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Abstract: Extended irreversible thermodynamics (EIT) has been widely used to overcome
the deficiencies of classical irreversible thermodynamics in describing fast transport phe-
nomena. By employing fluxes as additional independent variables and rejecting local
equilibrium hypothesis, EIT may provide a thermodynamically consistent framework for
high-frequency and non-local processes. Here, we propose an alternative approach to EIT
that shares the same objective but does not reject local equilibrium hypothesis. Using the
rates of change of the energy density as the additional independent variable, we illustrate
this approach for two typical problems of transient heat conduction: the Cattaneo-type flux
model with thermodynamic inertia and the two-temperature model of energy transfer in a
phonon–electron system.
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1. Introduction
The classical formulation of irreversible thermodynamics (CIT) provides a consistent

framework for the local description of a thermodynamic system in which quantities change
with position and time [1]. It employs the hypothesis of local equilibrium, assuming that
macroscopic thermodynamic relations (such as an equation of state or the Gibbs relation)
are valid at the meso-scale. The validity of local equilibrium has been demonstrated in
various homogeneous [1] and heterogeneous [2–4] systems and even at the nano-scale [5].
However, this question remains open for systems that involve high-frequency phenomena,
such as the heating of solids via laser pulses, ultrasound in gases, phonon hydrodynamics,
etc., in which local equilibrium appears to be violated [6]. Specifically, in such systems,
the thermodynamic quantities at a certain position depend on the properties of the system
at the adjacent positions, giving rise to various non-local descriptions [7]. Furthermore,
the assumption of local equilibrium in such systems appears to violate the second law
of thermodynamics. Such inconsistencies have been resolved by Extended irreversible
thermodynamics (EIT), which provides a thermodynamically consistent framework for the
description of fast transport phenomena at the micro-and nano-scale [6].

In this paper, we propose an alternative to EIT approach that does not reject local
equilibrium hypothesis, while it still provides a thermodynamically consistent description.
Following the steps of EIT, we demonstrate this approach for the famous Maxwell–Cattaneo–
Vernotte (MCV) equation [8–10] and the two-temperature model of electron–phonon ther-
mal coupling [7].

Let q(r, t) be the heat flux and T(r, t) the temperature in the system of interest, both
of which depend on position and time. Using the dot over the symbol is used to indicate
the partial time derivative, the MCV-type energy transport equation can be written as

qC + τq̇C = −λ∇T (1)
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where τ is the relaxation time, λ is the thermal conductivity, and the subscript C refers
to the MCV-type behavior. Compared with Fourier’s law, qF = −λ∇T, Equation (1)
contains an additional term, τq̇, which accounts for the so-called thermodynamic inertial
effect. Such inertia is crucial in fast processes, where the transient dynamics demonstrate a
delayed response.

Although Equation (1) accurately describes the dynamics of the aforementioned phe-
nomena, it appears to violate the second law of thermodynamics. The latter states that the
local entropy production σ, defined through the entropy balance equation

ρ ṡ = −∇ · Js + σ, (2)

and represented as the product of the heat flux q and the thermodynamic force X, must be
non-negative. In CIT, XCIT = ∇(1/T). If the heat flux is described by Fourier’s law, then
σCIT is non-negative, as expected:

σCIT, F = qF · XCIT = µCIT q2
F =

1
µCIT

X2
CIT (3)

where µCIT ≡ 1/(λT2). However, if the heat flux is described by Equation (1), then the
entropy production

σCIT, C = µCIT q2
C − τ qC · q̇C (4)

may become negative, thus violating the second law of thermodynamics.
EIT proposes a modification to local thermodynamic equations by extending the num-

ber of independent variables, which control an irreversible evolution of a thermodynamic
system [6]. In particular, in the case of heat conduction, EIT postulates that the entropy
depends explicitly on the heat flux q, in addition to the classical dependence on the internal
energy, u. This, in turn, modifies the Gibbs relation for the entropy, so for the specific (per
unit of mass) quantities it reads as

dsEIT(u, q) =
1
θ

du − τµEIT

ρ
q · dq (5)

where θ is the generalized temperature, which is the non-equilibrium analogue of the
equilibrium temperature T, ρ is the material mass density, and µEIT ≡ 1/(λθ2), where λ is
the thermal conductivity. This results in the thermodynamic force having an additional
term compared to CIT

XEIT = ∇1
θ
− τµEIT q̇C (6)

and hence the entropy production restoring its non-negativity:

σEIT, C = qC · XEIT = µEIT q2
C =

1
µEIT

X2
EIT (7)

The approach of EIT has been demonstrated to be consistent with various microscopic
descriptions in non-equilibrium statistical physics, as well as specific applications of micro-
scopic heat transfer. The dependence of the non-equilibrium entropy s on the flux q makes
EIT a non-local theory.

In this paper, we propose an alternative approach, which provides a thermodynami-
cally consistent description of fast phenomena that, however, is truly local. Our approach
achieves the same objective as EIT, but keeps the local equilibrium hypothesis intact. We
consider two typical problems that are relevant in this context: the MVC-type model (1)
itself is derived in Section 2 and the so-called two-temperature model, which arises in the
description of energy transfer in an electron–phonon system, is derived in Section 3.
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2. Transient Heat Conduction
We assume that the non-equilibrium entropy (per unit of mass) depends on the internal

energy (per unit of mass) and the time rate of change of the internal energy [11]:

s(r, t) = s[u(r, t), u̇(r, t)] (8)

so that its change in some process is governed by the modified Gibbs relation

ds(u, u̇) = β du + α du̇ (9)

where

β(u, u̇) ≡ ∂s
∂u

∣∣∣∣
u̇

α(u, u̇) ≡ ∂s
∂u̇

∣∣∣∣
u

(10)

Given that β(u, 0) = 1/T, we may identify 1/β as the non-equilibrium temperature. The
physical meaning of α will become apparent below. It is convenient, however, to write it as
α(u, u̇) = α̃[β(u, u̇), u̇], so that

dα =
∂α̃

∂β

∣∣∣∣
u̇
dβ +

∂α̃

∂u̇

∣∣∣∣
β

du̇ (11)

We next assume that (∂α̃/∂u̇)β = 0, so that the dependence of α on u̇, if any, is only
manifested through the corresponding dependence of the non-equilibrium temperature 1/β:

α(u, u̇) = α̃[β(u, u̇)] (12)

This assumption may be justified by viewing Equation (9) as the first-order approxima-
tion in the expansion of s in the powers of u̇. Indeed, an explicit dependence of α on u̇
would result in s being dependent on higher than linear terms in u̇. Thus, Equation (12)
implies linear dependence of the non-equilibrium entropy on the time rate of change of the
internal energy.

Heat conduction is governed by the energy balance equation

ρ u̇ = −∇ · q (13)

Taking the time derivative of Equation (13), we obtain

ρ ü = −∇ · q̇ (14)

Substituting Equations (13) and (14) in Equation (9), we obtain the time rate of change
of the entropy density

ρ ṡ = −β∇ · q − α∇ · q̇ (15)

which, after rearrangement, results in

ρ ṡ = −∇ · (βq + αq̇) +
(

q + q̇
dα̃

dβ

)
· ∇β (16)

Comparing it with the entropy balance Equation (2), we identify the entropy flux and the
entropy production as
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Js = β q + α q̇

σ =

(
q + q̇

dα̃

dβ

)
· ∇β

(17)

In order for the entropy production to be non-negative, we must require

q + q̇
dα̃

dβ
=

1
µ
∇β (18)

where µ is positive. Comparing Equation (18) with MCV Equation (1), we note that these
are the same equations. This essentially means that the assumptions (9) and (12) produce
MCV Equation (1) in a thermodynamically consistent manner.

We can now identify the coefficients α and µ. Comparing again Equation (18) with (1),
we identify µ = β2/λ, which thus has the same meaning as µCIT and µEIT. Furthermore, we
observe that dα̃/dβ = τ, and hence

α(u, u̇) =
∫

τ(β) dβ (19)

We will further refer to the combination

q̃ ≡ q + q̇
dα̃

dβ
(20)

as the generalized flux. Identifying the thermodynamic force as X ≡ ∇β, we obtain for the
entropy production

σ = q̃ · X = µ q̃2 =
1
µ

X2 (21)

3. Two-Temperature Model
We now consider a heterogeneous system that is made of two components with their

own temperatures. A reference example of a such system is heat transport in metals, where
one can observe the electron gas at the temperature Te and the phonon gas (the lattice) with
the different temperature Tp [7]. In such a system, heat is transferred in two modes: (i) via
spatial heat fluxes qe and qp of electrons and phonons, respectively, and (ii) via a (scalar)
heat flux qep between the electron and phonon subsystems at the same position.

When the energy densities (per unit of volume) ue and up of the corresponding
subsystems are introduced, the energy balance equation for each of the subsystems is

u̇e = −∇ · qe − qep

u̇p = −∇ · qp + qep

(22)

We note that the thermodynamic behavior of the electron and phonon subsystems is
different, resulting in certain simplifications for Equation (22). We will, however, carry
the initial derivation in general terms (keeping the notation of the e and p subsystems),
reducing to the particular cases later.

We next generalize Equation (8) so that the entropy density (per unit of volume) s of
the system can be represented as a sum of the corresponding densities, se and sp of the
subsystems, each depending on the corresponding volumetric internal energy density and
its time rate of change:

s(r, t) = se[ue(r, t), u̇e(r, t)] + sp[up(r, t), u̇p(r, t)] (23)
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The corresponding Gibbs equation for the overall system takes the following form:

ds(ue, up, u̇e, u̇p) = βe due + βp dup + αe du̇e + αp du̇p (24)

with β and α defined similarly to Equation (10), and α approximated similarly to
Equation (12):

αe(ue, u̇e) = α̃e[β(ue, u̇e)]

αp(up, u̇p) = α̃p[β(up, u̇p)]

(25)

Following the same process as in Section 2, we obtain, for the balance of the entropy
density, (2), identifying the entropy flux Js and the entropy production σ as

Js ≡ βe qe + βp qp + αe q̇e + αp q̇p

σ ≡ q̃e · ∇βe + q̃p · ∇βp + qep
(
−βe + βp

)
+ q̇ep

(
−α̃e(βe) + α̃p(βp)

) (26)

where the generalized fluxes q̃e and q̃p are defined similarly to Equation (20).
To ensure that σ is non-negative, and taking into account that scalar and vectorial

fluxes do not couple, we must require that

∇βe = µee q̃e + µep q̃p

∇βp = µpe q̃p + µpp q̃p

(27)

and
qep = g00

(
−βe + βp

)
+ g01

(
−α̃e(βe) + α̃p(βp)

)
q̇ep = g10

(
−βe + βp

)
+ g11

(
−α̃e(βe) + α̃p(βp)

) (28)

with the coefficients µee, µep, µpe, µpp and g00, g01, g10, g11 being non-negative.
Equations (27) and (28) represent heat transport equations for an isotropic two-temperature
system. The identification of the transport coefficients is performed for each particular
phenomenon below.

3.1. Electron–Phonon Coupling

The two-temperature model for the electron–phonon energy transfer is [7]

Ce Ṫe = ∇ · qe − G (Te − Tp)

Cp Ṫp = G (Te − Tp)

qe + τF q̇e = −λe ∇Te

(29)

Here, Ce and Cp are the volumetric heat capacities of the electrons and the phonons,
respectively, λe is the thermal conductivity of the electron gas, and G is the phonon–electron
coupling factor describing the rate of energy transfer between electrons and phonons [12],
while τF is the relaxation time of the electron gas calculated at the Fermi surface [13].

The first two of Equation (29) are the energy balance equations for the electron and
phonon subsystems, respectively, i.e., the particular manifestations of Equation (22). We
note that the phonon balance equation misses the ∇ · qp term, which is due to the fact that
spatial equilibrium in the phonon gas is reached much faster than the one in the electron
gas. For the same reason, the transport equation for the phonon subsystem is missing,
while the transport equation for the electron subsystem (the third equation in Equation (29))
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has the form of MCV Equation (1). Comparing Equations (27) and (28) with Equation (29)
allows us to identify the new quantities, similarly to how it has been done in Section 2.

We first identify βe = 1/Te and βp = 1/Tp as the non-equilibrium temperatures of the
electron and phonon gas. Furthermore, (dα̃e/dβe) ≡ τF, and αe =

∫
τF(βe)dβe.

Similarly, αp =
∫

τp(βp)dβp. We note, however, that since Equation (29) does not
contain the transport equation for the phonon flux, τp is undefined. Because the phonon
gas reaches equilibrium much faster than the electron gas, one may consider the thermal
conductivity of the phonon gas λp = ∞ to be infinite (or, equivalently, the phonon thermal
resistivity to be zero, µpp = 0). This, in turn, means that τp may be considered zero; hence,
αp = 0, and therefore, the corresponding term αp u̇p is absent from the Gibbs relation (24).

Next, we observe that the spatial coupling coefficients µep = µpe = 0. Thus, Equation (27)
reduces to a simple equation, ∇βe = µee q̃e, which is equivalent to the third of Equation (29)
with µee ≡ 1/(λeT2

e ).
Finally, we observe that the electron–phonon coupling manifests as a single term,

qep = G (Te − Tp), so that g01 = g10 = g11 = 0 and g00 ≡ G Te Tp.

3.2. Coupling Between Similar Components

Consider now the two-temperature model for a system that consists of “similar”
components. We define such “similarity” as αe and αp having the same functional form;
i.e., for any β

αe(β) = αp(β) = α(β) (30)

In this case, assuming that βe and βp are not too different, we can further approximate

α̃(βe) ≈ α̃(βp) +
dα̃

dβ
(βe − βp) (31)

Then, the scalar part of the entropy production in Equation (26) becomes

σ(s) = (−βe + βp)

(
qep +

dα̃

dβ
q̇ep

)
(32)

where we have taken into account that, due to Equation (30), α̃e(βp)− α̃p(βp) = 0. There-
fore, Equation (28) simplifies to

qep +
dα̃

dβ
q̇ep = g (−βe + βp) (33)

where g is non-negative. With the “equilibrium” notation, it has the form of MCV
Equation (1) for the flux qep betwen two subsystems:

qep + τep q̇ep = G (Te − Tp) (34)

with g ≡ GTeTp.

4. Discussion
We have proposed an alternative approach to EIT, which describes transient heat

conduction in a thermodynamically consistent manner.
When the expressions for the entropy production from CIT, EIT, and the proposed

approach (Equation (3), Equation (7), and Equation (21), respectively) are compared, it
is interesting to note that the entropy production is represented by the same functional
bi-linear form of thermodynamic forces and fluxes in all three approaches. The difference,
however, lies in the explicit identification of those forces and fluxes. In particular, the heat
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flux qF in CIT is the solution of Fourier’s law, and the heat flux qC in EIT is the solution
of the MCV equation, while the heat flux q̃ in the transient approach is the generalized
flux, defined by Equation (20). Similarly, the thermodynamic force in CIT is ∇(1/T), and
the thermodynamic force in EIT is ∇(1/θ)− τµq̇C, while the thermodynamic force in the
transient approach is ∇β. This suggests the universality of the force-flux bi-linearity of the
entropy production, while the choice of the approach is dictated by the particular problem
of interest.

The proposed transient approach and EIT address the same type of phenomena while
providing different solutions. The main difference between the two approaches is the
utilization of local equilibrium. EIT is a non-local theory, with the local thermodynamic
properties being dependent on the heat flux. In contrast, the proposed transient approach
is a local theory, with the local thermodynamic properties being dependent on the time rate
of change of the internal energy.

It may appear, however, that such a difference between the proposed transient ap-
proach and EIT is merely philosophical. Indeed, the additional independent variable, the
heat flux, is measured locally, at the same position as the thermodynamic densities. While
this may be true empirically, there exists an important conceptual difference. Thermo-
dynamic density is evaluated at a point that is the center of a small volume element. In
contrast, flux is evaluated at a point that is the boundary between two adjacent volume
elements. Thus, employing the heat flux as an independent variable means involving
two neighboring volume elements, while employing the time rate of change of the internal
energy as an independent variable means involving a single volume element. The latter
description is more succinct and thus may, in certain circumstances, be preferred.

Another important difference between EIT and the proposed transient approach is
the behavior in the stationary state. There, the transient approach reduces to the classical
irreversible thermodynamics. In contrast, EIT remains distinct from CIT with the stationary
heat flux still being used as the independent thermodynamic variable. This is, in principle,
not forbidden; however, it does appear to deviate from the original motivation of EIT
to describe fast transient processes. This suggests that EIT may be better suited for low-
frequency phenomena in spatially inhomogeneous systems, such as nano-systems [14],
while the proposed transient approach is better suited to high-frequency transient processes
in homogeneous environments.

Finally, the analysis of the two-temperature model may suggest a simple solution to
the problem of non-equilibrium temperature raised in EIT. In particular, in non-equilibrium,
different degrees of freedom may have different temperatures. This creates difficulties in
the identification of the unique non-equilibrium temperature, θ. The proposed transient
approach does not require the existence of the unique non-equilibrium temperature, sus-
taining its consistency with multiple non-equilibrium temperatures defined in the system.
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