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Abstract: The co-gasification of biomass and plastic waste offers a promising solution
for producing hydrogen-rich syngas, addressing the rising demand for cleaner energy.
However, optimizing this complex process to maximize hydrogen yield remains chal-
lenging, particularly when balancing diverse feedstocks and improving process efficiency.
While machine learning (ML) has shown significant potential in simulating and optimizing
such processes, there is no clear consensus on the most effective regression models for
co-gasification, especially with limited experimental data. Additionally, the interpretability
of these models is a key concern. This study aims to bridge these gaps through two primary
objectives: (1) modeling the co-gasification process using seven different ML algorithms,
and (2) developing a framework for evaluating model interpretability, ultimately identify-
ing the most suitable model for process optimization. A comprehensive set of experiments
was conducted across three key dimensions, generalization ability, predictive accuracy, and
interpretability, to thoroughly assess the models. Support Vector Regression (SVR) exhib-
ited superior performance, achieving the highest coefficient of determination (R2) of 0.86.
SVR outperformed other models in capturing non-linear dependencies and demonstrated
effective overfitting mitigation. This study further highlights the limitations of other ML
models, emphasizing the importance of regularization and hyperparameter tuning in
improving model stability. By integrating Shapley Additive Explanations (SHAP) into
model evaluation, this work is the first to provide detailed insights into feature importance
and demonstrate the operational feasibility of ML models for industrial-scale hydrogen
production in the co-gasification process. The findings contribute to the development
of a robust framework for optimizing co-gasification, supporting the advancement of
sustainable energy technologies and the reduction of greenhouse gas (GHG) emissions.

Keywords: thermochemical conversion; biomass gasification; clean energy; explainable
artificial intelligence; Shapley Additive Explanations framework; summary plot; force plot

1. Introduction
Rapid industrialization and population growth have resulted in a significant increase

in energy demand. A significant portion of global energy consumption relies on fossil fuels,
which may potentially raise the GHG emissions, particularly carbon dioxide (CO2) [1].
The far-reaching consequences of this trend, with detrimental effects on the ecosystem,
have alarmed the world leaders and policymakers to move towards an environmentally
benign energy source. Parallel to this, worldwide plastic production has increased steadily
in order to satisfy the demands of the international market. Plastics, being composed of
petroleum-based materials, have contributed to the depletion of non-renewable fossil fuels
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as a consequence of this phenomenon. Beyond that, the accumulation of plastic waste
without a proper disposal system endangers the health of humans and animals by contami-
nating groundwater [2]. This has necessitated urgent research for a sustainable treatment of
plastic waste. Numerous approaches have been utilized to alleviate this issue, but recycling
plastic waste into fuels rich in energy has been recognized as the most favorable strategy to
address challenges faced globally and move towards a more sustainable future [3]. Con-
sidering the rapid growth in energy consumption and the pressing environmental issues,
the pursuit of clean energy production is a vitally important research endeavor. Hydrogen
is widely acknowledged as a potential clean energy carrier due to its applicability and
versatility. Moreover, hydrogen production can transform transportation by powering
hydrogen fuel cells or by being converted into liquid fuels. It provides a clean alterna-
tive to fossil fuels, reducing carbon emissions while maintaining energy efficiency and
advancing the transition toward sustainable mobility. The rapid development of hydrogen
technology and growing energy demand has driven many countries to prioritize hydrogen
development in their national strategies and implement measures to meet their sustainable
development goals [4]. As hydrogen is globally recognized as an important energy carrier
in international decarbonization strategies, there is rising attentiveness toward establishing
the sustainability of hydrogen production. The plastic wastes containing hydrocarbons are
considered as an excellent feed for hydrogen production with minimal GHG emissions [5].
The majority of nations are therefore eager to promote innovations in clean hydrogen
production from plastic wastes and to boost their economy [6].

Thermochemical methods have recently received increased attention from the scientific
community, governments, and industry as a promising versatile platform for producing
hydrogen-rich gases from plastic wastes due to their high conversion efficiency and high
process yield [7]. Amongst all diverse thermochemical methods, gasification has stood out
as a key technology to provide a significant framework for large-scale conversion of plastic
wastes with reduced GHG emissions. However, gasification can face challenges such as
tar formation, high energy requirements, and incomplete conversion of feedstocks. Co-
gasification, which combines plastic waste with other materials like biomass, offers several
benefits, including improved efficiency, enhanced syngas quality, and lower operational
costs while further reducing GHG emissions. Recent studies highlight the synergistic
effects of co-gasifying biomass and plastics, enhancing energy conversion efficiency and
addressing environmental issues often linked to plastic gasification [8]. Despite its potential,
research on biomass-plastic co-gasification remains in its early stages, indicating the need
for further exploration. Industrial-scale deployment has been limited by the complexity of
process parameters that affect performance. Accurately modeling these dynamics using
computational fluid dynamics remains challenging, requiring extensive experimentation to
optimize, control, and scale up the process [9]. With limited time and resources, researchers
often struggle to explore the high-dimensional parameter space experimentally. Therefore,
it is essential to optimize the impact of key process parameters on hydrogen production
using the available limited experimental data.

With the rapid advancements of the 4th industrial revolution, machine learning (ML),
a branch of artificial intelligence, has become a powerful tool for optimizing hydrogen
production [10]. ML is particularly effective in uncovering patterns within co-gasification
datasets, bypassing the need for a deep understanding of complex physicochemical pro-
cesses. By employing advanced computational methods, ML can accurately model chemical
reactions that are otherwise difficult to capture mathematically [11]. While ML has been
widely used to simulate gasification processes [12], identifying the most reliable and inter-
pretable ML algorithm for optimizing hydrogen production remains a key challenge.
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Notably, no previous studies have comprehensively evaluated both the performance
and interpretability of ML models for predicting hydrogen production from biomass–
plastics co-gasification, especially using limited experimental data. Recent comparisons of
deep learning (DL) models for hydrogen production prediction have shown surprisingly
strong results in small datasets [13], prompting further investigation into how ML models
perform in similar conditions. This study seeks to fill this gap by analyzing the performance
of various explainable ML models on small co-gasification datasets, aiming to identify
the optimal process parameters for maximizing hydrogen production. Such insights are
critical for advancing the commercialization of this technology, reducing GHG emissions,
and meeting the increasing demand for cleaner fuel alternatives.

To fill this gap in knowledge, this is the first study that delves into investigating
a wide range of ML regression models for estimating hydrogen production accuracy
from biomass–plastics co-gasification processes. The ML models selected for comparison
include linear regression (LR), k-nearest neighbor (KNN), decision tree regression (DTR),
random forest regression (RFR), gradient-boosting regression (GBR), SVR, and multilayer
perceptron (MLP). The rationale for selecting these ML models was based on their strong
performance reported in the relevant literature [14]. Furthermore, they are widely utilized
in the field of biomass conversion. These models are assessed using the currently available
limited amount of experimental data. All models are configured using a standardized
model configuration to maintain consistent model complexity and enable a meaningful
comparison. The comprehensive assessment results illustrate the respective benefits and
generalization ability of developed regression models in precisely capturing the intricate
connection between the process parameters and hydrogen production with regard to the
biomass–plastics co-gasification process.

The outcome of this research is expected to hold considerable importance in terms of
enhancing and optimizing co-gasification systems involving biomass and plastics. Such
advancements could result in increased efficiency and efficacy in the utilization of these
invaluable resources. This knowledge has significant promise for promoting the advance-
ment of economically efficient and environmentally friendly co-gasification systems for
biomass–plastics. These findings can help researchers and business executives maximize
the advantages of biomass–plastics co-gasification while reducing its negative effects on
the environment.

2. Machine Learning Models
This section provides an overview of the six non-linear ML models selected for evalu-

ation in this study. It highlights the rationale behind their selection, explains their working
principles, and discusses their relevance to predicting hydrogen yield in the co-gasification
process. The models examined include both parametric and non-parametric techniques,
ensuring a comprehensive assessment of their predictive performance.

2.1. Linear Regression (LR)

Linear Regression is one of the simplest and most widely used machine learning
models for predictive analysis. It establishes a linear relationship between the independent
variables (process parameters) and the dependent variable (hydrogen yield) by minimizing
the residual sum of squares between observed and predicted values. Mathematically,
the model can be represented as follows:

Y = β0 + β1X1 + β2X2 + · · ·+ βnXn + ϵ (1)

where Y denotes the predicted hydrogen yield, β0 is the intercept, β1, β2, β3 . . . βn are the
coefficients representing the contribution of each feature, X1, X2, X3 . . . Xn are the input
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features (such as temperature, RSS size, HDPE size, and plastics), and ϵ accounts for the
error term. Although LR offers a simple and interpretable approach, it is included in the
evaluation to assess whether the relationship between process parameters and hydrogen
production follows a linear pattern or exhibits non-linear characteristics. This allows for
a baseline comparison against more advanced non-linear models, helping to confirm the
nature of interactions within the co-gasification process.

2.2. k-Nearest Neighbor (KNN) Regression

KNN regression is a non-parametric ML technique that is widely recognized for its
simplicity and ease of implementation [15]. This approach is mostly used when there
is a lack of prior knowledge regarding the distribution of data. The implementation of
KNN utilizes instance-based learning, which operates on the fundamental principle that
the nearest neighbors have the greatest potential to impact the prediction. Against this
background, the approach uses the output of its neighbors to predict the outcome of the test
sample rather than learning the mapping from the training set. Hence, choosing a method
to calculate the distance between test and training data is the first step in developing this
algorithm. Euclidean distance is commonly observed in this context.

KNN is regarded as a lazy learner, as it saves the training data and starts the learning
process when test data are presented for prediction. For instance, to determine which train-
ing dataset samples are the k-nearest to a given test sample X, KNN calculates the distance
di between X and each sample xi in the training dataset D = (x1, y1), (x2, y2), . . . , (xN , yN).
It then picks the k samples with the shortest distance. Finally, it provides the k-nearest
neighbor’s weighted average as follows [15],

Ŷ =
k

∑
i=1

yi(X) (2)

Two key aspects impact prediction results: k value, and distance measuring method. Small
k values make outcomes vulnerable to adjacent noise. If k is large, irrelevant points can be
considered. The optimal k value is usually computed via cross-validation (CV).

2.3. Decision Tree Regression (DTR)

Recently, DTR has grown popular due to its ease of implementation, interpretability,
and low computing cost. In contrast to LR models that utilize a single regression function,
whether parametric or non-parametric, across the entire dataset and incorporate all inde-
pendent variables as predictors, the DTR model employs stratified regression analysis and
applies different regression models to stratified samples of the independent variables with
varying relationships to the dependent variable. More crucially, they can handle non-linear
interactions between features, which many other ML algorithms cannot, and find the most
essential features that influence decision-making.

The fundamental principle underlying the use of DTR is to divide complicated deci-
sions into simpler ones and create easier-to-interpret predictions. To this end, DTR employs
a recursive partitioning of training samples D = (x1, y1), (x2, y2), . . . , (xN , yN) into homo-
geneous subsets at each node based on the partitioning criteria such as Information gain
and Gini impurity [16]. This partitioning is carried out by dividing the predicator space
into distinct regions Rj (where j = 1 to J) that represent the terminal nodes. Each region j is
assigned with a constant γj and the tree ϕTP is mathematically modelled as follows [16]:

Ŷ = ϕTP(X, θ) =
J

∑
j=1

γj I(X ∈ Rj) (3)
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where

I(X ∈ Rj) =

1, if X ∈ Rj

0, otherwise

The efficacy of the DTR model relies on the process of identifying the optimal hyper-
parameter θ through the minimization of the prediction error, which is mathematically
represented as follows:

θ̂ = argminθ

N

∑
i=1

L(yi, ŷi) (4)

where yi is the outcome of the input sample xi and L(.) is the loss function. For a regression
problem, the loss function is mean square error. θ̂ represents the optimized hyperparameter.
Against this background, the DTR may overfit if the depth of the tree is extremely high
by learning too fine training data details. This phenomenon has the potential to result
in generalization on unseen data. Conversely, an extreme low tree depth may lead to
underfitting. Therefore, the tuning of tree depth is of utmost importance. Although decision
trees have some limitations, they may successfully address the issue of missing data by
employing techniques such as weighted impurity and attribute splitting.

2.4. Support Vector Regression (SVR)

Support vector machine (SVM) is among the most popular ML algorithms for clas-
sification problems on the basis of statistical learning theory. SVR is a modified version
of SVM that has been specifically developed to address high dimensionality, nonlinearity,
and limited sample sizes in regression problems. In contrast to previous regression models,
SVR focuses on minimizing the generalization error instead of minimizing the sum of
squared errors between predicted and actual outcomes [16]. In addition, it utilizes the
advantages of kernel functions to effectively capture and represent non-linear correlations
between the input and output data in a higher-dimensional space. SVR eventually achieves
generalized regression efficiency by adequately minimizing both the observed distribution
error and training error.

In a broad context, SVR endeavors to identify a function that adequately cap-
tures the correlation between xi and yi within the provided training dataset D =

{(x1, y1), (x2, y2), . . . , (xN , yN)}, as seen below [16]:

Ŷ =
N

∑
i=1

αiK(xi, xj) + b (5)

where

K(xi, xj) = exp
∥xi − xj∥2

2σ2 (6)

In this case, αi and b are the support vectors and bias term, respectively, determined
during training. The kernel function, denoted as K, aims to map the feature space onto a
higher dimension. As a result, features that are not linearly separable in lower dimensions
can achieve linear separability in higher dimensions. The selection of kernel functions is
a crucial task in SVR, and the primary kernel functions used within the SVR framework
include, namely linear, polynomial, sigmoid, and radial basis function (RBF). This study
uses RBF kernel defined in Equation (6).

Following the selection of a kernel, the empirical risk minimization strategy can be
leveraged using a robust insensitive loss function given in Equation (8) to train SVR and
achieve an optimal solution. Thus, the support vectors and bias determined by minimizing
Equation (7) can subsequently be utilized to make predictions using Equation (5).
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J =
m

∑
i=1

Lϵ(ŷi, yi) (7)

Lϵ =

0, if yi − ŷi ≤ ϵ

yi − ŷi − ϵ, otherwise
(8)

2.5. Gradient-Boosting Regression (GBR)

GBR is an ensemble variant of DTR proposed by Friedman. It incorporates a boosting
learning approach and the gradient descent method to effectively identify the limits of
weak learners and enhance their prediction accuracy. MART, an acronym for Multiple
Additive Regression Trees, is a specialized version of gradient boosting that has been
tailored exclusively for regression purposes [17]. In general, boosting methods consist of
three fundamental components: an ensemble model, weak learners, and a loss function.
In this context, weak learners refer to models that exhibit a strong bias with the training
dataset and produce outputs that are not noteworthy. Unlike RFR, GBR redefines boosting
as a numerical optimization problem and iteratively adds a weak learner to the ensemble
model using gradient descent to minimize the loss function. Mathematically, GBR model
over M trees can be described as [17],

Ŷ = Gm(X) = Gm−1(X) + αϕTP(X,θ) (9)

Here T(x, θm) is the weak classifier generated in mth iteration, which θm is determined by
minimizing the loss function, which can be described as

θ̂m = argminθ

N

∑
i=1

L(yi, ŷi) (10)

where Gm−1(X) is the previous tree residue and GBR minimizes the θ̂m to establish the pa-
rameters of the resulting ensemble. The training process seeks to lower the loss function as
much as possible to find the local or global optimal solution. Thus, GBR can help reduce bias
and variation in prediction results, particularly when applied to small datasets. Therefore,
this study utilized GBR to predict hydrogen production in a small-dataset environment.

2.6. Random Forest Regression (RFR)

RFR is another ensemble variation of the DTR model that was introduced by Breiman
with the aim of improving the performance of decision tree models leveraging the bag-
ging ensemble learning method [18]. Within this learning framework, RFR improves DTR
generalization by incorporating randomness at two levels. First, the tree construction pro-
cess begins utilizing bootstrap sampling with replacement to randomly select the training
datasets Tb (where b = 1 to B) from the complete training dataset T. Second, during the
tree partitioning process, RFR endeavors to identify the most favorable partition by either
examining the whole predicator space or by utilizing the maximum number of predicator
variables m. Mathematically, the final random forest with B trees Tb (where b = 1 to B) is
represented as follows [18]:

Ŷ = ΦTB,P(X) =
B

∑
b=1

ϕTb,m(X) (11)

Thus, RFR gains potential to eliminate DTR overfitting by leveraging the benefits
of ensemble learning and random sampling. Furthermore, the RFR inherent CV ability
with bootstrapped samples estimates realistic prediction error during training, making it
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appropriate for real-time application. Nevertheless, in real practice, the RF structure must be
managed with an adequate amount of trees to balance accuracy and computational burden.

2.7. Multilayer Perceptron (MLP)

MLP is a specific category of artificial neural network. It emulates the neural structure
of the human brain to address a problem and can be employed for regression or classifi-
cation tasks. The success of MLP-based neural networks in a wide range of applications
depends on their ability to accurately approximate any function to any desired level of
accuracy [19]. The MLP model consists of three sorts of layers: an input layer, one or more
hidden layers, and an output layer. The nodes within each layer are interconnected by
weighted connections to minimize the discrepancy between the output of the network and
the desired output. The output signals of an MLP are determined by the summation of
the inputs from the previous layer, which is then adjusted by a basic nonlinear activation
function as given below [19],

Ŷ = Act_ f un(
f

∑
N=1

WN.lXN) (12)

In this context, the variables f and l represent the input process parameters and the number
of nodes, respectively. Additionally, a wide variety of activation functions that can be
used include linear, sigmoid, softmax, tanh, and rectified linear unit (RELU). In general,
the backpropagation strategy is used to optimize the model parameters during the training
process. This is carried out by modifying the bias and weights at each epoch, gradually
reducing the output error as described in Equation (12). Thus, the strategy facilitates MLP
to achieve enhanced precision.

3. Model Design and Implementation
The evaluation process framework is depicted in Figure 1. The figure depicts the

relationship between techniques and practices discussed in Section 2. The step-wise explo-
ration of the methodology adopted for comprehensive analysis of the selected predictive
models for hydrogen production is as follows:

Figure 1. Evaluation framework for explainable ML models in hydrogen yield prediction.

3.1. Data Description

The research data utilized in this study was sourced from the prior literature on
the co-gasification of waste plastic and rubber, as documented by [20,21]. The dataset
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comprises 30 independent experiments carried out in a central composite design, wherein
the independent variables include HDPE particles, rubber seed shell (RSS) biomass particle
size, plastic quantity in the mixture, and gasification temperature. The quantity of hydrogen
generated during the co-gasification of plastic and rubber waste was measured as the
dependent variable.

The co-gasification process can be generally expressed by the following chemical equation:

CxHy + O2 + H2O → H2 + CO + CO2 + CH4 (13)

This equation represents the thermochemical conversion of hydrocarbon-rich feedstocks,
such as biomass and plastics, into hydrogen-rich syngas through reactions with oxygen
and steam.

The experiment was conducted using a thermogravimetric analyzer that was con-
nected to a mass spectrometer. Table 1 displays the descriptive statistics of the data.
The HDPE particle size, biomass RSS particle size, plastic composition in the mixture,
and gasification temperature were measured in a range from 0.13 to 0.63 mm, 0% to 40%
and 500 ◦C to 900 ◦C, respectively.

Table 1. Descriptive data statistics.

Temp
◦C

RSS Size
mm

HDPE
mm

Plastics
wt. %

H2
vol. %

count 30.00 30.00 30.00 30.00 30.00
mean 700.00 0.38 0.38 20.00 44.71

std 90.97 0.11 0.11 9.10 3.65
min 500.00 0.12 0.12 0.00 38.57
25% 600.00 0.25 0.25 10.00 42.21
50% 700.00 0.38 0.38 20.00 45.64
75% 800.00 0.50 0.50 30.00 47.33
max 900.00 0.62 0.62 40.00 50.12

Table 2 presents the characteristics of the primary raw materials used in this exper-
iment. Here, the elemental analyzer and thermogravimetry analyzer, respectively, were
used to perform the ultimate and proximate analyses of these feedstocks. As illustrated in
Table 2, the proximate analysis reports the elemental composition of volatile matter (V),
fixed carbon (FC), ash (A), and moisture content (M) in the raw materials, while ultimate
analysis determines the elemental composition of carbon, hydrogen, nitrogen, and oxygen
content in the raw materials. Additional information regarding the dataset can be found
elsewhere [21].

Table 2. Characteristics of HDPE and RSS.

Sample

Proximate Analysis
Wt. %, Dry Basis

Ultimate Analysis
Wt. %, Dry Basis

V FC A M C H N O S

HDPE 99.46 0 0.34 0 81.45 12.06 0.34 0.79 5.36

RSS 80.98 6.62 3.81 8.59 44.31 4.38 0.51 50.67 0.13

3.2. Data Preparation

Data preparation is a crucial step that must be undertaken prior to model training.
This process guarantees optimal performance and promotes competence in the developed



Entropy 2025, 27, 83 9 of 27

ML regression models. The data format must be consistent for ML algorithms. To achieve
this, feature scaling, the process of ensuring that all features are normalized to a consistent
range, is essential in data preprocessing to reduce model complexity and accelerate the
learning process. It also enables every feature to contribute evenly and prevents model bias.
As discussed in Section 3.1, the features collected from the co-gasification process have
different scales, different distributions, and sometimes outliers. This study uses min–max
normalization to normalize all features, as defined below [22]:

x̄ =
x − min(x)

max(x)− min(x)
(14)

3.3. Model Implementation

The ML models chosen for investigation in this study are developed using the sklearn
library in Python. Apart from that, specifically, Python libraries such as statsmodel, seaborn,
and matplotlib were utilized for conducting exploratory data analysis with the purpose
of gaining insights into the relationship between the predictors and the target variable.
Furthermore, this study made use of the Jupyter notebook interface provided by the
Google Colaboratory platform [23]. This interface offers a highly interactive programming
environment for Python, eliminating the need for local system setup. All tests in this
study were conducted using this platform. As stated in the literature, the efficacy of an ML
algorithm is dependent upon the quality of the training and testing data employed during
the model development process. The diversified training and testing datasets are essential
for accurately assessing the true performance of a model, since they mitigate the potential
biases that may arise from overfitting or underfitting the model to the training data. Taking
into account this fact, stratified sampling was adopted to split the study dataset using the
most common split ratio of 80:20. This indicates that 80% of the data are used for training
and the remaining 20% for the testing set [24].

Following the process of data splitting, the initial step involves the implementation
of selected ML models with baseline hyperparameter configurations. These models are
then trained using a 10-fold cross validation (10-CV) technique, which aims to provide
more reliable and stable estimates. The aforementioned models are labeled as unoptimized
ML models. For the second task, we reimplemented all models, specifying the hyperpa-
rameter space for each ML model. Subsequently, a 10-CV was utilized to determine the
optimal hyperparameters for all models. The ML models developed using the optimal
hyperparameters have been designated as tuned models.

3.4. Model Hyperparameter Tuning

Hyperparameters refer to the parameters that are used to define the architecture
of a model. The process of selecting appropriate hyperparameter values for a given
ML algorithm and dataset is crucial [25]. Hyperparameters play a significant role in
controlling the model learning process and can greatly affect the effectiveness of ML models.
The objective of hyperparameter tuning is to enhance the generalization performance of
the model by identifying the optimal values for the hyperparameters that yield the most
favorable out-of-sample performance.

The cross-validated grid search function (GridSearchCV) in python is employed with
negated MAE as a scoring parameter to analyze every possible combination of hyperparam-
eters and determine the optimal set that maximizes generalization performance. Finally,
to evaluate how well the best-found combination generalizes, we measured its score on the
hold-out test set. Table 3 provides insight into the hyperparameter space for all ML models.
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Table 3. Optimized hyperparameters for all explainable ML models in hydrogen yield prediction.

ML
Models Hyperparameters Search Range Selected Value

KNN

n_neighbors [2, 3, 4, 5, 7, 9, 11] 2

weights [‘uniform’, ‘distance’] ‘distance’

metric [‘minkowski’,
‘euclidean’,‘manhattan’] ‘euclidean’

DTR

max_depth [3, 5, 7, 9, 11, 15] 9

min_samples_split [2, 3, 4, 5] 2

criterion [‘gini’,‘entropy’] ‘gini’

SVR

gamma [1, 1.5, 2, 2.5] 1.5

C [3, 4, 4.5, 5, 5.5] 4.5

epsilon [0.1, 0.01, 0.5, 1] 0.01

GBR

loss [‘squared_error’, ‘absolute_error’] ‘squared_error’

learning_rate [0.1, 0.01, 0.5, 1] 0.1

max_depth [3, 5, 7, 9, 11, 15] 5

n_estimators [50, 100, 200, 250, 300] 250

RFR

max_depth [3, 5, 7, 9, 11, 15] 5

max_features [2, 3, 4, 5] 4

criterion [‘gini’,‘entropy’] ‘gini’

n_estimators [10, 15, 20, 25, 30] 15

MLP

hidden_layer_sizes [(100, 50, 25), (50, 25), (50)] (50)

learning_rate_init [0.1, 0.01, 0.5, 1] 0.01

power_t [0.1, 0.5, 1] 0.5

max_iter [250, 500, 1000] 500

4. Results and Discussion
The assessment of the developed ML models is of utmost importance in order to select

the ideal model for accurate prediction of hydrogen production in a co-gasification process.
Within this framework, experiments are designed to evaluate the developed models across
three dimensions, such as its generalization ability, prediction error, and interpretability.
This section presents the results analysis to compare the effectiveness of the seven regression
models for the prediction of hydrogen production. Finally, this section concludes by
presenting the most important contribution made by the models chosen in this study.

4.1. Exploratory Data Analysis (EDA)

As a first step, the research data presented in the data description section is prepro-
cessed based on the procedure outlined in Section 3. Subsequently, the preprocessed data
was subjected to analysis using a statistical technique known as EDA. Briefly, EDA is a very
important step in ML that needs to be conducted before model development to understand
and prepare the study data [26]. In EDA, the first task is to examine the presence of outliers
in the modeling dataset and to investigate the data homogeneity. For this purpose, Python’s
boxplot is shown in Figure 2. Observing these results, it is obvious that the dataset has no
outliers and that the distribution of all input features of interest is in a reasonable range,
making them suitable for developing the predictive models.

Furthermore, a Pearson Correlation Coefficient (PCC) analysis was conducted to un-
veil the relationships among all parameters in the co-gasification process. This process
enables us to identify the co-linearity between input features and eradicate the overlapping
effect of input features. Ideally, |PCC| = 1 represents strong data correlation, whereas
|PCC| = 0 signifies the absence of correlation. Furthermore, it is a standard practice to con-
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sider only one variable for model development when the |PCC| between two variables is
greater than 0.6 [27]. The Seaborn heatmap illustrated in Figure 3. demonstrates the degree
of dependency between the input process parameters and the target variable hydrogen pro-
duction. From careful observation of the figure, it is evident that the correlation coefficients
between the four process parameters is <0.01, declaring they are not correlated to each
other. Also, it is worthy to observe that the operating temperature and quantity of plastics
show a positive correlation with hydrogen production, with a correction coefficient of 0.082
and 0.13, respectively. Whereas the other two process parameters, such as RSS size and
HDPE size, show a negative correlation on hydrogen production with a coefficient of −0.34
and −0.3, respectively. These observations imply that all these four process parameters
have varying influences on hydrogen production and are required to be considered for
model development.

Figure 2. Box plot for outlier analysis.

Figure 3. Heat map for correlation analysis.

4.2. Model Generalization Analysis

After ensuring the quality of the study data and acquiring a thorough understanding of
its characteristics from EDA analysis, the chosen seven different ML models are developed
and trained following the procedures outlined in Section 3. The primary objective of the first
set of experimental analyses is to investigate the potential of the developed ML models for
their generalization ability on the available research data. This investigation is conducted
from two distinct perspectives, which will be delineated in the following sections.
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4.2.1. Model Learning Ability

Learning curves are widely recognized as a valuable tool in ML for visually represent-
ing the training progress over time. The scholarly literature suggests utilizing learning
curves to analyze ML models, as they can assist in identifying overfitting or underfitting
and can contribute to improving the performance of the models [28]. Acknowledging the
benefits of the learning curves, it is employed in this study to investigate the performance
of the ML models for hydrogen prediction in the co-gasification process. The corresponding
results for the seven ML models with hyperparameter optimization are depicted in Figure 4,
while their respective baselines are shown in Figure 5. The learning curve is shown by
two solid lines: blue for the training data, and orange for the testing data. In this context,
the MSE is utilized to evaluate the predictive performance of the models as they advance
in their learning process. In general, the errors observed on the testing dataset serve as
indicators of model generalization, whereas errors observed on the training dataset provide
insights into the goodness-of-fit. Consequently, researchers recommend generalization as a
‘gold standard’ for model selection, as it reflects the model’s ability to adapt to new data
and make accurate predictions.

Keeping this in mind, and observing the MSE values in Figures 4 and 5, it is evident
that the learning curves of all the competing models, except for KNN and MLP, exhibit only
minor differences in hyperparameter optimization. This finding confirms that the hyper-
parameter optimization does not have a substantial influence on predictive performance
for the dataset under examination. A careful examination of the learning curves for all
optimized models reveals distinct trends in MSE minimization as the number of training
samples increases. For example, SVR and MLP demonstrate the strongest generalization
capabilities, achieving the lowest test MSE values of 0.025 after optimization, showcasing
their effectiveness in capturing complex non-linear patterns. GBR also exhibits good gen-
eralization, with significant improvements in test error after optimization; however, its
performance remains slightly below that of SVR and MLP due to limitations in capturing
more complex relationships. KNN, RFR, and DTR display moderate performance, with sta-
ble training errors and varying improvements in generalization as the dataset size increases.
LR, on the other hand, consistently exhibits high training and test errors, reflecting its inabil-
ity to model non-linear relationships and its unsuitability for this problem. Overall, SVR
and MLP perform the best, achieving the highest generalization and predictive accuracy.
GBR demonstrates good but slightly moderate performance compared to the top models,
benefiting from regularization and optimization. KNN, RFR, and DTR show moderate
performance improvements with larger datasets. LR performs the weakest, failing to adapt
to the non-linear complexities of the data.

4.2.2. Model Stability

Model stability that assesses how consistently a ML model makes accurate predictions
across training data is of utmost importance to draw an informed decision regarding model
selection. Currently, CV is widely accepted in the field of ML and data analysis and is
considered a universal tool to assess the stability of a model to generalize beyond its
training set [29]. More importantly, the variance of CV serves as a stable error measurement
to assess how accurately the model prediction generalizes over a set of independent data.
If the variance is low, then the model can be deemed stable and considered the most suitable
model for accurate prediction.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4. Learning curve analysis of all explainable ML models with optimized hyperparameters.
(a) LR, (b) KNN, (c) DTR, (d) SVR, (e) GBR, (f) RFR, (g) MLP.

The primary attraction for CV encompasses three distinct aspects: First, its simplicity to
use. Second, its sensitivity to the functional form dimension of model complexity, in contrast
to other generalization criteria such as Akaike and Bayesian Information Criterion. Third, it
offers a confidence measure for estimating generalization error, especially when the training
set used to develop a ML model is small. Therefore, it is indeed imperative to utilize CV
within a co-gasification framework, considering the challenges and costs of acquiring large
datasets in this framework.

Realizing its benefits, this research work employs CV with MSE as its objective function
to compare the stability of the developed ML models. Next, the mean and standard
deviation (std) over the 5-fold CV (5-CV) results of all the ML models developed with
default and optimal hyperparameters are presented in Table 4. In order to enhance the
comprehensibility of the findings, a visual representation of the CV results is illustrated
using the box plot in Figure 6.



Entropy 2025, 27, 83 14 of 27

(a) (b) (c)

(d) (e) (f)

(g)

Figure 5. Learning curve analysis of all explainable ML models with default hyperparameters.
(a) LR, (b) KNN, (c) DTR, (d) SVR, (e) GBR, (f) RFR, (g) MLP.

Table 4. 5-CV error analysis for all explainable ML models in hydrogen yield prediction.

ML
Models

MSE with
Default Hyperparameters

MSE with
Tuned Hyperparameters

Mean Std Mean Std

LR 0.34 0.12 0.34 0.12

KNN 0.31 0.11 0.23 0.10

DTR 0.36 0.22 0.35 0.24

SVR 0.18 0.09 0.17 0.09

GBR 0.36 0.20 0.32 0.15

RFR 0.34 0.20 0.33 0.10

MLP 0.33 0.08 0.24 0.09

Observing the mean and std of CV results, it is evident that only the SVR model
displays the lowest CV score with a mean and std of 0.18 and 0.09, respectively. Conversely,
all other ML models yield relatively larger CV scores. While comparing the CV results of
all ML models trained with default and optimized hyperparameters, it is apparent that,
except for LR and DTR, all other ML models demonstrate enhanced prediction performance
with hyperparameter optimization.
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(a) (b)
Figure 6. Box Plot of 5-CV results for all explainable ML models in hydrogen yield prediction.
(a) Default hyperparameters, (b) Optimized hyperparameters.

Visual inspection of the box plot clearly indicates that SVR presents a comparatively
lower median value than other competing ML models. Also, it can be seen that KNN and
MLP models with tuned hyperparameters display smaller boxes compared to other models
and conform to their stable performance, with minor variations in results across the folds.
This finding is consistent with the learning curve behavior illustrated in Figure 4.

4.3. Prediction Performance Analysis

The second set of experimental analyses aims to evaluate and compare the efficacy
of the developed ML models for predicting hydrogen production in the co-gasification
process. In this direction, experiments were devised to train the developed ML models
using the training set that comprises 80% of the research dataset. The trained ML models
were subsequently assessed using the testing set created with the remaining 20% of the
research data. The prediction performance measured on the testing set are presented and
compared both quantitatively and qualitatively, as follows.

4.3.1. Quantitative Statistical Metrics

The best-performing model cannot be determined by merely comparing the models
using a single assessment metric. Consequently, at this phase of analysis, the prediction
performances of the developed ML models are compared, employing four different statisti-
cal measures, namely, coefficient of determination (R2), root mean squared error (RMSE),
mean absolute error (MAE), and max error (ME), to examine the correlation between
the predicted test results and the measured hydrogen yield [30]. Table 5 presents these
statistical measures as a standard indicator to compare and analyze the performance of
all the analyzing ML models with default and optimized hyperparameters for hydrogen
yield prediction in co-gasification. Figure 7 displays a line graph of the same data for
easier interpretation.

In this context, R2 values closer to unity, along with reduced values of RMSE, MAE,
and ME, are recognized as key performance indicators for an idle model with improved
prediction performance. In this viewpoint, comparing the results between default and
optimized hyperparameters reveals that the optimization process enhances the key perfor-
mance indicators across all prediction models, except for LR. This finding supports two
claims: First, the importance of hyperparameter optimization while developing a predic-
tion model for the co-gasification process. Second, the accuracy of the hyperparameter
optimization procedure is validated by the good fit exhibited by all non-linear ML models
for the co-gasification process. Furthermore, the limited performance of the LR model, indi-
cated by a negative R2, reflects its inability to capture the complex non-linear relationships
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present in the dataset. A negative R2 suggests that the model’s predictions are less accurate
than a simple baseline, such as predicting the mean of the target values. This underscores
the inadequacy of linear models for the co-gasification process and further reinforces the
need for non-linear approaches to accurately model the intricate dependencies between
input parameters and hydrogen yield.

Table 5. Statistical performance metrics for all explainable ML models in hydrogen yield prediction.

ML
Models

Hydrogen Yield Prediction
with Default Hyperparameters

Hydrogen Yield Prediction
with Optimal Hyperparameters

R2 RMSE MAE ME R2 RMSE MAE ME

LR −0.07 0.29 0.24 0.51 −0.07 0.29 0.24 0.51

KNN 0.35 0.22 0.19 0.35 0.75 0.13 0.12 0.19

DTR 0.6 0.17 0.14 0.35 0.64 0.15 0.13 0.28

SVR 0.86 0.10 0.09 0.17 0.9 0.09 0.07 0.15

GBR 0.56 0.18 0.14 0.35 0.71 0.14 0.13 0.21

RFR 0.66 0.16 0.13 0.33 0.68 0.16 0.13 0.3

MLP 0.41 0.21 0.17 0.43 0.82 0.11 0.09 0.18

(a) (b)
Figure 7. Line graph illustrating the statistical performance metrics for all explainable ML models.
(a) Default hyperparameters, (b) Optimized hyperparameters.

From the vertical comparison of the results through different prediction models with
optimized hyperparameters, the lowered statistical error measures validate that the predic-
tive models have successfully captured the impact of all input parameters to accurately
predict the hydrogen yield in the co-gasification process. In particular, SVR appears to be
the most potential prediction model with the lowest error values (RMSE, MAE, and ME)
and highest R2 value of 0.9. MLP follows the same trend and achieves the second-best
prediction performance with a R2 greater than 0.8 compared to other competing ML models.
Although GBR and KNN failed to exhibit good generalization ability when cross-validated
with the whole research data, their prediction performance on the 20% testing set is deemed
satisfactory with R2 > 0.7. This finding suggests that, by strengthening the training dataset,
the predictive performance of these non-linear models can be enhanced.

4.3.2. Qualitative Scatter Plot

Scatter plots, together with a regression line, are widely acknowledged as a versatile
and very valuable method for visually and statistically evaluating the correlation between
model predictions and the observed values [31]. They are commonly employed as a primary
approach to examine the accuracy of model predictions within data-driven research. In light
of this foundation, the present study employs a scatter plot-based regression analysis to
provide more empirical evidence for the findings obtained in the previous sections.
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Here, the vertical distance from the regression line to a specific point indicates the
prediction error for that sample. As a result, a prediction model deemed effective exhibits
minimal errors, and their predictions tend to cluster around the regression line. For an ideal
regression model, their predictions align perfectly with the actual measurements, resulting
in all data points falling precisely along the diagonal line known as the [1:1] regression
line. The scatter plots illustrating the experimentally observed and predicted hydrogen
yield for the ML models developed with default and tuned hyperparameters are shown in
Figures 8 and 9, respectively. Here, the [1:1] regression line is shown by the black dashed
line at a 45◦ angle, and the data distribution represented by the blue and orange colors
corresponds to the training and testing predictions, respectively.

Analyzing the figures in Figures 8 and 9, it is evident that LR exhibits more scattered
prediction with the testing and training set. The observed inferior performance of LR in
comparison to other ML models further substantiates the non-linear behavior of hydrogen
production with the process parameters. One unexpected observation is that DTR and
RFR, which showed overfit on the training set in the learning curve, have shown scattered
predictions even with the training set. This condition may be attributed to the hard rule-
based learning approach employed by the DTR and RFR. Another notable observation is
that, with the exception of DTR and RFR, all other ML models exhibit a close clustering
of predictions around the regression line. This finding adds more support for their ability
to effectively describe the non-linear correlation between hydrogen production and the
process parameters.

4.4. Model Interpretation

In practice, if a researcher finds a ML model with an acceptable level of accuracy,
the subsequent step involves gaining insight into the prediction process and making
informed decisions in light of expert domain knowledge. Unfortunately, the black-box
mechanism of ML models presents challenges in understanding the impact and influence
of input parameters on target within the modeling process. This experimental analysis
takes a step further to address the problem at hand by analyzing the interpretability
of the developed ML models and rationalizing their predictions, irrespective of their
complexity [32]. The post hoc interpretability analysis integrates the Shapley approach
with the developed ML models to provide substantial insights into the final prediction
of the model from both local and global perspectives [33]. The sections that follow will
explore these findings in further detail.

4.4.1. Global Explanation with Summary Plot

Global explanations, or dataset-level interpretations, are essential for understand-
ing the overall relationships between features and model predictions across the entire
dataset [34]. SHAP offers an unified framework that facilitates both local and global analy-
sis, making it a valuable tool for interpretability. Unlike surrogate models that approximate
the behavior of complex models, SHAP aggregates Shapley values from multiple predic-
tions, providing accurate and consistent feature importance scores [35]. This consistency
ensures that global insights derived from SHAP align with the model’s actual predictions,
enhancing transparency and trust in the model’s decision-making process. Therefore,
the present study employs SHAP to achieve global interpretability across all ML models
developed for hydrogen production analysis [36]. The summary plot not only illustrates
the significance of features, but also reveals their positive or negative associations with the
target outcome.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 8. Scatter plots of all explainable ML models with default hyperparameters for hydrogen yield
prediction analysis. (a) LR, (b) KNN, (c) DTR, (d) SVR, (e) GBR, (f) RFR, (g) MLP.

The SHAP summary plots in Figure 10 provide a clear depiction of how key process
parameters influence hydrogen yield during the co-gasification process across various ML
models. The x-axis represents the magnitude and direction of feature contributions, where
positive values indicate increase in hydrogen production, while negative values reflect
a reduction in yield. The y-axis ranks features by importance, with the most influential
parameters placed at the top. A color gradient further enhances interpretability, with red
dots signifying higher feature values and blue dots representing lower values.

Analysis of the summary plot in Figure 10 reveals that, on average, all process param-
eters significantly impact hydrogen production during biomass–plastics co-gasification.
The widespread distribution of dots across the SHAP plots for these parameters reinforces
this observation. Notably, KNN, SVR, and MLP consistently highlight HDPE size, RSS
size, and temperature as the primary factors driving hydrogen yield, whereas other models
place greater emphasis on plastics. This agreement with the existing literature and prior
studies reinforces the reliability and accuracy of the results.

A closer examination of the color gradient reveals how variations in temperature, RSS
size, and HDPE size influence hydrogen output. Prior studies highlight a non-linear rela-
tionship between RSS size and hydrogen yield: moderate RSS values enhance production,
while extremely large or small values reduce it. This non-linear trend is effectively captured
by SVR, KNN, and MLP, demonstrating their ability to model complex interactions between
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process parameters in alignment with previous research. However, while KNN successfully
models the relationship between RSS size and hydrogen yield, it shows inconsistencies
in capturing the effect of temperature on hydrogen production. This is evident from red
dots frequently appearing on the negative x-axis, suggesting that KNN may overfit certain
features or misinterpret their contributions, leading to deviations from empirical data.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 9. Scatter plots of all explainable ML models with optimized hyperparameters for hydrogen
yield prediction analysis. (a) LR, (b) KNN, (c) DTR, (d) SVR, (e) GBR, (f) RFR, (g) MLP.

In contrast, SVR and MLP effectively capture the expected relationship between tem-
perature and hydrogen yield, showcasing greater robustness and reliability. Thus these
two models provide comprehensive and interpretable explanations that closely align with
previously published studies and experimental data on the co-gasification process, reinforc-
ing their ability to model complex interactions between process parameters accurately.

The insights derived from SHAP summary plots provide actionable pathways for
optimizing hydrogen production. By fine-tuning critical parameters such as temperature,
HDPE size, and RSS size based on SHAP analysis, operators can enhance process efficiency
and maximize yield. This data-driven approach effectively bridges the gap between
model predictions and real-world implementation, thereby supporting advancements in
biomass–plastic co-gasification technologies. In summary, SHAP summary plots offer a
comprehensive understanding of the internal mechanics of ML models applied to hydrogen
production. By guiding adjustments to process parameters, these plots drive significant
improvements in operational performance and sustainability.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 10. SHAP summary plots of all explainable ML models in hydrogen yield prediction.
(a) LR, (b) KNN, (c) DTR, (d) SVR, (e) GBR, (f) RFR, (g) MLP.

4.4.2. Local Explanation with Force Plot

Local explanations offer insights into how individual feature values influence specific
model predictions, enabling a more granular understanding of model behavior. SHAP force
plots illustrate the forces driving predictions higher or lower relative to a baseline value.
This section examines two cases of hydrogen yield—one with low yield, and one with
high yield—highlighting how force plot analysis uncovers the impact of critical features on
model outputs.

For the low-yield case depicted in Figure 11, the experimentally recorded hydrogen
production during the co-gasification experiment is 38.625. SHAP force plots reveal that,
with the exception of the LP model, all other ML models correctly predict values below their
baselines. This underestimation is primarily driven by lower values of temperature, plastic
percentage, and HDPE size—key process parameters that collectively suppress hydrogen
yield. Among the models, SVR provides the most accurate prediction of 38.67, closely
aligning with the experimental result. The SVR model’s ability to reflect subtle parameter
interactions highlights its reliability and precision in modeling low-yield scenarios.

In the high-yield case shown in Figure 12, the experimentally recorded hydrogen
production is 48.21; SHAP force plots demonstrate varying predictive performance across
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different models. A key observation is that LR consistently underperforms, producing
predictions below the baseline. This highlights LR’s inability to capture the non-linear
relationships between process parameters and hydrogen yield, exposing its limitations in
modeling the complex interactions essential for accurate co-gasification process predictions.

LR

KNN

DTR

SVR

GBR

RFR

MLP

Figure 11. SHAP force plots of all explainable ML models for an instance yielding low hydrogen.

Among the non-linear models, KNN and GBR exhibit weaker predictive performance.
KNN, with a predicted yield of 45.02, underperforms due to a misinterpretation of tem-
perature, incorrectly associating higher temperatures with reduced hydrogen production.
This aligns with KNN’s SHAP summary plot, reinforcing the model’s tendency to mis-
attribute negative contributions to temperature. Similarly, GBR predicts a yield of 46.39,
underperforming due to its failure to account for temperature’s role. By neglecting temper-
ature as a key driver, GBR limits its predictive accuracy and ability to match the observed
high-yield value.

In contrast, DTR, RFR, MLP, and SVR demonstrate stronger predictive capabilities.
For example, the tree-based models, DTR and RFR, yield 46.40 and 47.29, respectively.
These models successfully capture the combined influence of temperature, plastics, RSS
size, and HDPE size, achieving higher predictive accuracy than KNN and GBR. Their ability
to model intricate feature interactions enhances their performance. However, the slight
discrepancies between their predictions and the recorded high yield suggest variations in
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feature prioritization, indicating the potential for overfitting to certain parameters. This
overfitting may reduce the stability of their predictions, especially when applied to new
datasets or varying conditions.

LR

KNN

DTR

SVR

GBR

RFR

MLP

Figure 12. SHAP force plots of all explainable ML models for an instance yielding high hydrogen.

Likewise, MLP also shows strong performance, predicting a yield of 47.24. While
MLP effectively models non-linear dependencies, it underrepresents the negative impact
of RSS size. This may result from the model’s sensitivity to feature scaling or weighting,
leading to imbalances in feature prioritization. Despite outperforming KNN and GBR,
MLP’s inconsistent handling of RSS size lowers its reliability in high-yield scenarios.

Building upon the analysis of non-linear models, SVR emerges as the most accurate
model, predicting a yield of 48.68, which closely aligns with or surpasses the experimentally
recorded high yield. The force plot for SVR highlights the strong positive contributions
of temperature and plastics while accurately accounting for the negative impact of RSS
size. Overall, SVR consistently outperforms other models, providing the most accurate and
comprehensive predictions. Its ability to model non-linear interactions and account for the
influence of all critical process parameters reinforces SVR’s position as the most reliable
model for predicting hydrogen yield in the co-gasification process.
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4.5. Comparative Analysis

This section provides a detailed comparison of the ML models developed in this study,
offering insights into their predictive performance, generalization capabilities, and indus-
trial applicability. The analysis begins with a comparison to prior research, addressing
discrepancies in performance and overfitting concerns. This is followed by an examination
of the strengths, limitations, and suitability of each model for hydrogen yield prediction in
the co-gasification process.

4.5.1. Comparison with Related Studies

The performance of the ML models developed in this study for predicting hydrogen
yield from the co-gasification of biomass and plastics reveals notable differences compared
to previous work. Ayodele et al. [21] and Sheila Devasahayam [13] reported R2 exceeding
0.98 using MLP and deep learning networks, respectively. In contrast, the highest R2

value attained in this study is 0.86. While this reflects strong predictive accuracy, it falls
short of the performance presented in earlier research. A key factor contributing to this
discrepancy lies in the evaluation methodologies employed. Prior studies utilized the
hold-out method, dividing the dataset into distinct training and testing subsets. While
this approach provides a straightforward assessment, it can lead to inflated R2 values by
focusing predominantly on the training data, potentially masking issues of overfitting
and limiting insight into model generalization. In contrast, the present study employs
5-CV, an iterative and robust evaluation method that thoroughly assesses the model’s
generalization ability. By partitioning the data into five subsets and validating performance
across each fold, this approach minimizes overfitting risks and yields a more reliable
estimate of predictive accuracy.

The scatter plots in this study reinforce this by illustrating the correlation between
predicted and actual values for both training and testing data points (Figures 8 and 9),
highlighting the model’s ability to generalize effectively. Conversely, scatter plots in prior
studies typically reflect results based solely on training data, leading to inflated R2 values
and failing to represent the model’s performance on unseen data accurately. Several
additional factors that contribute to the observed differences in results are as follows:

(a) Model complexity and overfitting mitigation: The exceptionally high R2 values re-
ported in earlier studies may indicate overfitting, particularly given the small dataset
size (n = 30). In this study, regularization techniques—such as L1/L2 penalties and
early stopping—were applied to mitigate overfitting. Although these measures led
to slightly lower R2 values, the resulting models demonstrated improved general-
ization and stability, essential for deployment in real-world scenarios.

(b) Dataset size and model selection: The limited dataset size presents challenges
for complex models like MLP, which typically require larger datasets to generalize
effectively. While MLP excels in capturing non-linear relationships, it is prone to
overfitting when trained on small datasets. To address this, simpler models such
as SVR were prioritized in this study. SVR, which achieved the highest R2 value
of 0.86, benefits from kernel functions and built-in regularization, allowing for it
to perform reliably with small datasets and enhancing its suitability for hydrogen
yield prediction.

In summary, although the models developed in this study exhibit slightly lower R2

values compared to prior research, the inclusion of testing data in model evaluation and the
implementation of overfitting mitigation techniques ensure greater generalizability. This
approach prioritizes model robustness and stability, making the findings more applicable
to practical industrial environments.
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4.5.2. Comparison of Model Strengths, Limitations, and Industrial Suitability

The comparative analysis of explainable ML models, as summarized in Table 6, high-
lights the unique strengths, limitations, and industrial applicability of each model. This
evaluation provides a roadmap for selecting the most appropriate models for hydrogen
yield prediction, balancing predictive performance, interpretability, and scalability.

Table 6. Comparison of explainable ML models in hydrogen yield prediction.

Models Model Type Hyper
Parameters

Performance on
Non-Linear Data Generalizability Explainable

Ability
Industrial
Suitability

LR Linear Low Poor prone to overfitting Poor Low

KNN Instance-based Low Good Good generalization
with cross-validation Excellent High

DTR Tree-based Moderate Moderate Pruning improves
generalization Moderate Moderate

SVR Kernel-based High Excellent Strong generalization
with regularization Excellent High

GBR Ensemble-based High Good Good generalization
with boosting Good High

RFR Ensemble-based Moderate Moderate Averaging improves
generalization Moderate Moderate

MLP Neural Network High Excellent
Dropout and early
stopping improves
generalization

Good Moderate

Among the models assessed, SVR demonstrated the highest level of reliability, consis-
tently achieving strong generalization performance, high predictive accuracy, and excellent
interpretability. SVR’s ability to model non-linear relationships, enhanced by regulariza-
tion techniques such as tuning the penalty parameter (C) and kernel coefficient (gamma),
positions it as a leading choice for industrial applications. Its robustness across varying
datasets reduces the risk of overfitting, ensuring consistent performance in operational
environments. KNN also displayed strong predictive performance by effectively capturing
local data patterns and non-linear dependencies. However, KNN’s computational inten-
sity scales with dataset size, raising concerns about scalability for large datasets. CV and
optimized k were applied to improve performance, resulting in excellent interpretability
and high industrial applicability. The MLP showed significant potential in modeling com-
plex non-linear relationships, but required extensive hyperparameter tuning to minimize
overfitting. Techniques such as dropout and early stopping enhanced MLP’s resilience,
making it a feasible option for industrial deployment where computational resources are
sufficient. Tree-based models, including the DTR and RFR, provided moderate perfor-
mance, but were prone to overfitting without appropriate regularization. Methods such as
pruning, limiting tree depth, and bootstrap aggregation were employed to enhance model
generalization. Despite these efforts, the models demonstrated performance variability,
indicating that they may be more effective when integrated into hybrid approaches to
improve stability and reliability. GBR offered competitive accuracy, but required careful
hyperparameter tuning to prevent overfitting. While GBR’s boosting mechanism improved
generalization, the iterative training process may pose challenges for real-time industrial
deployment. In conclusion, the selection of an ML model for hydrogen yield prediction
requires balancing predictive performance, interpretability, and scalability. SVR emerged
as the most reliable model, while MLP offer alternative solutions for non-linear modeling,
provided overfitting mitigation techniques are applied. These findings underscore the
importance of hyperparameter tuning and regularization to ensure robust and scalable
model performance, contributing to advancements in co-gasification process optimization.
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5. Conclusions
This study systematically investigated the performance of seven different ML models,

including LR, KNN, DTR, SVR, GBR, RFR, and MLP, for predicting and optimizing hydro-
gen production based on the process parameters for the biomass-plastics co-gasification
process. To this end, exploratory data analysis was conducted as a preliminary step to assess
the quality of the study dataset before utilizing it to train the selected ML models. Eventu-
ally, after optimizing the hyperparameters of all the trained ML models, a comprehensive
set of experiments was devised to evaluate the performance of these models across three
dimensions, including generalization ability, prediction capabilities, and interpretability.
Based on the results, the following can be concluded:

• The generalization ability analysis conducted through qualitative and quantitative
methods using learning curves and CV showed that SVR and MLP models demon-
strated superior generalization potential over other competing models, achieving a
minimum MSE of approximately 0.025.

• The prediction performance analysis highlights the potential of SVR, with R2 value
of approximately 0.9, reflecting its strong ability to model the nonlinear relationship
between hydrogen production and process parameters.

• The interpretability analysis of the developed ML models at global and local levels
using the SHAP summary plot and force plot, respectively, revealed that the SVR and
tree-based models were more successful in reliably elucidating the influence of the
process parameters on hydrogen production and concurred with both the experimental
observations and the previously published literature.

These findings emphasize the importance of selecting appropriate ML models to optimize
hydrogen production in the co-gasification process. This study highlights the significance
of balancing predictive accuracy with model interpretability and stability, ensuring the
successful deployment of ML models in industrial environments. Future work will focus
on expanding the dataset and refining ensemble approaches to further enhance model
performance and address the challenges associated with small datasets. By integrating
explainability into model evaluation, this research provides a robust framework for opti-
mizing the co-gasification process, contributing to the advancement of cleaner and more
sustainable hydrogen production technologies.

Funding: The author extends her appreciation to Prince Sattam bin Abdulaziz University for funding
this research work through the project number (PSAU/2024/01/31797).

Institutional Review Board Statement: Not applicable

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Yoro, K.O.; Daramola, M.O. CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon

Capture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–28.
2. Mangal, M.; Rao, C.V.; Banerjee, T. Bioplastic: An eco-friendly alternative to non-biodegradable plastic. Polym. Int. 2023,

72, 984–996. [CrossRef]
3. Thew, C.X.E.; Lee, Z.S.; Srinophakun, P.; Ooi, C.W. Recent advances and challenges in sustainable management of plastic waste

using biodegradation approach. Bioresour. Technol. 2023, 374, 128772. [CrossRef] [PubMed]
4. Züttel, A.; Remhof, A.; Borgschulte, A.; Friedrichs, O. Hydrogen: The future energy carrier. Philos. Trans. R. Soc. A Math. Phys.

Eng. Sci. 2010, 368, 3329–3342. [CrossRef] [PubMed]
5. Ismail, M.M.; Dincer, I. A new renewable energy based integrated gasification system for hydrogen production from plastic

wastes. Energy 2023, 270, 126869. [CrossRef]

http://doi.org/10.1002/pi.6555
http://dx.doi.org/10.1016/j.biortech.2023.128772
http://www.ncbi.nlm.nih.gov/pubmed/36828218
http://dx.doi.org/10.1098/rsta.2010.0113
http://www.ncbi.nlm.nih.gov/pubmed/20566514
http://dx.doi.org/10.1016/j.energy.2023.126869


Entropy 2025, 27, 83 26 of 27

6. Sikiru, S.; Oladosu, T.L.; Amosa, T.I.; Olutoki, J.O.; Ansari, M.; Abioye, K.J.; Rehman, Z.U.; Soleimani, H. Hydrogen-powered
horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. Int. J.
Hydrogen Energy 2024, 56, 1152–1182. [CrossRef]

7. Wang, Y.; Wu, J.J. Thermochemical conversion of biomass: Potential future prospects. Renew. Sustain. Energy Rev. 2023,
187, 113754. [CrossRef]

8. Yek, P.N.Y.; Chan, Y.H.; Foong, S.Y.; Mahari, W.A.W.; Chen, X.; Liew, R.K.; Ma, N.L.; Tsang, Y.F.; Sonne, C.; Cheng, Y.W.; et al.
Co-processing plastics waste and biomass by pyrolysis–gasification: A review. Environ. Chem. Lett. 2024, 22, 171–188. [CrossRef]

9. Ramos, A.; Monteiro, E.; Silva, V.; Rouboa, A. Co-gasification and recent developments on waste-to-energy conversion: A review.
Renew. Sustain. Energy Rev. 2018, 81, 380–398. [CrossRef]

10. Naqvi, S.R.; Ullah, Z.; Taqvi, S.A.A.; Khan, M.N.A.; Farooq, W.; Mehran, M.T.; Juchelková, D.; Štěpanec, L. Applications of
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