.doi.org/10.1109/TMM.2015.2477044
http://dx.doi.org/10.1609/aaai.v35i12.17325
http://dx.doi.org/10.1016/j.neucom.2019.12.118
http://dx.doi.org/10.3390/en14061596
http://dx.doi.org/10.1016/j.energy.2023.126665
http://dx.doi.org/10.3390/s23063202
http://www.ncbi.nlm.nih.gov/pubmed/36991913
http://dx.doi.org/10.1109/ACCESS.2024.3435683
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Entropy 2025, 27, 82 21 of 21

30. Cho, K.; van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv 2014, arXiv:1409.1259.

31. Saud, A.S.; Shakya, S. Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector
of NEPSE. Procedia Comput. Sci. 2020, 167, 788–798. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.procs.2020.03.419

	Introduction
	Related Work
	Significant Early Contributions to Deep Learning Models for Stock Price Prediction
	Historical Developments in Encoder–Decoder Architecture and Attention Mechanism

	Recurrent Neural Networks
	RNN
	LSTM
	Gated Recurrent Units

	Encoder–Decoder Architecture
	Encoder
	Decoder
	Attention

	Experiments
	Datasets
	Data Preprocessing
	Hyperparameters Setting
	Model Performance Measures

	Results
	Conclusions
	References

