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Abstract: Emotion recognition is an advanced technology for understanding human be-
havior and psychological states, with extensive applications for mental health monitoring,
human–computer interaction, and affective computing. Based on electroencephalogra-
phy (EEG), the biomedical signals naturally generated by the brain, this work proposes
a resource-efficient multi-entropy fusion method for classifying emotional states. First,
Discrete Wavelet Transform (DWT) is applied to extract five brain rhythms, i.e., delta, theta,
alpha, beta, and gamma, from EEG signals, followed by the acquisition of multi-entropy
features, including Spectral Entropy (PSDE), Singular Spectrum Entropy (SSE), Sample
Entropy (SE), Fuzzy Entropy (FE), Approximation Entropy (AE), and Permutation Entropy
(PE). Then, such entropies are fused into a matrix to represent complex and dynamic char-
acteristics of EEG, denoted as the Brain Rhythm Entropy Matrix (BREM). Next, Dynamic
Time Warping (DTW), Mutual Information (MI), the Spearman Correlation Coefficient
(SCC), and the Jaccard Similarity Coefficient (JSC) are applied to measure the similarity
between the unknown testing BREM data and positive/negative emotional samples for
classification. Experiments were conducted using the DEAP dataset, aiming to find a suit-
able scheme regarding similarity measures, time windows, and input numbers of channel
data. The results reveal that DTW yields the best performance in similarity measures with
a 5 s window. In addition, the single-channel input mode outperforms the single-region
mode. The proposed method achieves 84.62% and 82.48% accuracy in arousal and valence
classification tasks, respectively, indicating its effectiveness in reducing data dimension-
ality and computational complexity while maintaining an accuracy of over 80%. Such
performances are remarkable when considering limited data resources as a concern, which
opens possibilities for an innovative entropy fusion method that can help to design portable
EEG-based emotion-aware devices for daily usage.
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1. Introduction
Emotions are fundamental components of human psychological processes that shape

thinking patterns, behavior, and decision making and play a critical role in social interaction,
learning, and work. As humans increasingly rely on intelligent systems, the advancement
of emotion recognition technologies is poised to revolutionize human–computer interac-
tion. Thus, integrating emotional intelligence into such systems can significantly improve
the efficiency of human–machine communication [1]. Furthermore, gaining a deeper un-
derstanding of the intrinsic mechanisms of emotions is beneficial for mental health, as it
facilitates the development of accurate emotion monitoring methods while paving new
pathways for the prevention and treatment of mental disorders such as depression and
anxiety [2]. While emotions can be detected through external cues like facial expressions,
speech, and other body language, social norms, personal contexts, and habits often obscure
actual expressions, which are current challenges for precise emotion recognition [3].

Usually, a model capable of quantifying emotions is first needed to achieve emotion
recognition. On the one hand, a discrete model divides emotions into a series of distinct
emotional entities, such as happiness, contentment, sadness, and anger. Nonetheless, there
still needs to be an academic consensus on the exact number of these basic emotions [4]. In
addition, discrete emotion models struggle to describe continuous changes in emotions.
On the other hand, a continuous model defines emotions through continuous dimensions,
such as arousal and valence, better representing the variations in emotions. Specifically,
valence refers to the pleasantness of emotion, ranging from negative (e.g., sadness or anger)
to positive (e.g., happiness or contentment), and arousal denotes the level of emotional
excitement, ranging from low (e.g., calmness or relaxation) to high (e.g., excitement or
tension) [5]. Second, less masked inputs like physiological signals are preferred to improve
emotion recognition accuracy. For instance, electroencephalography (EEG), electroocu-
lography (EOG), and electrocardiography (ECG) signals are naturally generated by the
body’s systems. They directly reflect emotional reactions and are less easily influenced
by human factors [6]. Typically, EEG signals, which record electrophysiological signals
of neuronal activity in the brain, objectively contain response behaviors [7]. They pro-
vide a clear description of emotional expression, as their high-temporal-resolution record
changes at the millisecond level, which makes them appropriate for detecting instantaneous
variations in response to emotions triggered by specific stimuli or situations, demonstrat-
ing their portability and cost-effectiveness for the design of portable devices in emotion
recognition [8].

As for EEG-based emotion recognition, data pre-processing, feature extraction, and
classification are vital steps, and performance evaluation is essential for methodological
validation. Initially, data pre-processing is necessary, as EEG signals are highly susceptible
to noise and interference from other physiological signals. To this end, Independent Com-
ponent Analysis (ICA) can denoise and remove artifacts [9]. In addition, raw EEG signals
are segmented into several slices of varying lengths to include short-term fluctuations that
sense emotional changes [10]. Therefore, pre-processed EEG signals provide a foundation
for subsequent feature extraction, which aims to quantify and express the overt and latent
information in the EEG signals. In this regard, these features are typically divided into three
categories: time-domain (e.g., mean, standard deviation, and first-order difference [11]),
frequency-domain (e.g., power spectral density [12]), and nonlinear (e.g., asymmetry, au-
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tocorrelation, zero-crossing rate, and entropy [13]) features. In light of the intricate and
multifaceted nature of EEG signals, integrating different features to encapsulate their in-
herent characteristics is often imperative [14]. Moreover, the advance of deep learning
has enabled the development of automated feature extractors based on Convolutional
Neural Networks (CNNs) and Long Short-term Memory (LSTM) [15]. Classification aims
to categorize emotional states based on extracted features. Generally, classifiers can be
divided into two categories: conventional machine learning classifiers and deep learning
models. Among conventional classifiers, Support Vector Machine (SVM), Random For-
est (RF), k-nearest Neighbors (kNN) [16], and XGBoost [17–19] are widely utilized. For
instance, SVM is particularly effective in addressing nonlinear problems, especially when
dealing with limited datasets. RF enhances classification stability by combining the outputs
of multiple decision trees. kNN is a nonparametric algorithm that makes no assumptions
about the underlying data distribution that benefits biomedical signals like EEG, as it ex-
hibits complex, nonlinear patterns across different emotions. XGBoost, a gradient-boosting
framework, has demonstrated strong performance in EEG-based emotion recognition tasks
by leveraging its efficiency and ability to handle imbalanced data. On the other side, deep
learning models such as CNN, LSTM, Temporal Convolutional Network (TCN), and Graph
Convolutional Neural Network (GCNN), are well-suited for handling high-dimensional
data [20]. While deep learning models typically outperform conventional classifiers on
large datasets, they usually require more computational costs and training time. Finally,
the performance of the features and classifiers is assessed in a comparative study, where
the most commonly used metrics include accuracy, precision, recall, F1 score, and the
Receiver Operating Characteristic (ROC) curve [21]. Thus, a comprehensive evaluation
ensures that the classifier or model demonstrates adequate generalization and stability for
emotion recognition.

Recent studies have been reported based on the above steps. For example, Trujillo
et al. [11] extracted 1086 time-domain and frequency-domain features from EEG signals and
assessed them through feature selection combined with various classifiers. They claimed
that the RF classifier paired with Kernel Principal Component Analysis (KPCA) offered an
accuracy of 93.20%. Yu et al. [12] downsampled, filtered, and designed a short time window
to analyze the temporal dependence in EEG signals by combining an attentional mecha-
nism with LSTM, which provided accuracies of 85.40% and 74.26% on the SEED dataset
and SEED-IV datasets, respectively. Zong et al. [19] constructed a hybrid FCAN-XGBoost
model for EEG-based emotion recognition. It achieved 95.26% and 94.05% accuracy on
DEAP and DREAMER, respectively. Fernandes et al. [22] investigated time-domain and
frequency-domain features, employing deep learning models and conventional machine
learning classifiers. They found that combining differential entropy with Dynamic Graph
Convolutional Neural Networks (DGCNNs) yielded an accuracy of 89.97% across various
frequencies. In comparison, kNN only achieved an accuracy of 73.23%, indicating the
advantages of deep learning models in optimizing classification performance, although
they necessitated more prolonged processing procedures. Song et al. [23] proposed an
EEG-based Variational Instance-Adaptive Graph (V-IAG) method to address individual dif-
ferences and uncertainty in the dynamic relationship between brain regions. By extracting
the energy features of each EEG channel and constructing a fractional variational-instance
adaptive graph combined with a multi-layer multi-graph neural network model, they
obtained accuracies of 92.82% and 93.09% in the classification of valence and arousal, re-
spectively. In addition, they stated that emotions exhibited a complex dynamic relationship
with individualized modeling and brain regions and that integrating this relationship
with graph neural networks can effectively improve the accuracy of emotion recognition.
García-Hernández et al. [24] applied a genetic algorithm to select an optimal subset from
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the 2548 features, then compared the performances utilizing kNN, RF, and an Artificial
Neural Network (ANN), which achieved accuracies of 90.06%, 93.62%, and 95.87%, re-
spectively. Such results reveal that feature optimization and methodological comparison
can beneficially identify the best approaches for EEG-based emotion recognition. Finally,
Padhmashree and Bhattacharyya [25] adopted Multivariate Variational Mode Decompo-
sition (MVMD) to extract modulated oscillations from multi-channel EEG signals, where
the time-frequency images were generated by combining Joint Instantaneous Amplitude
(JIA) and Joint Instantaneous Frequency (JIF). These time-frequency images were fed into a
Residual Network (ResNet)-18 model to extract valuable features, followed by a softmax
layer for emotion recognition. This framework offered classification accuracies of 99.03% for
arousal and 97.75% for valence, demonstrating its ability to extract complex EEG features
for emotion recognition.

The above studies reported various techniques for EEG-based emotion recognition,
each with strengths, but they also presented drawbacks, especially in the case of a data
resource-efficient classification. Many deep learning models, such as DGCNN and ResNet-
18, demand substantial computational resources, limiting their deployment in resource-
constrained environments. In addition, their complexity may lead to overfitting, particu-
larly with smaller datasets, and the required extensive hyperparameter tuning can make
them less practical compared to more straightforward solutions. Moreover, several studies
could have improved the interpretability of advanced models, complicating the under-
standing of their decision-making processes. In this regard, multi-entropy fusion yields
more interpretable results, as the entropy feature originates from information theory and
mainly represents the uncertainty or complexity of an EEG system. It is also less sensitive
to artifacts and noise, allowing it to present small fluctuations in brain activity, which are
beneficial for analyzing emotional states and enhancing practical applications in real-world
scenarios. However, prior works have yet to fully consider the effective achievement of
multi-entropy fusion under conditions of limited data resources. To this end, this work
proposes a resource-efficient multi-entropy fusion method for classifying emotional states,
the novelty of which is the similarity measures of the Brain Rhythm Entropy Matrix (BREM),
which involves multi-entropy feature extraction and similarity measure-based classification
to improve the accuracy and interpretability of emotion recognition. For a better illustration,
the overall framework is depicted in Figure 1.

The first step is data pre-processing, which comprises two operations: filtering and
slicing. Filtering eliminates potential interference from ECG and EOG signals [26]. Then,
to further optimize the data size and adapt it for portable devices, this work thoroughly
investigates a series of segments with varying time lengths (5 s, 10 s, 20 s, and 30 s) for the
identification of a suitable time window in the proposed method.

The second step is feature extraction, which contains three phases: obtaining brain
rhythms by Discrete Wavelet Transform (DWT), extracting multi-entropy features, and
producing the BREM through data fusion. As for emotion processing, negative emotions
are primarily processed in the subcortical nuclei, temporal lobe, temporoparietal junction
area, and inferior frontal gyrus [27]. Similarly, hyperactivity in the left prefrontal lobe is
generally associated with positive emotions, while hyperactivity in the right prefrontal lobe
is linked to negative emotions [28]. Such behaviors suggest that the forebrain plays a pivotal
role in emotion recognition. In addition, there is a strong correlation between emotional
states and brain rhythms: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz),
and gamma (above 30 Hz) [29]. For instance, delta power increases when the subject is in a
highly relaxed or emotionally depressed state [30]. Although time-domain and frequency-
domain features provide deep insights into emotional changes by analyzing brain rhythms
and brain regions, they are insufficient for indicating the subtle complexity of emotional
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shifts [31]. Therefore, the proposed method adopts entropy as a quantitative characteristic
that extracts six types—Spectral Entropy (PSDE), Singular Spectrum Entropy (SSE), Sample
Entropy (SE), Fuzzy Entropy (FE), Approximation Entropy (AE), and Permutation Entropy
(PE)—from five brain rhythms and fuses them into a 5 × 6 matrix on a single channel,
denoted as the BREM, which offers highly interpretable representations of emotional
variations by considering the rhythmic characteristics in the entropy scale.
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EEG-based emotion recognition.

The third step is establishing a specialized classification method by applying the
similarity measures of the BREM between the unknown testing data and positive/negative
emotional samples. Specifically, a higher similarity indicates more significant information
overlap, implying they are in the same category, while a lower similarity reveals they are
less likely to be the same [32–34]. Since BREM includes the details regarding brain rhythms
and entropies, similar BREMs show similar emotional states, providing an interpretable
basis for EEG-based emotion recognition through the multi-entropy view. In addition,
unlike other classification methods, such an approach does not rely on large amounts of
data for training. Instead, it requires only positive and negative samples for similarity
measures, making it more resource-efficient. Note that there are different methods for
similarity measures, so selecting the appropriate one is vital for the classification task.

Finally, in the evaluation step, this work assesses the single-channel mode and the
single-region mode for emotion recognition. The single-region mode is created by fusing
the BREMs from the channels located in the same brain region, and the single-channel
mode applies the BREM to one specific channel only. By evaluating the data inputs from a
single channel or single region, the results provide an in-depth understanding of how the
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BREM can be effectively improved for emotion recognition through the use of a few data
resources to establish a resource-efficient multi-entropy fusion method. The contributions
of this work are summarized as follows:

1. We propose the use of highly interpretable BREM data through a multi-entropy fusion
approach to represent emotional EEG signals and the employment of a similarity-
based classification approach to reduce the required sample size and the complexity
of the training process.

2. We identify a suitable similarity measure method for classifying the BREMs from
various emotional states, enhancing the performance of the proposed method.

3. We investigate the most suitable length (5 s, 10 s, 20 s, or 30 s) and the most resource-
efficient data input mode (single-channel or single-region mode) to minimize data
sources while maintaining an accuracy of over 80%.

The rest of this work is organized as follows: Section 2 describes the DEAP dataset and
the valence–arousal emotional model. Subsequently, the details of the BREMs derived from
multi-entropy fusion and the resource-efficient classification method through similarity
measures are presented in Section 3. Section 4 shows the results and discussion, including
statistical analysis, classification results, appropriate time-segment and channel results, a
comparative study, and discussion. Finally, the conclusion and future work are contained
in Section 5.

2. Experimental Dataset
The experimental data are from the DEAP dataset [35]. It contains EEG signals and

corresponding emotion labels. The key information regarding the DEAP dataset is listed
in Table 1. In total, 32 subjects (15 females and 17 males) participated in the experiment,
with a mean age of 27.19 ± 4.45 years. Subjects were asked to watch 40 one-minute music
videos with a Self-Assessment Manikin (SAM) to rate each music video according to their
valence and arousal levels on a scale of 1–9. Moreover, different emotional states can be
mapped into a coordinate system to form an emotional space consisting of valence and
arousal, i.e., a valence–arousal model, where a valence score ≥ 5 indicates High Valence
(HV) a score < 5 indicates Low Valence (LV). High Arousal (HA) and Low Arousal (LA) are
similarly categorized based on score of 5 [36]. While watching music videos, EEG signals
were recorded using a 32-channel system under a sampling frequency of 128 Hz. It is worth
noting that EEG signals provided by the DEAP dataset were pre-processed with careful
attention to minimizing noise, enabling their usage without artifact removal [37–39].

Table 1. Key information of the DEAP dataset.

Number of Subjects 32

Age 27.19 ± 4.45 years
Number of subjects 15 females + 17 males

Number of experimental trials per subject 40
Experimental stimuli Music videos from YouTube

Time duration per trial One minute
Number of EEG channels 32
Sampling frequency (Hz) 128

In addition, a balanced distributed sample is beneficial for methodological validation.
The DEAP dataset exhibits a ratio of HA/HV (positive) to LA/LV (negative) approaching
1:1, reducing the risk of overfitting. Meanwhile, in order to investigate the resource-efficient
data input mode based on a single channel or single region, the 32-channel system is
categorized either by electrode positions, as shown in Figure 2a, or by brain regions in
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terms of anatomical distribution, as illustrated in Figure 2b. Here, each brain region is
represented by a set of channels located within that region, with specific channels outlined
in Table 2. Due to the low spatial resolution of electrodes, signals from a small surrounding
area near the channels are also included in the regional representation.
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Table 2. Specific EEG channels in each brain region.

Brain Region EEG Channels

Frontal FP1, FP2, AF3, AF4, F3, FZ, F4
Central FC5, FC1, FC2, FC6, C3, CZ, C4
Parietal CP5, CP1, CP2, CP6, P3, PZ, P4

Temporal F7, F8, T7, T8, P7, P8
Occipital PO3, PO4, O1, OZ, O2

3. Proposed Method
3.1. Feature Extraction

First, DWT is adopted to extract the brain rhythms from EEG. Unlike the commonly
used transform approaches in signal processing, such as the Short-Time Fourier Transform
(STFT), DWT offers multi-resolution analysis through time-frequency decomposition. This
property allows DWT to adaptively focus on both high-frequency details and low-frequency
trends in the signal, making it well-suited for the processing of EEG and sufficiently able
to obtain local features at different time scales [40]. Furthermore, DWT’s hierarchical
decomposition enables it to preserve both time-domain and frequency-domain information,
which is critical for analyzing the non-stationary nature of EEG. As a result, five brain
rhythms, which correlate with diverse emotional states, are extracted. Specifically, DWT
involves convolving the signal with a set of wavelet basis functions and extracting the
rhythmic features from different frequency bands through multi-layer decomposition and
reconstruction, as presented in (1):

X(j, k) = ∑
n

x[n]2j/2ψ[2jn − k] (1)

where X(j, k) denotes the wavelet coefficients, which consist of the low-frequency approxi-
mation coefficient (Ai) and the high-frequency detail coefficient (Di); j represents the scale
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level; k is the displacement on scale j; and x[n] represents the input EEG signals. Meanwhile,
ψ represents the discretized wavelet basis function used in the analysis.

In this work, the Daubechies 4 (db4) wavelet is employed as the basis function for
DWT due to its ability to balance time and frequency resolution well. Moreover, the
compact support and symmetry of the db4 wavelet allow it to efficiently capture the non-
stationary nature of EEG, making it well-suited for emotion recognition. An EEG signal
from the DEAP dataset is applied to illustrate the DWT in the proposed method, with a
sampling frequency of 128 Hz. Technically, emotional EEG signals can be decomposed and
reconstructed through a four-level DWT to extract the five brain rhythms, as displayed in
Figure 3.
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Figure 3. The 4-level DWT extracts five brain rhythms from emotional EEG signals.

Subsequently, entropy is viewed as a key, since it possesses the uncertainty, complexity,
and regularity of EEG signals [41]. Mainly, with respect to multi-entropy fusion, PSDE,
SSE, SE, FE, AE, and PE are extracted to indicate the dynamic characteristics of five brain
rhythms comprehensively. Mathematically, their calculations are expressed as follows:

PSDE quantifies the uncertainty in the frequency distribution of a signal and helps
analyze the complexity of rhythmic activities under various emotions [42]. It is derived
from the Power Spectral Density (PSD), measuring how signal energy is distributed across
different frequency components, as presented in (2):

PSDE = −
N

∑
i=1

p( fi)log(p + ε) (2)

where p(fi) is the normalized PSD that uses Welch’s method for energy metrics and ε is a
value employed to avoid the log(0) case.

SSE is based on a signal’s Singular Value Decomposition (SVD). It mainly assesses the
structural complexity of the time series rather than just its frequency content by examining
the singular values obtained from the decomposition; in particular, it shows high sensitivity
in processing brain activities during emotional states [43], as presented in (3):

SSE =
r

∑
i=1

∼
σilog(

∼
σi + ε) (3)

where
∼
σi is the normalized singular value. If the singular value distribution is uniform, the

signal is complex and has a larger value. On the contrary, if the signal is regular, it has a
small value.
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SE reflects the complexity and regularity of time-series signals by determining the
likelihood that similar patterns will remain similar when the data are measured at different
time points. It does not require data to be stationary, making it particularly suitable for
physiological signals assessing complexity, like EEG [44]. In addition, it is sensitive to noise
and outliers, as presented in (4):

SE(m, r) = −ln(
ϕ(m, r)

ϕ(m + 1, r)
) (4)

where m refers to the embedding dimension, r is the control threshold, and ϕ denotes the
number of statistically similar vector pairs.

FE extends the concept of SE by incorporating fuzziness into the measure. It evaluates
the uncertainty of the signal’s state based on the degree of membership of patterns to sets.
Thus, it not only captures subtle differences in patterns due to its fuzzy nature but also
shows robustness to noise and variability in data [45], as presented in (5):

FE(m, n, r) = limN→∞[ϕm(n, r)− ϕm+1(n, r)] (5)

where n represents the fuzzy weights.
AE assesses the randomness and variation patterns of time-series data by comparing

sequences of points to detect patterns. It is sensitive to the choice of parameters such as the
embedding dimension and tolerance [46], as shown in (6):

AE(m, r) = limN→∞[ϕm(r)− ϕm+1(r)] (6)

Lastly, PE evaluates the complexity of time series by analyzing the order of values
rather than their actual magnitudes. It considers the patterns formed by the ranks of the
data points and is robust to noise, so it effectively analyzes EEG signals that exhibit chaotic
properties [47], as shown in (7):

PE(x) = −
k

∑
j=1

Pjln(Pj) (7)

where Pj is the probability of occurrence of the j-th alignment pattern; meanwhile, the range
of values of PE is [0, ln(Np)], with smaller values indicating a more structured signal and
larger values referring to a more disordered signal.

3.2. Multi-Entropy Fusion

By integrating six extracted entropies, multi-entropy fusion offers a comprehensive
understanding of changes in brain rhythms, particularly in the context of EEG-based
emotion recognition. This approach leverages the strengths of each measure: SSE and
PSDE complement each other by revealing the dynamic structure of EEG signals, capturing
how brain activity evolves in the time scale; FE and AE delve deeper into the complexity
and uncertainty of these signals, offering insights into the regularity and predictability of
emotional responses; PE excels at identifying nonlinear features in EEG, which are often
crucial for detecting subtle emotional states; and SE quantifies energy distribution across
different frequency bands, showing a broad view of frequency-domain characteristics
that are essential for assessing the stability and energy patterns of brain rhythms. This
nuanced fusion not only enhances the understanding of EEG characteristics associated with
emotional changes but also helps to identify specific brainwave patterns that correlate with
distinct emotional states, making it a powerful solution in affective neuroscience. Thus, the
proposed method incorporates feature-level fusion to generate the BREM.



Entropy 2025, 27, 96 10 of 21

Another aim is to investigate the single-channel mode and single-region mode for
emotion recognition, resulting in variations in BREM generation for each mode. In the
single-channel mode, BREM contains 30 features, representing a combination of five brain
rhythms and six entropies for a single EEG channel. Therefore, the size in this mode is
5 × 6, as presented in (8). As for the single-region mode, the BREM is formed by fusing
the channels within the same brain region. For example, regarding the occipital region,
the BREMs from PO3, PO4, O1, O2, and OZ are combined, resulting in a larger matrix
size of 5 × 30, as shown in (9). Following this approach, the BREMs of five brain regions
are generated by fusing the corresponding EEG channels listed in Table 2, providing a
comprehensive feature representation. This fusion strategy facilitates in-depth analysis of
the channel number in emotion recognition by involving various BREMs, which helps to
determine the appropriate data size for accomplishing a resource-efficient method.

BREMsingle−channel =


γAE γFE γSE γPE γSSE γPSDE

βAE βFE βSE βPE βSSE βPSDE

αAE αFE αSE αPE αSSE αPSDE

θAE θFE θSE θPE θSSE θPSDE

δAE δFE δSE δPE δSSE δPSDE

 (8)

BREMoccipitalregion =
[

BREMPO3 BREMPO4 BREMO1 BREMO2 BREMOZ

]
(9)

where γ, β, α, θ, and δ denote gamma, beta, alpha, theta, and delta, respectively.

3.3. Classification Method

Concerning biological sequences, the degree of similarity is a fundamental measure
of the extent of resemblance between them. Inspired by this concept, this work puts
forth a classification method based on the similarity measures of the BREM. For instance,
unknown BREM data are compared with a positive BREM sample (HA/HV) and a negative
sample (LA/LV) to determine similarity measures between them. If the unknown BREM
exhibits a greater degree of similarity with the positive sample, this indicates that the
testing data can be characterized as HA/HV. Then, four commonly used methods in this
field, namely Dynamic Time Warping (DTW), Mutual Information (MI), the Spearman
Correlation Coefficient (SCC), and the Jaccard Similarity Coefficient (JSC), are chosen to
investigate in this work. The details are outlined as follows:

DTW is a nonlinear matching algorithm for comparing time-series signals that can
perform dynamic alignment on the time axis to minimize the distance between two data
points [48]. It mainly focuses on the shape of the time-series signals rather than their abso-
lute values, which beneficially handle data of different lengths and temporal distortions, as
shown in (10) and (11):

C(i, j) = d(Ai, Bj) + min{C(i − 1, j), C(i, j − 1), C(i − 1, j − 1)} (10)

DTW(A, B) = C(n, m) (11)

where A and B are two data point that are needed to calculate the similarity lengths of
n and m; d is the local distance between Ai and Bj at points i and j, respectively; C is the
cumulative distance matrix; and C(n, m) is denoted as the value of the last element in the C
matrix. The smaller the DTW, the higher the similarity between the BREMs.
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MI measures the dependency between two data points, and it can demonstrate how
much information they share [49]. Thus, by comparing the BREMs of different emotional
states, the trend of entropy change can be indicated, as shown in (12):

MI(A; B) = H(A) + H(B)− H(A, B) (12)

where H denotes the entropy of data points A and B and H(A, B) represents the joint entropy
between them.

SCC is a nonparametric measure of rank correlation that assesses how well a monotonic
function can describe the relationship between two variables. It helpfully evaluates the
degree to which the relationship between two variables can be expressed as a linear
relationship after ranking the data [50], as shown in (13):

SCC = 1 − 6∑n
i=1 (Ai − Bi)

2

n(n2 − 1)
(13)

Lastly, JSC is a measure of the similarity between two sets. It is commonly used to
compare finite discrete sets by calculating the ratio of the intersection to the union of the
sets, effectively identifying how much the two sets overlap [51]; its values range from 0 (no
similarity) to 1 (entire similarity), as shown in (14):

JSC = 1 − |A ∩ B|
|A ∪ B| (14)

To achieve a resource-efficient classification method using similarity, a template that
serves as either a positive or negative sample is essential, functioning as a benchmark.
Meanwhile, after thoroughly considering inter-individual variability and the differences
in emotions elicited by watching music videos in the DEAP dataset, the Leave-One-Out
Cross-Validation (LOOCV) approach is employed to choose the templates. For instance, for
subject S1, out of 40 trials, 16 of them are LA, and 24 are HA. Thus, the BREMs from the first
LA and the first HA trials are selected as positive and negative templates, respectively. In
contrast, the remaining trials are applied as unknown testing data in the similarity measures
to classify their emotional state as LA or HA. Next, the BREMs of the second LA and the
first HA trials are selected as templates, followed by sequential cyclic analysis. Based on
that, 16 × 24 evaluations are conducted, employing similarity measures per subject. In
addition, as for evaluation metrics, the accuracy is defined as follows:

Accuracy =
TN + TP

TN + FN + TP + FP
(15)

where TP refers to the correctly predicted positive examples, i.e., instances classified as HA
or HV. FP represents the incorrectly predicted positive examples, i.e., HA or HV instances
misclassified as LA or LV. FN denotes the incorrectly predicted negative examples, i.e.,
LA or LV instances misclassified as HA or HV. Finally, TN represents correctly predicted
negative examples, i.e., instances correctly classified as LA or LV.

4. Results and Discussion
In this work, the experimental results of the proposed method are programmed by

MATLAB. To facilitate reproducible research and positively affect the academic field, the
codes are freely available at https://github.com/zyzc75/BREM-SIMILARITY.git (accessed
on 18 January 2025).

https://github.com/zyzc75/BREM-SIMILARITY.git
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4.1. Statistical Analysis

First, a qualitative analysis is performed to demonstrate the statistical significance
of the selected entropy features in relation to emotional states. Specifically, Analysis
of Variance (ANOVA) is a commonly used statistical verification method that evaluates
differences in group means and variances. When the resulting p-value is equal to or smaller
than the significance level (typically 0.05), the feature exhibits a significant difference
concerning specific emotional variations. It is, therefore, suitable for classification tasks.
Figure 4 presents two examples of ANOVA test box plots for the best entropy features that
provide the highest accuracy from subject S1 in the DEAP dataset. In Figure 4a, the alpha-
sample entropy (αSE) in the P7 channel is selected for arousal classification. In contrast,
in Figure 4b, the beta-singular spectrum entropy (βSSE) in the O2 channel is chosen for
valence classification. Their p-values are less than 0.05, so the statistical analysis indicates
significant differences in the emotional categories.
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Figure 4. Two examples of ANOVA test box plots for the best entropy features that provide the
highest accuracy from subject S1 in the DEAP dataset. (a) The alpha sample entropy (αSE) in the P7
channel for arousal classification; (b) the beta singular-spectrum entropy (βSSE) in the O2 channel for
valence classification.

In Figure 4, higher values of P7-αSE predominantly appear in the HA state for arousal
classification. In comparison, lower values are found in the LA state, suggesting a positive
correlation between arousal level and the presence of P7-αSE in the BREM for subject
S1. Similarly, the appearance of O2-βSSE in the BREM for valence classification provides
informative clues indicating valence levels. In this work, the BREM is not subjected to
feature selection to retain the comprehensiveness of the entropy features while ensuring
classification accuracy. Nonetheless, several features may not exhibit statistical significance
for emotion recognition. Consequently, this statistical analysis only focuses on those
entropy features selected based on specific channels with the highest accuracy rather than
all extracted features.

Following this approach, ANOVA tests are conducted on the entropy features selected
from each channel for all 32 subjects meeting the same conditions in the DEAP dataset.
The overall results indicate that their p-values are all less than 0.05, showing trends similar
to those of the two examples illustrated in Figure 4, demonstrating statistical significance.
Such statistical results confirm the rationale for selecting valuable entropy features and
provide optimal support for robust classification.
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4.2. Classification Results

The mean ± standard deviation (%) of accuracy for arousal and valence classifica-
tion employing different time windows, similarity measures, and data input modes are
summarized in Table 3. The best results are underlined in bold.

Table 3. The classification results (mean ± standard deviation (%)) using different time windows,
similarity measures, and data input modes.

Similarity
Measure
Method

Time
Window (s)

Classification Accuracy (Mean ± Standard Deviation (%))

Single-Channel Mode Single-Region Mode

Arousal Valence Arousal Valence

DTW

30 80.92 ± 4.38 78.95 ± 3.27 78.29 ± 5.43 76.23 ± 3.81
20 82.24 ± 4.28 79.85 ± 3.18 80.51 ± 5.08 78.54 ± 4.68
10 83.06 ± 4.77 81.42 ± 3.40 80.92 ± 4.82 78.29 ± 3.41
5 84.62 ± 4.39 82.48 ± 2.88 83.06 ± 5.13 79.69 ± 2.93

MI

30 81.25 ± 5.62 78.78 ± 3.89 79.36 ± 6.27 77.06 ± 3.68
20 83.31 ± 4.80 79.36 ± 3.21 79.61 ± 5.71 76.97 ± 3.34
10 83.72 ± 4.25 80.51 ± 2.40 81.42 ± 4.86 78.62 ± 3.39
5 84.79 ± 5.08 81.99 ± 3.07 82.24 ± 4.87 79.61 ± 3.13

SCC

30 66.37 ± 12.45 62.34 ± 9.56 70.56 ± 13.17 68.42 ± 8.21
20 65.87 ± 13.31 62.17 ± 8.71 70.64 ± 12.81 67.93 ± 8.06
10 65.46 ± 14.38 62.58 ± 9.16 70.39 ± 13.33 68.09 ± 8.71
5 68.75 ± 13.97 65.54 ± 7.33 71.96 ± 11.88 68.91 ± 8.41

JSC

30 59.38 ± 16.26 56.91 ± 9.70 59.38 ± 16.26 56.91 ± 9.70
20 59.38 ± 16.26 56.91 ± 9.70 59.38 ± 16.26 56.91 ± 9.70
10 59.38 ± 16.26 56.91 ± 9.70 59.38 ± 16.26 56.91 ± 9.70
5 59.38 ± 16.26 56.91 ± 9.70 59.38 ± 16.26 56.91 ± 9.70

As shown in Table 3, SCC and JSC are less effective than the other methods, since the
average accuracy of these two methods is below 72% and the standard deviation is around
10%. For example, JSC remains at 59.38 ± 16.26% and 56.91 ± 9.70% for 30 s time lengths for
arousal and valence classification, respectively. The analysis demonstrates that, taking the
arousal classification of subject S1 with 40 trials (16 LA and 24 HA) as an example, 15 LA and
23 HA samples need to be tested after selecting positive and negative samples. Employing
JSC for similarity measures, all testing samples are misclassified as HA, resulting in a fixed
classification accuracy of 23/(15 + 23) = 60.53%. This pattern is consistent across other
subjects, so the mean and standard deviation remain fixed, regardless of changes in time
windows, leading to performance failure. The failure of the JSC method is likely due to
its limitations. JSC is suitable for measuring the degree of overlap between two sets, but
the multi-entropy features in EEG signals are dynamic and complex. The changes under
different emotional states are not simple set relationships or linear. As a result, it is not
good enough to effectively capture such complex dynamic characteristics. In addition, the
SCC mainly measures the rank correlation of two BREMs, i.e., their monotonic relationship.
Nonetheless, emotional changes are often not monotonic, and EEG signals show nonlinear
properties under different emotional states. Therefore, the SCC is improper for obtaining
such changes in the BREM and only measures similarity according to the change in rank,
making it ineffective at discerning the subtle differences between emotions, resulting in
poorer performance.

On the other side, DTW adaptively addresses temporal data deformation. It effectively
includes the nonlinear characteristics of change between disparate time segments in EEG
signals, demonstrating high accuracy and stability in emotion recognition. MI reflects the
relationship between EEG signals by quantifying the information shared between two
variables, yielding promising results in emotion recognition. Consequently, nonlinear
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similarity measure methods, such as DTW and MI, are appropriate in this work. Overall,
DTW shows stability in valence classification, as indicated by a smaller standard deviation.
Meanwhile, it maintains balanced performance in arousal classification. Therefore, con-
sidering its accuracy and stability, DTW can be regarded as a suitable similarity measure
method for the BREM to perform resource-efficient classification.

After settling the DTW, it is observed that as the time window progressively decreases,
accuracy improves for both valence and arousal, accompanied by a reduction in the stan-
dard deviation. In particular, the performance of a 5 s time window is up to 80%, whether
in a single channel or single region. To be precise, it improved by nearly 3% compared to a
30 s window and by almost 1% compared to both 10 s and 20 s windows. This improvement
may be due to the instantaneous nature of emotional changes, which experience significant
fluctuations over a relatively short period. On the other hand, a longer time window may
contain more information but include additional irrelevant signals, which may reduce the
prominence of these instantaneous fluctuations. As a result, a 5 s window is selected as the
stationary segment for emotion recognition, consistent with previous work [52].

Next, the experimental results demonstrate that employing a single-channel input
produces better outcomes than single-region input. Specifically, the arousal classification
accuracy of the single-channel mode using DTW with a 5 s time window is 1.56% higher
than that of the single-region mode. In comparison, the standard deviation is 0.74% lower.
Similarly, in valence classification, the accuracy of the single-channel mode is 2.79% higher,
with a standard deviation that is 0.05% lower. This enhancement is attributed to the sin-
gle channel’s ability to directly involve multi-entropy features associated with specific
emotional dimensions, which helps to minimize potential interference and redundant infor-
mation. Conversely, integrating multiple channels introduces complexity that may dilute
the contribution of effective signals from individual channels. Although the difference is
insignificant, single-channel data input reduces computational cost and model training
time, accentuating the practical advantages of single-channel input in the proposed method,
which is a primary concern when designing portable devices. Thus, the characteristics of
the single-channel mode are the focus of the proposed method.

4.3. Appropriate Time-Segment and Channel Results

When selecting DTW as the similarity measure method for single-channel BREMs
derived from a length of 5 s as input, the subsequent investigation concentrates on the
appropriate time segment and channel for EEG-based emotion recognition. The results of
32 subjects from the DEAP dataset are listed in Table 4, based on which the best combination
of each subject can be determined.

Table 4 reveals that the appropriate time segment and channel for arousal and valence
classification vary among the subjects, implying individual differences in EEG responses to
emotional stimuli. For arousal classification, the appropriate time segment is predominantly
concentrated in the early stage of the experiment (0–20 s for 16 subjects) and the middle
stage (20–40 s for 12 subjects), with the highest classification accuracy for S21, reaching
94.74% in 0–5 s. It also follows a similar trend for valence classification, where the highest
classification accuracy of 89.47% appears in 20–25 s (S6) and 30–35 s (S23). In addition,
Figure 5 depicts the statistical frequency of the optimal time segment for 32 subjects from
the DEAP dataset. Such findings as those reported in Table 4 and Figure 5 align with
the nature of the two emotional dimensions. Arousal reflects an individual’s immediate
response to emotional stimuli, which tends to be most prominent in the initial or middle
periods [53]. In contrast, valence is associated with the individual’s overall emotional
evaluation and response, which may require more time for processing and assessment by
the subject themselves [54].
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Table 4. The appropriate time segments and channels of 32 subjects from the DEAP dataset for
arousal and valence classifications.

Subject

Arousal Valence

Channel Time
Segment (s)

Classification
Accuracy (%) Channel Time

Segment (s)
Classification
Accuracy (%)

S1 T8 15–20 84.21 CP5 5–10 84.21
S2 FC5 30–35 81.58 O2 5–10 81.58
S3 PO4 10–15 89.47 FC2 20–25 84.21
S4 CP6 0–5 84.21 AF4 30–35 84.21
S5 PO3 5–10 81.58 P3 35–40 81.58
S6 CZ 20–25 81.58 F4 20–25 89.47
S7 PO3 15–20 84.21 FC6 5–10 86.84
S8 F4 15–20 81.58 P7 10–15 81.58
S9 CP1 5–10 78.95 F7 30–35 81.58

S10 F8 0–5 78.95 FC6 25–30 81.58
S11 P4 25–30 81.58 F3 5–10 81.58
S12 FC1 20–25 92.11 P3 10–15 78.95
S13 F4 0–5 92.11 PO3 0–5 81.58
S14 F7 5–10 86.84 AF3 0–5 81.58
S15 CP5 5–10 78.95 FC5 25–30 81.58
S16 P8 30–35 84.21 FC2 0–5 81.58
S17 C4 45–50 81.58 F8 50–55 81.58
S18 CP1 40–45 84.21 C4 0–5 81.58
S19 F3 20–25 84.21 T8 25–30 81.58
S20 P8 35–40 89.47 C3 10–15 81.58
S21 PO3 0–5 94.74 FZ 20–25 78.95
S22 FP1 15–20 84.21 CP1 40–45 81.58
S23 FZ 35–40 86.84 C3 30–35 89.47
S24 O2 25–30 92.11 PZ 35–40 81.58
S25 PO4 50–55 86.84 CP5 0–5 78.95
S26 FP1 50–55 84.21 F7 10–15 81.58
S27 CP1 0–5 81.58 F7 5–10 86.84
S28 F7 5–10 78.95 F4 20–25 81.58
S29 AF4 35–40 86.84 FC1 15–20 81.58
S30 PO3 35–40 78.95 FZ 50–55 86.84
S31 FC2 20–25 81.58 C4 20–25 84.21
S32 O2 0–5 89.47 F3 20–25 76.32
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For better understanding, Figure 6 illustrates word clouds of the identified appropriate
channels, indicating that most are located in the central, occipital, and frontal regions when
conducting arousal and valence classifications. On the one hand, such regions are typically
associated with sensory and attentional processing, given their role in arousal levels, which
aligns with the function of the occipital region (responsible for visual processing), the
central region (linked to motor control and sensory integration), and the frontal region
(also involved in the cognitive evaluation of emotional stimuli, playing a central role in
emotional regulation). Consequently, they facilitate the integration of the brain’s immediate
response to stimuli, contributing to effective arousal classification. On the other hand,
regarding valence, the channel results exhibit slight differences, with higher occurrences
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of F7, C3, and C4, which aligns with the conclusion that the frontal region is associated
with social behavior, decision making, and emotional control. Specifically, the central
part of the brain is part of the motor cortex, which is involved in motor expression and is
closely related to emotional expression, including facial expressions and body language.
Moreover, the discovered channels are not identical among all subjects, indicating that
cognitive processing and the cooperation of multiple brain regions are typically required
to assess emotion. For example, the prefrontal cortex modulates activity in brain regions
that produce emotions, with downregulation and upregulation enhancing activity in areas
associated with emotional experiences, such as the amygdala and the prefrontal lobes [55].
The prefrontal lobe’s location corresponds with that of F7, C3, and C4, situated on the
left side of the frontal lobe and extending forward, implying a close relationship with the
activity associated with downregulation and upregulation in emotions.

Entropy 2025, 27, x FOR PEER REVIEW 16 of 22 
 

 

levels, which aligns with the function of the occipital region (responsible for visual pro-
cessing), the central region (linked to motor control and sensory integration), and the 
frontal region (also involved in the cognitive evaluation of emotional stimuli, playing a 
central role in emotional regulation). Consequently, they facilitate the integration of the 
brain’s immediate response to stimuli, contributing to effective arousal classification. On 
the other hand, regarding valence, the channel results exhibit slight differences, with 
higher occurrences of F7, C3, and C4, which aligns with the conclusion that the frontal 
region is associated with social behavior, decision making, and emotional control. Specif-
ically, the central part of the brain is part of the motor cortex, which is involved in motor 
expression and is closely related to emotional expression, including facial expressions and 
body language. Moreover, the discovered channels are not identical among all subjects, 
indicating that cognitive processing and the cooperation of multiple brain regions are typ-
ically required to assess emotion. For example, the prefrontal cortex modulates activity in 
brain regions that produce emotions, with downregulation and upregulation enhancing 
activity in areas associated with emotional experiences, such as the amygdala and the pre-
frontal lobes [55]. The prefrontal lobe’s location corresponds with that of F7, C3, and C4, 
situated on the left side of the frontal lobe and extending forward, implying a close rela-
tionship with the activity associated with downregulation and upregulation in emotions. 

  
(a) (b) 

Figure 6. Word clouds of the representative channels for 32 subjects from the DEAP dataset: (a) 
arousal classification; (b) valence classification. 

Based on the above observations, it is plausible to speculate that arousal classification 
relies more on brain regions associated with visual stimulus processing. In contrast, va-
lence classification involves more excellent processing of social–emotional information 
and internal emotional regulation. Furthermore, activity in motor-related brain regions 
indicates a significant role of bodily expression in valence regulation. These findings pro-
vide vital insights for the further exploration of the application of single-channel EEG sig-
nals in emotion recognition, particularly regarding how specific emotional dimensions 
can be captured through various channels. Future research should explore the associa-
tions of such channels with other potential functional areas and their collaborative roles 
in the complex process of individual emotion recognition. 

4.4. Comparative Study 

To thoroughly investigate the benefits of the proposed method, a comparative study 
with recent works is performed, as outlined in Table 5. As seen, although the classification 
accuracies of the proposed method are somewhat lower than those of methods using mul-
tiple channels and complex deep learning networks, such as a fuzzy rank-based deep 
learning model [56], CNN [10,57], Multi-Layer Perceptron (MLP) [57], and LSTM [58,59], 
managing to deliver remarkable performance through single-channel data inputs, reduc-
ing dimensionality and computational cost. On the one hand, the CNN-based deep learn-
ing approach [57] achieves classification accuracies of 94.33% for arousal and 93.53% for 
valence, highlighting the potential of multi-channel configurations and deep learning net-
works in sophisticated emotion recognition. Other model-based networks like MLP [57] 

Figure 6. Word clouds of the representative channels for 32 subjects from the DEAP dataset: (a) arousal
classification; (b) valence classification.

Based on the above observations, it is plausible to speculate that arousal classification
relies more on brain regions associated with visual stimulus processing. In contrast, valence
classification involves more excellent processing of social–emotional information and
internal emotional regulation. Furthermore, activity in motor-related brain regions indicates
a significant role of bodily expression in valence regulation. These findings provide vital
insights for the further exploration of the application of single-channel EEG signals in
emotion recognition, particularly regarding how specific emotional dimensions can be
captured through various channels. Future research should explore the associations of such
channels with other potential functional areas and their collaborative roles in the complex
process of individual emotion recognition.

4.4. Comparative Study

To thoroughly investigate the benefits of the proposed method, a comparative study
with recent works is performed, as outlined in Table 5. As seen, although the classification
accuracies of the proposed method are somewhat lower than those of methods using
multiple channels and complex deep learning networks, such as a fuzzy rank-based deep
learning model [56], CNN [10,57], Multi-Layer Perceptron (MLP) [57], and LSTM [58,59],
managing to deliver remarkable performance through single-channel data inputs, reducing
dimensionality and computational cost. On the one hand, the CNN-based deep learning
approach [57] achieves classification accuracies of 94.33% for arousal and 93.53% for valence,
highlighting the potential of multi-channel configurations and deep learning networks
in sophisticated emotion recognition. Other model-based networks like MLP [57] also
display high accuracy, offering 94.25% for arousal and 93.39% for valence. On the other
hand, conventional approaches, such as SVM [60], logistic regression [61], and Minimum
Distance to Riemannian Mean (MDRM) [62], present comparatively lower performance.
For instance, MDRM combined with Principal Component Analysis (PCA) [62] achieves
only 57.42% for arousal and 64.06% for valence with 60 s data. Such disparities indicate
the vital roles of feature selection and fusion in EEG-based emotion recognition. In this
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regard, the proposed method established by the BREM derived from multi-entropy fusion
and similarity measures has been successfully implemented to recognize various emotions
through a single-channel approach, emphasizing a balance between channel number and
classification accuracy. Hence, such performances are more outstanding than those reported
in previous studies, considering fewer data resources as a concern, facilitating the resource-
efficient design of low-cost portable emotion-aware devices.

Table 5. Comparison with recent works.

Time Window (s)
Number of

Channel Main Methodology
Classification Accuracy

(%)

Arousal Valence

Akhand et al. [10] 8 32 Connectivity feature map with CNN 91.66 91.29

Dhara et al. [56] 2 14 Fuzzy rank-based deep learning
approach using Gompertz function 91.65 90.84

Kumar and Molinas [57] 1 32
Differential entropy with MLP 94.25 93.39
Differential entropy with CNN 94.33 93.53

Gaddanakeri et al. [58] 60 14
Brain rhythms with LSTM (S1–S22) 82.40 78.28
Brain rhythms with LSTM (S23–S32) 63.15 62.06

Singh et al. [59] 3 5 Grey Wolf Optimization (GWO) and
LSTM with data augmentation 81.25 92.50

Jha et al. [60] 60 32 Brain rhythms with SVM 70.88 76.00

Pan et al. [61] 1 32 Logistic regression with Gaussian kernel
and Laplacian prior 77.03 77.17

Al-Mashhadani et al. [62] 60 32 MDRM-PCA 57.42 64.06

This work 5 1 BREM from multi-entropy fusion and
similarity measure by DTW 84.62 82.48

4.5. Discussion

First, the proposed method is validated and analyzed using the publicly available
DEAP dataset in this work. The findings indicate that the classification accuracy gradually
increases as the time length decreases. This trend is particularly evident when utilizing
5 s time segments, during which classification performance peaks. Such an observation
suggests that shorter time segments help assess transient emotional responses. Longer time
segments, despite containing more EEG signals, may include disturbances unrelated to the
emotion, which could reduce the accuracy. The results from shorter time segments also
exhibit lower standard deviations, revealing more stable outcomes for emotion recognition.

Second, when comparing various methods for measuring similarity levels between the
BREMs derived from multi-entropy fusion, it becomes apparent that DTW is appropriate
for this context, outperforming other similarity measures through its refined analytical
capabilities. DTW excels in capturing nonlinear temporal variations, which are beneficial for
identifying subtle emotional changes over time through the BREMs. Unlike SCC and JSC,
which assume a more straightforward relationship between the signals, DTW can account
for time shifts and distortions, making it highly effective for processing non-stationary
biomedical signals such as EEG, where emotional states usually evolve dynamically.

Third, the investigation demonstrates that the inputs from individual channels achieve
higher classification accuracy than those from the same region, reaffirming that individual
channels can more directly capture EEG signals pertinent to emotions. Meanwhile, the
appropriate time segments and channels for arousal and valence vary among subjects,
reflecting the functional diversity of emotional dimensions across different brain parts.
Thus, the proposed method provides valuable insights for choosing suitable time lengths
and channels in EEG-based emotion recognition, laying the groundwork for future resource-
efficient hardware designs.

Finally, this work exhibits several limitations despite demonstrating the advantage of
multi-entropy fusion. The complexity and variability in emotional responses indicate that
individual differences are significant. While several subjects exhibit better classification
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results with short time segments, others achieve better results with longer segments, such
as 10 s. Future work could explore the association between individual differences and
time lengths, particularly the potential links between emotional dimensions and individual
neural responses regarding EEG-based entropy fusion views.

5. Conclusions
This work proposes an innovative resource-efficient multi-entropy fusion method for

EEG-based emotion recognition in which the development of the BREM involves the extrac-
tion of five brain rhythms through DWT, followed by acquisition of multi-entropy features
that encapsulate the inherent complexity and dynamics of EEG signals. Subsequently,
DTW emerges as a suitable method for measuring similarities among BREM samples. The
focused evaluation of time window analysis reveals that the 5 s EEG segment yields robust
data for recognition. Although most methods select 32-channel or other multi-channel
setups as input to capture abundant brain information to enhance emotion recognition
performance, the proposed method using the single-channel mode provides a promising,
resource-efficient way to simplify the EEG setup without compromising classification
performance. The experimental results from the DEAP dataset demonstrate that single-
channel data achieve 84.62% and 82.48% accuracy in arousal and valence classification
tasks, respectively, underscoring the effectiveness of BREMs from multi-entropy fusion.
Therefore, such performances are meaningful when considering fewer data resources as a
concern, which opens the possibility of an entropy fusion method that can helps to design
portable EEG-based emotion-aware devices for daily usage.

While the results are particularly interesting, further refinement and validation of the
proposed method across diverse scenarios are desirable, especially with a single-channel
EEG setup, which may not fully capture the complexity of emotional responses across
different brain regions. Therefore, future work should explore ways to combine the resource-
efficiency of single-channel EEG with the comprehensive spatial coverage provided by
multi-channel EEG, improving performance for more nuanced emotional analysis. In
addition, it is vital to focus on exploring real-time classification by integrating multimodal
data and customizing the methodology to accommodate individual differences in emotional
processing and validating its robustness using datasets beyond DEAP. Such efforts will
assess the method’s performance across diverse experimental conditions, enhancing its
applicability in broader real-world scenarios.
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