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Abstract: This work presents a novel approach to handling epistemic uncertainty estimates
with motivation from Bayesian linear regression. We propose treating the model-dependent
variance in the predictive distribution—commonly associated with epistemic uncertainty—
as a model for the underlying data distribution. Using high-dimensional random feature
transformations, this approach allows for a computationally efficient, parameter-free rep-
resentation of arbitrary data distributions. This allows assessing whether a query point
lies within the distribution, which can also provide insights into outlier detection and
generalization tasks. Furthermore, given an initial input, minimizing the uncertainty us-
ing gradient descent offers a new method of querying data points that are close to the
initial input and belong to the distribution resembling the training data, much like auto-
completion in associative networks. We extend the proposed method to applications such
as local Gaussian approximations, input–output regression, and even a mechanism for
unlearning of data. This reinterpretation of uncertainty, alongside the geometric insights
it provides, offers an innovative and novel framework for addressing classical machine
learning challenges.

Keywords: associative memory; probabilistic; epistemic uncertainty; unlearning; one shot;
iterative; regression

1. Introduction
Machine learning, as an inductive methodology that creates models from data, is funda-

mentally about uncertainty, particularly when making predictions based on these models.
Modern machine learning often uses probabilities to express the associated uncertainties.
However, as Hüllermeier and Waegeman [1] pointed out in a recent review: “In particu-
lar, this includes the importance of distinguishing between (at least) two different types of
uncertainty, often referred to as aleatoric and epistemic.” (p. 457). The former refers to
the irreducible uncertainty introduced by the randomness of the modeled data, while the
latter commonly refers to the uncertainty associated with the lack of knowledge about model
parameters for a given class of models and can, in principle, be reduced by adding more
data. Providing a historical perspective, Hacking [2] states that the academic discourse on
aleatoric and epistemic uncertainty dates back to the seventeenth century, while older work
on probabilities addresses the distinction between aleatoric and epistemic uncertainty [3,4].

Until recently, the topic of different types of uncertainty has rarely been considered in
machine learning; among the first to motivate considering it in a machine learning context
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were Senge et al. [5], while more recently there has been an uptick of interest in the topic,
i.e., in the context of privacy or in variational approaches [6,7]. But even adopting common
notions of aleatoric vs. epistemic uncertainty is not generally agreed upon, nor is it easy to
quantify them [1]. Furthermore, as the authors Hüllermeier and Waegeman [1] emphasize,
“What this example shows is that aleatoric and epistemic uncertainty should not be seen
as absolute notions. [...] Changing the context will also change the sources of uncertainty:
aleatoric may turn into epistemic uncertainty and vice versa.” ([1], p. 464).

Particularly well understood is uncertainty in Bayesian regression, both for concept
learning and numerical regression of parameterized models, where a concept typically is
associated with a specific model parameter vector. Given the model class, the model param-
eters are averaged out to form the Bayesian predictive distribution, and the resulting total
uncertainty is known to mix aleatoric and epistemic components ([8], p. 156). These can be
identified in the variance of the predictive distribution. We follow the Bayesian regression
approach and employ as specific feature space a dedicated fixed high-dimensional random
feature transformation that is well known to yield universal approximation capabilities as
well as very efficient computation when used in the context of functional-link networks [9]
or the so-called extreme learning machines [10]. But here, we are not interested in the
well-known prediction abilities of this random feature model.

This paper, rather, introduces a novel concept to treat the model-dependent part of the
variance of the predictive distribution ([8], p. 156), which is commonly denoted “epistemic
uncertainty” in this Bayesian linear regression setting [4,11], as a model of the underlying
distribution of the data. We have adopted this notion (Figure 1), although it does not
fully separate epistemic and aleatoric uncertainty, as can be easily seen from its analytical
computation (see Section 2). This epistemic uncertainty results from averaging over the
possible parameters weighted by their posteriors. It depends solely on the given data and
the feature transformation and, thus, is a parameter-free and easy-to-compute model. It is
also worth noting that it is the diagonal of the so-called smoothing kernel ([8], chap. 3.3.3)
and is also closely related to the Mahalanobis distance for centered data, as detailed in
Section 2.2.
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Figure 1. Visualization of the epistemic uncertainty of an exemplar 2D complex (non-normal)
distribution. The green stars depict samples; the colored area and vector field indicate the epistemic
uncertainty in the input space and its gradient, respectively. For the three initial inputs, the trajectory
during minimization of the epistemic uncertainty through gradient descent over 50 iterations is
shown. The red sections of the trajectories indicate states that are classified as outside of the learned
distribution, while the purple sections indicate iterations towards areas of high certainty that are
already classified as belonging to the distribution of the training data. The oval annotations depict
estimated local Gaussian approximations at converged solutions.
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We argue that under the given high-dimensional random feature transformation
and for a specific input query point the variance of the predictive output distribution
gives a good measure of whether this query point is “in-distribution” or not. In this
vein, our method is conceptually related to others that try to approximate the sup-
port of a distribution to determine if a given query point is in or out of distribution,
e.g., DeVries and Taylor [12], Lee et al. [13], Malinin and Gales [14], Sensoy et al. [15]. Such
approaches, however, often rely on parametric models such as Gaussian mixtures, path
length estimations in binary trees (e.g., the isolation forest algorithm), or computationally
expensive approximations of the underlying data distribution via deep neural networks,
which can introduce other intricate issues. Our method shares with these models the
concept of thresholding the epistemic uncertainty when determining whether a data point
belongs to the in- or out-of-distribution class.

A further source of inspiration comes from the following question: how close is
a given query point to a distribution or what is the nearest in-distribution point? For
centered distributions with mean zero, one possible answer is to compute the Mahalanobis
distance, which gives the variance-weighted distance to the mean. This, however, does
not answer the question of what could be the closest point in a distribution relative to
a query. The evaluation of the epistemic uncertainty provides us with a constructive
method to determine one. Its gradient can be computed analytically, and, therefore, an
iterative gradient descent can be devised that minimizes the epistemic uncertainty until
the threshold to “in-distribution” is hit, to find the “closest point”. Note that this neither
provides a proper metric, nor does it relate to the global statistics of the full dataset like the
Mahalanobis approach. Rather, we define the gradient field of the epistemic gradient and
follow it until the prediction variance becomes small, which is possible for all types of data
distributions. To the best of our knowledge, this is an entirely new method.

Despite its simple derivation and computation, we further show that following the
epistemic gradient has a very interesting and novel geometrical interpretation that uses
specific properties of high-dimensional random feature transformation. Interestingly, the
theoretical analysis shows that training data are not represented as attractors in this feature
space. In contrast to many common approaches that are based on direct data representation
(e.g., [16–19]), here, the dynamics towards the data distribution are generated by weighted
repulsive forces in the hidden space. Note that this interpretation resembles, to some degree,
the interpretation of linear regression with recurrent random features in [20–23], which,
however, was derived in a very different context. We show that this concept of avoidance of
the unknown , rather than the usual convergence to the known, provides an innovative method
for data representation and can be beneficial for generalization and extrapolation. Through
extensions of the method, we further show that local Gaussian approximations of the data
distribution can be computed, that ordinary but very flexible input–output regression is
possible in an auto-associative mode, that outliers and anomalies can be detected and
benchmarked favorably against standard methods, and, finally, we devise a constructive
method for unlearning of data.

In summary, inspired by the recent discussion on aleatoric vs. epistemic uncertainty
in machine learning, we reinterpret a well-known term in Bayesian linear regression
that determines the variance of the predictive distribution as a feature-transformation-
dependent model of the data distribution, which signifies a kind of “epistemic uncertainty
distribution model”. Through the choice of the specific high-dimensional random feature
transformation, we obtain a geometric interpretation of the respective uncertainty gradient,
which itself is a new concept. We then show that through this new method, a number of
classical problems can be tackled, including regression and outlier detection, whereas we
do not have to make any assumptions on the original data distribution.
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2. Preliminaries
2.1. The Epistemic Uncertainty

Considering Bayesian linear regression (e.g., [8]) of a distribution of target values y,
the latter is conditioned on weights W and features xϕ = ϕ(x) for inputs x, for some feature
space mapping ϕ(x) and Gaussian data noise modeled with precision β:

p(y|xϕ, W, β) = N (y|xϕW, β−1). (1)

Using the design matrix Xϕ, the posterior distribution of the output weights W is given as

p(W|Xϕ, Y, α, β) = N (W|mN , SN). (2)

Under the assumption of Gaussian prior S0 = α−1I and sample precision β = σ−1
x , the

posterior of weights is parameterized, such that

mN = βSNXϕY, and (3)

S−1
N = αI + βXT

ϕXϕ. (4)

Integrating out W, the full Bayesian predictive distribution of outputs y is given by param-
eterized distribution, such that

p(y|xϕ, Xϕ, Y, α, β) = N (y|mT
Nxϕ, σ2

N(xϕ)). (5)

The variance of the predictive distribution for a provided input xϕ is decomposed into
aleatoric and epistemic uncertainty as

σ2
N(xϕ) = β−1︸︷︷︸

(a) aleatoric

+ xTϕ SNxϕ︸ ︷︷ ︸
(b) epistemic

. (6)

The aleatoric uncertainty is irreducible and originates in the data noise, i.e., the output
y is modeled as a Gaussian Equation (1) capturing the variance of the training dataset. The
epistemic uncertainty U (x) = xTϕ SNxϕ is the uncertainty related to the model parameters W,
which decreases with the increasing number of training samples. As discussed above, this
common definition of the epistemic uncertainty in the literature captures the dependency
on parameterization—that is, the epistemic part, but as the definition of SN Equation (4)
still depends on β it does not fully separate epistemic and aleatoric uncertainty. As this
does not impede our further proceeding, we simply follow the common notion.

2.2. The Mahalanobis Distance

For dataset X with mean µ the Mahalanobis distance of a point x is defined as

DM = (x− µ)TΣ−1(x− µ). (7)

DM measures the distance of x to the mean µ of X in terms of standard deviations of the
dataset X, where Σ−1 is the covariance matrix.

Let x ∈ X be a vector and X = [x0, . . . , xn] be some centered example data with mean
µ = 0. Now, perform linear regression directly in the input space X ; then, the epistemic
uncertainty derived above Equation (6) is identical to the Mahalanobis distance, since the
covariance matrix Σ = XTX equals the product of the design matrix (in this case, this
equals the transpose of the data matrix) with its transpose. This shows that, in principle, the
epistemic uncertainty is related to the Mahalanobis distance. It does measure something
like the distance to a given distribution, which is represented by a sample dataset.
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However, in this baseline case, minimization of epistemic uncertainty with respect
to some data point x is not helpful, because the minimum will always be the mean, by
definition. However, this changes if we consider an intermediate feature transformation of
x into some feature space Xϕ, as introduced next.

3. Method
3.1. The Feature Space Transformation

In the following, we consider as feature transformation x 7→ ϕ(x) ∈ Xϕ with x ∈ Rd

and ϕ(x) ∈ Rk, the well-known random feature neural network with fixed random input
weights and standard sigmoidal non-linear activation function [24–26]:

ϕ(x) = fσ(Winpx + b), and (8)

fσ(x) =
1

1 + e−x , (9)

where Winp ∈ Rk×d is a random matrix with entries drawn according to wij ∼ N (0, σ),
b ∈ Rd is an optional bias term defined likewise as bj ∼ N (0, σ), and fσ is applied
component-wise. Note that the feature dimension k is supposed to be much larger than
the input dimension d: k≫ d, so that the feature transform performs a strong upscaling.
However, as Equation (8) is locally a diffeomorphism, the feature mapping creates a local
d-dimensional submanifold in the k-dimensional feature space. Furthermore, due to the
random summation and for large k the norm of the data in the feature space is constant
||xϕ|| ≈ C for some value of C, dependent on the feature dimension and the form of the
sigmoidal activation function.

Geometrically speaking, after feature transformation the data Xϕ is located on a
d-dimensional sphere in feature space Xϕ, which will be of the utmost importance to inter-
preting the gradient of the epistemic uncertainty defined below. Moreover, the projection
in the feature space is restricted to the non-negative orthant of the manifold, because fσ

is defined as a logistic activation function. This does not impede the representations of
arbitrary distributions, as discussed in the following by means of a geometric interpretation
of the feature space.

3.2. The Epistemic Gradient

We first derive the gradient of the epistemic uncertainty, introduced as part of
Equation (6), with respect to an input space vector, the input x. The basic idea is to treat
U (x) = xTϕSNxϕ as an objective function (the uncertainty) to be minimized with respect
to the data space input x, where xϕ = ϕ(x) is a shortcut notation for the feature space
vector. Given

∇xU =
∂ f (z)

∂z
· ∂z

∂x
, with (10)

z = ϕ(x), and

f (z) = zTSNz,

in case of sigmoidal activation functions, the derivative of z is given by
∂z
∂x = [ϕ(x)(1− ϕ(x))]WT

inp and ∂ f (z)
∂z as
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∂ f (z)
∂zi

=
∂zTSNz

∂zi
=

∂

∂zi
∑
j,k

SNj,k zjzk

=
∂

∂zi

[
∑

j ̸=i,k ̸=i
SNj,k zjzk + ∑

j ̸=i
SNj,i zjzi + ∑

k ̸=i
SNi,k zizk + SNi,i z

2
i

]
= ∑

j ̸=i
SNi,j zj + ∑

k ̸=i
SNi,k zk + 2SNi,i zi

= 2 ∑
j

SNi,j zj.

(11)

Finally, the gradient of U with respect to x is defined as

∇xU =
∂ f (z)

∂z
∂z
∂x

= 2Winp[SNϕ(x)](ϕ(x)(1− ϕ(x))). (12)

3.3. Geometric Interpretation

As introduced in Equation (4), the inverse of the posterior’s variance S−1
N is a real

positive-definite and a symmetric matrix; hence, its spectral decomposition

S−1
N = QΛQ−1 = QΛQT =


q0
...

qk




λ0
. . .

λk




q0
...

qk


T

(13)

is defined and a computationally efficient inversion through element-wise inversion of
eigenvalues λi is possible. The substitution of SN in the epistemic uncertainty xTϕSNxϕ by
its spectral decomposition results in

U = xTϕ QΛ−1QTxϕ = xTϕ Q


1/λ0

. . .
1/λk

QTxϕ, (14)

which can be rearranged into a squared sum of scalar products (cosine similarities) that are
weighted by the reciprocals of their respective eigenvectors, such that

U =


⟨q0,xϕ⟩

...
⟨qk,xϕ⟩




1/λ0

. . .
1/λk



⟨q0,xϕ⟩

...
⟨qk,xϕ⟩


T

=
k

∑
i=0

⟨qi,xϕ⟩2

λi
=

k

∑
i=0

ei. (15)

Following from Equation (15), minimizing the epistemic uncertainty can be considered
as maximizing the orthogonality of the next estimate x(n+1)

ϕ to all eigenvectors qi in the
input space. Due to the weighting of the scalar products with the inverse eigenvalues λi,
orthogonalization to directions that represent the training distribution Xϕ the least can
be considered a primary objective, as the respective eigenvalues are typically multiple
magnitudes larger in comparison to the eigenvectors representing the training distribution.
As a result of the minimization of the epistemic uncertainty in the input space of the non-
linear mapping ϕ(x), optimization is non-trivial (see discussion in Section 2) and results
in convergence towards local minima representing the training data distribution of Xϕ, as
depicted in Figure 2.
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Figure 2. (a) Geometrical interpretation of feature space; (b) Visualization of minimization of the
epistemic uncertainty in the input space. The visualization of the hidden space representation
of the proposed method in (a,b) depicts training data as green stars on the manifold (black line)
along a hypersphere in the three-dimensional hidden space. Color shading of the surface of the
hypersphere (positive orthant) indicates the epistemic uncertainty. An additional projection of the
one-dimensional input into the hidden space is shown in panel (b). Optimization (minimization
of epistemic uncertainty through gradient) for novel inputs (orange starts) is performed iteratively
and indicated by red arrows. Scaling (length) of eigenvectors (q1, q2, and q3) according to function
log(1/λn); (c) Internal analysis of the weighted orthogonalization of the current estimate to the
eigenvectors of the training data during minimization of the epistemic uncertainty. Minimization of
epistemic uncertainty optimization is sown for three random inputs over 50 steps (horizontal axis).
Epistemic uncertainty (bottom) is defined as sum of squared covariance similarities between the
projected input into the hidden space and the eigenvectors of the training data distribution. The
top plot shows magnitude of the cosine similarities (color shading). The middle plot shows the
logarithmic transformation of the cosine similarities.
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Figure 2a,b show the results of a toy example of a 1D input that is projected into a 3D
feature space. It can be seen how the training samples, marked by green stars, are projected
onto a manifold in the positive orthant of a sphere in the feature space. The training samples
are located in regions of minimum uncertainty (indicated by shading of the hypersphere
surface), which is due to their maximum weighted orthogonality to all eigenvectors q1, q2,
and q3 (highlighted in red). The weighing of the eigenvectors is visualized by the length
estimated as the log of the reciprocal of the eigenvalues. Therefore, it can be seen that q1 is
very small (owing to its largest eigenvalue) and that it represents the mean of the training
data in the positive orthant of the hidden space. Due to its small contribution to the final
uncertainty estimate, q1 is irrelevant and can be ignored. This shows that centering of
training data is not necessary as long as the data value range aligns with the slope and
the centers of the non-linear activation functions. In fact, orthogonalization to q1 cannot
even be achieved, since all projections from the input space are restricted to the positive
orthant of the hidden space. The second eigenvector, q2, represents most of the variance in
the training data, as its scaling by its inverse eigenvalue is also small and contributes only
insignificantly to the gradient field of the epistemic uncertainty.

The main contributor to the estimate of the epistemic uncertainty in our case is q3,
which is a strong repeller. As q3 represents the least variance of the training samples, as
the training samples are almost orthogonal to q3, and as the more novel inputs deviate
from the observed training samples, the more likely it is that the projection of the samples
into the hidden space loses its orthogonality to q3. This means that eigenvectors with low
eigenvalues can be considered as “novelty detectors”, which cause increased uncertainty
estimates in cases where a deviation from the training distribution occurs. During the
minimization of the epistemic uncertainty, these novelty detectors can be interpreted as
repellers, as current estimates are being pushed away from the respective eigenvectors
through optimization via gradient descent.

Note that for visualization purposes, the depicted example only operates in a three-
dimensional feature space, and that, due to this limitation, spurious minima can occur,
i.e., an increase in orthogonality in the feature space with the further increased distance
of samples from the training data distribution. Indeed, in our example case the epistemic
uncertainty is decreasing with input space approaching−0.5, i.e., we can identify a spurious
minimum. This observation is common in cases of low-dimensional feature spaces and
high non-linearity; nevertheless, our empirical analysis shows that with a growing number
of (random) hidden features the probability increases that at least one dimension “detects”
the deviation from the observed distribution. This means that the orthogonality to one of
the eigenvectors that contribute as novelty detectors strongly increases and acts as a strong
repeller to force the network states back towards the observed distribution.

In addition, a visualization of the orthogonalization in relation to the minimization
of the epistemic uncertainty is shown in Figure 2c. Each subplot shows the contributions
of each eigenvector to the overall uncertainty estimation for the three optimizations of
Figure 1. The top panel shows the squared weighted cosine similarity ei as introduced
in Equation (15), the middle panel shows a log plot of ei, and the lower panel shows the
epistemic uncertainty U during minimization of the epistemic uncertainty for 50 steps. The
visualization of orthogonality to eigenvectors is sorted by the magnitude of the respective
eigenvalues. The log plot, in particular, reveals two types of eigenvectors: (1) eigenvectors
that do not represent the training data (repellers), whose contributions can be minimized,
and (2) eigenvectors that represent the training data, which maintain low orthogonalization
with respect to minimized solutions and, as a result, do not contribute to the minimization
of epistemic uncertainty. Our empirical analysis (e.g., Figure 2) showed that heuristics
U (x) < 10xmin with xmin = argmin(U (x)) is a good indicator for deciding when iterative
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minimization of the epistemic uncertainty reaches the data distribution, as shown by the
dashed black lines in Figure 2c. Here, we only considered eigenvectors 1/λ > 10−6 for the
computation of the threshold operations.

3.4. Parameterization of Prior

Prior knowledge in linear regression is usually provided in the form of regularization
λreg = α/β and can be interpreted as weighting of an L2 regularization term for estimation
of the output weights of the model. Although the proposed method does not estimate
output weights, the parameterization influences the representation of internalized samples
through the interaction during estimation of epistemic uncertainty with S−1

N . The effect of
changes in the precision of the prior through α is shown in Figure 3.

q

Input space [x0]

In
pu

t s
pa

ce
 [x

1]

Figure 3. Top panel: Shift of eigenvalue spectrum causes a weighting of cosine similarities in the
calculation of the epistemic uncertainty, induced by modulation of variance α of prior S0 = α−1I and
with sample precision set to β = 1. Bottom Panels: The resulting effect of “regularization” in the
representation of training distributions (smoothing of epistemic uncertainty) caused by modulation
of variance α, with α = 1× 101, α = 1× 10−2, and α = 1× 10−6. The results show a mean of n=10
runs of random projections into a k = 40-dimensional hidden space. Dark/blue areas indicate lower
epistemic uncertainty as projected into the input space.

Due to the definition of S−1
N , Equation (4), hyperparameter α induces a spectrum

shift (shown in Figure 3; top panel) in the eigenvalue spectrum and adjusts the number of
vectors considered for orthogonalization during minimization of the epistemic uncertainty.
The related Equation (15) shows the inverse relationship of eigenvalues and the weighting
of cosine similarities. As a result, the estimation of the epistemic uncertainty gradually
depends on a smaller number of representative features and becomes smoother as α

increases. Interestingly, the resulting effect is similar to the standard regularization of
output weights in regression models; the stronger the regularization is performed, the
smoother the learned mapping from input to output.

3.5. Method Application
3.5.1. The Auto-Associative Case

Given an initial input of pattern x(0), the iterative minimization of the epistemic
uncertainty of estimates based on the gradient in Equation (12),

x(n+1) ← x(n) − η∇x(n)U , (16)
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results in x(n), an estimate with maximized epistemic uncertainty and high similarity to the
presented training data. The constant η is usually introduced in this case as the update rate
for optimization. Figure 1 shows the trajectories of x(n) for three random initial states x(0)

of a 2D distribution; the epistemic uncertainty is encoded by background coloring, and the
gradient of the epistemic uncertainty is visualized as arrows of a vector in black.

3.5.2. The Regression Case

The proposed method creates a nonparametric representation of the joint probability
of the dataset in an unsupervised manner. Therefore, in contrast to typical regression
models, no mapping is estimated between the feature space and the output data.

Nevertheless, implementation of regression is possible by autocompletion or auto-
association of patterns, when treating concatenated inputs and respective outputs as ele-
ments of a joint input data space. This approach is common to a number of classical neural
network and machine learning methods, including original pattern auto-association in the
Amari–Hopfield network [27,28] or by using variations of the self-organizing maps [29,30].
Early autocompletion through recurrent network dynamics has been proposed by [31]
in a context of robotics; more recent work addresses multi-dimensional and multi-modal
continuous association [32]. In probabilistic modeling, Gaussian Mixture Regression fol-
lows a similar idea of first modeling the joint distribution of inputs and outputs and then
marginalizing to obtain the desired output for a given input [8]. Our approach is on an
intermediate ground. It uses probabilistic modeling of the joint distribution based on a
feature transform, but resorts to an iterative minimization procedure rather than to explicit
marginalization.

To this end, we consider the input feature space z = [xT, yT]T ∈ Rd+e as a concate-
nation of inputs x ∈ Rd with respective outputs y ∈ Re. Given a query input vector
z(0) = [xT, y(0)T]T ∈ Rd+e with an initial estimate of output y(0), an output can be esti-
mated by iterative minimization of the epistemic uncertainty Equation (16) restricted to
y(n+1). The input vector x is considered to be immutable (provided input) and is clamped
to its initial value.

This approach requires an iterative update towards a solution, but there are benefits:
multiple solutions (ambiguities) can be represented and queried by variations of the initial
estimate of y(0). Solutions that are closer to the initial estimate provided can be assumed
to be more likely to be discovered. As an example, consider a typical inverse kinematics
task, such as robot reaching. If a desired target moves continuously in space, solutions
of consecutive configurations that are more similar to each other would be considered
beneficial for smooth and safe operation of the robot.

A second benefit of the presented approach is that there is no structural differentiation
between inputs and outputs, as in all auto-associative approaches. It can, thus, operate in
inverse operation and estimate the most likely inputs given the desired output vectors. Even
more so, each individual dimension of the input space of the method can be considered
independently as input or output, or it can be dynamically configured between forward
and inverse modes of operation.

3.6. Extended Method Applications
3.6.1. Local Gaussian Approximation

In the following, we denote the solution of the iterative minimization of the epistemic
uncertainty Equation (16) by gradient descent from an initial state x(0) as a converged
solution x(N). The number N of necessary iterations can vary, and iterative optimization
is typically performed until a certain precision criterion is met, such as, for example,
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∇Ux(n) < ϵ. Furthermore, we assume that x(N) ≈ x∗ is a true local minimum, which implies
that the Hessian at this point is positive-definite.

Under the assumption that the uncertainty estimates in a local neighborhood of
x∗ resemble a Gaussian shape, we can consider a local approximation through a multi-
variate Gaussian probability density function (PDF) with variance Σx∗ and mean x∗ in a
k–dimensional space:

p(x|Σx∗ , x∗) = (2π)−k/2|Σx∗ |−1/2 exp
[
−1

2
(x− x∗)TΣx∗

−1(x− x∗)
]

. (17)

Its log likelihood can be denoted as

ln p(x|Σx∗ , x∗) = − k
2

ln(2π)− 1
2
[
ln(|Σx∗ | ) + (x− x∗)TΣ−1

x∗ (x− x∗)︸ ︷︷ ︸
(a) Distance metric

]
. (18)

The Hessian matrix of the negative log likelihood (e.g., as in [33]) reduces to

Hk,l(x
∗) =

−∂2log(p(x))
∂xk∂xl

∣∣∣∣
x=x∗

= (Σ−1
x∗ )k,l , (19)

which equals the observed Fisher Information matrix I(x∗) [34]. The relationship shown in
Equation (19) provides the means for estimating a local covariance estimate at the point
x∗ as the analytical solution of the Hessian matrix of the epistemic uncertainty, which
can be computed analytically. Interestingly, the comparison of the epistemic uncertainty
estimate U (x) (originating in Equation (6) to the log likelihood of a Gaussian PDF, as
shown in Equation (18), reveals that both share the same characteristics of a distance metric.
The respective similarities between Equation (6)(b) and Equation (18)(a) are the basis for
the following approximation assumptions. In the case of our non-linear projection from
inputs into the feature space, norms of hidden state vectors are assumed to be constant (as
discussed previously; Section 3.1); in addition, the feature projection ϕ(x) can be considered
as “distance preserving”, as it is a random projection. Therefore, we consider the local
approximation,

U (x∗ + δ) ∝∼ ln p(x∗ + δ|Σx∗ , x∗), (20)

with Σx∗ = H−1
U (x∗), the Hessian of the epistemic uncertainty U . In practice, iterative opti-

mization can result in estimates U (x∗ + δ) that are not symmetric or not positive-definite,
due, e.g., to numerical inaccuracies. To increase the robustness of the numerical calcula-
tions, the results presented in the following are generated by estimating local covariance

estimates according to Σx∗ =
[

1
2HU (x∗) +

1
2HT
U (x
∗))

]−1
.

The Hessian matrix HU (x) of the epistemic uncertainty U at point x can be denoted in
terms of the Jacobian matrix J ∇xU (x) of the gradient ∇xU , such that

HU (x) = J ∇xU (x)
T =

[
∂∇xU

∂x1
· · · ∂∇xU

∂xn

]T
, (21)

with
∂∇xU

∂xj
= 2

∂

∂xj
Winp[SNϕ(x)](ϕ(x)(1− ϕ(x))). (22)
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With substitutions g(x) = ϕ(x) for the inner function and f (g(x)) = ∂
∂xj

Winp[SN g(x)]

(g(x)(1− g(x))) as the outer function, and under consideration of the symmetry of the
Hessian matrix, we can denote

HU (x) = 2(J f ◦g)(x) = 2J f (g(x))J g(x). (23)

The Jacobian J g(x) of the inner function g (i.e., random feature projection) is derived as

J g(x) = diag(ϕ(x)− ϕ(x)2)Winp, (24)

and the elements of the Jacobian matrix J f (g(x)) of the outer function f are defined as

∂ fi(g)
∂gj

=
∂

∂gj
Winp[SN g](g(1− g)). (25)

Separation of f leads to expression

∂ fi(g)
∂gj

=Winpi,j
SNj,j · (2gj − 3g2

j )

+ ∑
k ̸=j

Winpi,k
SNk,j · (gk(1− gk)) + Winpi,j

(1− 2gj) ∑
l ̸=j

SNj,l gl , (26)

and further details are provided in Appendix A. For efficient implementation, the Jacobian
J f (g(x)) can be written in tensor notation, as detailed in Appendix B.

3.6.2. Unlearning

The term unlearning , such as in Nguyen et al. [35], refers to successive updates of
posterior estimates over model parameters W, such that it is as if a subset D− of the initial
training set D was not considered for training. Such incremental updates are required, for
example, in incremental learning scenarios, in cases where access or storage of the initial
training data is not feasible. The posterior after unlearning can be expressed as

p(W|D⊂) = p(W|D)p(D−|D⊂)
p(D−|W)

∝
p(W|D)

p(D−|W)
, (27)

withD⊂ = D \D−, i.e. D⊂ ∩D− = ∅. If we consider Bayesian linear regression, and given
a conjugate Gaussian prior N (W|mN , SN) on the weights W, as introduced in Equation (2),
the exact solution, e.g., Rawat et al. [36], for the updated posterior distribution is given by

m∗N = S∗N
(

S−1
N mN + βX−ϕ

TY−
)

, with (28)

S∗N =
(

S−1
N − βX−ϕ

TX−ϕ
)−1

. (29)

For auto-association, as introduced in Section 3.5.1, targets Y and, thus, mean estimates mN

do not exist. But an update of SN is sufficient for an update of the estimate of the epistemic
uncertainty. Furthermore, a perfect removal of samples is not possible, and the assumption
D⊂ ∩D− = ∅ does not hold in practice. Violation of this condition can be caused by data
noise or by attempted unlearning of untrained or generalized data samples. Therefore, we
consider D∼ as a set of sample candidates for deletion from D.
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In a case where samples from D∼ are sufficiently similar, i.e., an approximate subset
of D, and D⊂ ∩D∼ ≈ ∅ holds, our empirical study shows that the approximate update,
given samples X∼ϕ ∈ D∼,

SN ←
(

S−1
N − η−βX∼ϕ

TX∼ϕ
)−1

, (30)

with η− ≲ 1 (e.g. η− = 0.9 in our experiments), is sufficient for reshaping the attractor
basins appropriately, as shown in Section 4.4.

To overcome the stability issues of the analytically exact unlearning of training sam-
ples, we propose an iterative update procedure, as detailed by Algorithm A3 listed in
Appendix D. The samples in D∼ are weighted by an exponentially decaying function in
relation to their epistemic uncertainty, i.e., samples with a high epistemic certainty are
selected for unlearning, whereas uncertain samples are ignored.

3.7. Summary of Method Application

As detailed in Sections 3.5 and 3.6, the proposed method demonstrates versatility
in addressing a range of machine learning tasks. Depending on the specific application,
the method operates in different modes. For outlier detection, the method requires only
estimation of the epistemic uncertainty (U ; Equation (6)) for a given input feature point. In
contrast, tasks such as auto-completion and regression involve calculating the derivative of
the epistemic uncertainty (∇xU ; Equation (10)) with respect to the input feature space, en-
abling minimization of uncertainty through iterative updates in the input feature space. At
local estimates of minimum uncertainty given an input feature, local covariance approxima-
tion is based on the Hessian of the epistemic uncertainty (HU (x); Equation (21). Unlearning,
on the other hand, necessitates adapting the model’s representation (SN ; Equation (30))
by updating how uncertain features are encoded within the hidden space. With regard
to additional implementation, specific information on the representation of training data
(Algorithm A1) and the estimation of epistemic uncertainty (Algorithm A2) is listed in
Appendix C , example code is provided as Supplementary Material.

In the subsequent sections, we evaluate the model’s performance across these tasks
and highlight the distinctive characteristics of its internal representations.

4. Experiments and Evaluation
4.1. Regression

Our proposed method for function approximation presented in Section 3.5.2 differs
significantly from more classical regression approaches. We stipulate that such regression,
based on minimization of the epistemic uncertainty, can provide benefits, particularly
in cases of strong generalization and extrapolation, unbalanced and multimodel input
data distributions, and for approximation of noncontinuous functions. In cases of out-
of-distribution (OOD) generalization, i.e., extrapolation to test samples far from the ones
observed during training, overshooting of predictions due to overfitting are a common
challenge for regression models. Therefore, we performed an evaluation of function ap-
proximation on three data distributions. In the first experiment, the training data were
generated by sampling 20 values from a sine wave function for estimation of regression
solutions. The inputs were drawn equally from two normal distributions with centers
µsin ∈ {−π/2, π/2} and variances σ2

sin ∈ {0.5, 0.5}. The resulting training data are shown in
Figure 4a. For the second experiment, we increased the curvature (difficulty) of the function
underlying the training data generation. In this case, we sampled 40 times from Gaussian
probability density functions with σ2

gauss = 0.4; the sampling inputs were drawn from
two normal distributions with centers µgauss ∈ {−π, π} and variances σgauss ∈ {0.4, 0.4}.
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Where the input coordinates were drawn from the first distribution, the output was multi-
plied by −1 to generate a training dataset with antagonistic peaks, as shown in Figure 4b.
In the third case, we sampled from a step function, which is usually difficult to represent
with continuous function approximators. High regularization of the output weights was
required, to avoid overfitting; however, low regularization was required, to represent a
sharp step response. Classical regression approaches are restricted to a Pareto optimum
between accuracy and generalization characteristics, due to additive loss terms, referred
to as the bias-variance dilemma in the literature. In every case, a whitening transformation
(preprocessing to ensure unit variance and zero mean) of the training data is performed in
advance. We compare the standard Bayesian linear regression on a random projection of
the input with our proposed approach. For evaluation of both methods, we used the same
random projection with parameterization, as listed in Table 1.

Table 1. Model parameterization of regression experiments.

Model Parameterization

Dims α β

Exp. 1 80 1× 10−2 1× 10+1

Exp. 2 120 1× 10−3 1× 10+4

Exp. 3 200 1× 10−4 2× 10+1
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Figure 4. Results of the regression experiments. Regression was evaluated on three different datasets
(a–c). The comparison between Bayes linear regression (red) and regression based on the minimization
of the epistemic uncertainty (orange) is presented. Color shading of the background and the vector
field indicates the epistemic uncertainty and its gradient field. Green stars depict training samples. A
whitening transformation of the data samples (green) was performed as preprocessing to ensure zero
mean and unit variance for each training dataset.

Regression based on the proposed method was performed according to Section 3.5.2:
starting from initial output state y(n=0)

s=0 = 0, for sample s and optimization iteration n
we successively set the input to values in the interval xs ∈ [−5, 5]. For each successive
test input xs+1, we set the respective initial value to y(0)s+1 ← y(N)

n before minimization of
the epistemic uncertainty with respect to yn+1

s . Minimization of the epistemic uncertainty
was performed by the efficient Broyden–Fletcher–Goldfarb–Shanno (BFGS; Fletcher [37])
optimization technique provided by the scientific scipy Python package [38] (version 1.14.1).
For optimization, we specified precision threshold 1× 10−3 and a maximum of 1× 103

optimization iterations.
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Results:

The outcomes of our evaluation support our initial hypothesis: regression performed
on the basis of minimization of epistemic uncertainty showed significantly less overshoot-
ing behavior in comparison to the standard regression approach. In all three cases, the
standard ridge regression approach resulted in estimations far off the training samples in
cases of out-of-distribution generalization. In particular, in cases with strong curvatures and
gaps in the training distribution (Figure 4b) overfitting occurred even during interpolation
between the first and second clusters of the training samples.

4.2. Novelty and Outlier Detection

We evaluated the proposed epistemic uncertainty estimator against common methods for
outlier detection, such as the IForest, K-Nearest Neighbor estimates, PCA-based and Kernel PCA
(KPCA)-based methods, and Gaussian mixture models (GMMs). For evaluation, we relied on
the implementation and the datasets provided by the anomaly benchmarking software ADBench
(version 0.1.11) [39]. We performed unsupervised outlier detection, i.e., we provided unlabeled
samples and the ratio of outliers in the provided dataset to the models. Outlier detection was
then based on a distance value provided by the respective method and a threshold operation.
The threshold was determined for each model equally, as the (1− dr)th percentile, which meant
that we estimated the threshold at which the number of provided outlier samples rejected by
the model matched the ratio dr provided by the datasets. We performed our analysis on a
random subset of the provided datasets, and the results are listed in Table 2. The evaluation
metric was the area under the receiver operating characteristic curve (AUCROC) value, a widely
used metric in anomaly detection, the same metric referred to in the ADBench benchmark. All
our results reflected the mean of 10 runs with the respective 0.95 percentile confidence interval.
For the performance estimation of our proposed approach, we performed a grid search over
the hyperparameters of the method, to determine the best-performing condition. Note that
the competitive models we tested against in the ADBench likewise implemented an automatic
hyperparameter estimation.

Table 2. Evaluation of our proposed approach against common approaches used for anomaly
detection. The datasets and the implementation of the model are based on the work of Han et al. [39].
Evaluation was performed in an unsupervised fashion, without knowledge of the class label of each
sample. Only the ratio of out-of-class samples in the dataset was known a priori. The evaluation
metric shown is the AUCROC score and its confidence interval (95%-CI). Each row marks the best
performing method in bold font.

IForest KNN PCA KPCA GMM Ours

Cardio 0.94± 0.01 0.77± 0.00 0.96± 0.00 0.73± 0.00 0.92± 0.00 0.89± 0.01
BreastW 0.99± 0.00 0.98± 0.00 0.95± 0.00 0.98± 0.00 0.98± 0.00 0.97± 0.00

Glass 0.62± 0.04 0.76± 0.00 0.34± 0.00 0.76± 0.00 0.49± 0.00 0.92± 0.01
Speech 0.52± 0.02 0.53± 0.00 0.52± 0.00 0.60± 0.00 0.56± 0.00 0.57± 0.02

Landsat 0.49± 0.01 0.59± 0.00 0.36± 0.00 0.56± 0.00 0.46± 0.00 0.73± 0.01
Hepatitis 0.77± 0.03 0.84± 0.00 0.79± 0.00 0.86± 0.00 0.85± 0.00 0.75± 0.02

Stamps 0.90± 0.01 0.84± 0.00 0.91± 0.00 0.80± 0.00 0.87± 0.00 0.91± 0.02
Thyroid 0.98± 0.00 0.96± 0.00 0.95± 0.00 0.96± 0.00 0.93± 0.00 0.94± 0.00

Vertebral 0.46± 0.03 0.39± 0.00 0.44± 0.00 0.40± 0.00 0.44± 0.00 0.64± 0.01
Yeast 0.38± 0.01 0.41± 0.00 0.43± 0.00 0.38± 0.00 0.40± 0.00 0.54± 0.01

Results:

The evaluation shows that the performance of our proposed approach was in the range
of the common methods for outlier detection. We could identify multiple datasets for which
the epistemic uncertainty estimator performed best under the given conditions. As the authors
Han et al. [39] mention in their work, the performance of the models for outlier detection is
dataset-dependent, and a model search is usually performed for specific use cases.
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4.3. Local Covariance Approximation

Cluster Discovery:

The method for covariance estimation, as introduced in Section 3.6.1, is a local approxi-
mation and assumes a normally distributed uncertainty landscape at converged point-wise
minima of the epistemic uncertainty. Obviously, there exist also distributions that violate
these assumptions. To evaluate the feasibility of local covariance estimates, we tested our
estimates on a set of distributions, as shown in Figures 1 and 5. Starting from random
initial states in the input space, we minimized the epistemic uncertainty according to
Equation (16); finally, we performed a local Gaussian approximation by estimating the
covariance, Equation (20), by use of the assumption introduced in Equation (19). The
plots show the optimization trajectories (red lines) of the gradient descent and the final
covariance estimates (visualized as red ellipses) with centers (marked by symbol x in red).

In
pu

t s
pa

ce
 [x

1]

Input space [x0]

(a) (b) (c) (d)

Figure 5. Experiments regarding the assessment of the quality of local approximation of Gaussian
distributions. For each experiment, one sub–figure, (a–d), shows the distribution of the training
data (top) and the results of the approximated covariance matrices (bottom). The lower panels of
(a,b) indicate random samples initial states (red circles) and optimization paths for mean estimation
(dashed red line). Experiments (c,d) used data sampled from a Gaussian mixture with five clusters
and the ground truth covariance indicated as colored ovals (shown in the top panels). The lower
panels of (c,d) indicate estimates of fitting a Gaussian mixture model (red) and estimates generated
by local covariance approximation of the epistemic uncertainty (green). The experiment shown in
(d) introduces different weightings of the Gaussian distributions for sampling; weighting factors
were x1 (orange and brown), x2 (red), x3 (blue), and x4 (purple). Weighing is also indicated by the
number of samples drawn from each distribution (green stars). Color shading of the background
relates to the epistemic uncertainty values for each coordinate.

Probabilistic Trajectory Generation:

Given the results of an accurate 2D distribution recovery, shown in the previous
paragraph, we further challenged the proposed method with the representation of time
series trajectories with probabilistic branching. The trajectories and branching probabilities
tested are shown in Figure 6a and Figure 6c, respectively. For this experiment, each
observation sample used for training included the current state, the future state, and
the current time, i.e., we were operating on three-dimensional observation vectors. For
trajectory generation, we sampled the next state vector (the output) from the estimated
distribution, as specified in Section 3.6.1. Given a next time stamp and a current state
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(last output estimate), the epistemic uncertainty was minimized, with respect to the next
state output. The final output estimate was then calculated through sampling from a local
Gaussian approximation based on the covariance estimation according to Equation (20), as
performed in the previous experiment.

(a) (b)

Transition Probability
Truth Generated
0.1 0.08
0.25 0.28
0.375 0.38
0.5 0.48
0.65 0.6
0.75 0.74

(c)

Figure 6. Experiments on probabilistic trajectory generation: (a) Training data used in the case of a
switching probability of 0.25. One of two possible trajectories is generated—upper path or lower path;
time steps are depicted on the horizontal axis. (b) The experimental results of the proposed method, in the
case of a switching probability of 0.25, were used during the sampling of the training data. (c) List of target
and mean reconstructed switching probabilities of 250 trajectory generation trials each.

Results:

The results in Figure 5 show that the characteristics of the training distributions pro-
vided (the samples indicated by green star marks) were represented by the estimated
Gaussian distributions of the epistemic uncertainty. Even in cases of continuous circular
distributions, local covariance estimation resulted in meaningful Gaussian approximations.
In case of varying variance of the sampling process in the dataset generation (e.g., vari-
ance of sampling increased towards the right part of the data distribution in Figure 5a;
variance of the top-left circular distribution was larger compared to the lower-right one
in Figure 5b), it can be seen that the respective variance of the Gaussian approximations
resembled the characteristics of the variance of the training data distribution. The appli-
cation of the method on a dataset sampled from a Gaussian mixture model with equal
weights of all five Gaussian distributions (Figure 5c) shows the successful discovery of
the underlying ground truth distribution (top panel). It can be seen that the estimated
local covariances show similarities to the ones estimated through fitting a GMM. The KL
divergence between GMM and ground truth distribution reached 0.14± 0.002 with a 95%
confidence interval. The KL divergence between the estimated Gaussians through local
covariance approximation of the epistemic uncertainty was found to be 0.22± 0.006. Both
were estimated on 20 experiment repetitions. The experiment shown in Figure 5d explored
the limitations of local approximation of probability distributions, as it introduced uneven
weighting between the sample distributions of the ground truth. Our proposed method
cannot represent the global relationship between local probabilistic representations and
cannot estimate the weighting factors for each estimated distribution. As a result, as shown
in the lower panel of Figure 5d, the weighting of the components in the sample GMM
resulted in differences in the estimated size of the local covariance approximations. The
cluster sampled from the distribution with the lowest weight (orange) resulted in the
smallest distribution, while clusters with increasing weights of distributions for sampling
were estimated with increasing size. However, the orientation of the estimated clusters still
resembled the correct orientation of the ground truth. In this case, the approximation of a
GMM using the expectation maximization (EM) algorithm was beneficial and resulted in a
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KL divergence of 0.18± 0.023, and the estimated distribution based on the local covariance
estimations reached a KL-divergence of 0.51± 0.014.

4.4. Unlearning in Case of Noise

For the evaluation of the unlearning capabilities of the proposed method, we refer to a
circular distribution of training samples, as shown in Figure 7a,d, similar to the distributions
we used in our previous experiments. Training samples vtr ∈ D are indicated by green
star-shaped marks. Unlearning was performed under two conditions: firstly, we attempted
to unlearn samples from the same distribution that we used to sample the training data
(Figure 7a; results in Figure 7b,c); secondly, we increased the sample variance by factor
x2 (Figure 7d; results in Figure 7e,f) to increase the task difficulty. Samples for removal
vrm ∈ D∼ are visualized by red circles. For each of the two experimental conditions,
we evaluated naïve unlearning according to Equation (30) and incremental unlearning
according to our proposed method as specified in Appendix D.
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Figure 7. Results of the unlearning experiment. The results for unlearning of samples drawn from
the same distribution of the training data are shown in the top row. The bottom row shows the
results of unlearning samples drawn from a distribution with increased variance. The training and
samples to be unlearned are shown in the first column, (a,d). The results of unlearning using the
naïve update method are shown in the second column, (b,e). The results of the proposed iterative
unlearning procedure after 20 iterations can be found in the third column, (c,f). Panel (g) depicts
intermediate results at 5, 10, and 15 iterations for the second experimental condition. Color shading
of the background and the vector field indicate the epistemic uncertainty and its gradient field.

Results:

In the cases where unlearning was performed with samples xrm drawn from the same
distribution as used for the training samples xtr, unlearning was successful, using the naïve
approach with update rate η− = 0.9, as shown in Figure 7b. The epistemic uncertainty in
the 2nd and 4th quadrant was considerably increased, and successive trials of maximization
of the epistemic uncertainty would avoid unlearned parts of the distribution. Iterative
unlearning resulted in similar, slightly smaller areas of low uncertainty (Figure 7c). Both
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methods can be considered to have been successful in these trials. In the cases where
unlearning was performed with samples xrm drawn from distributions with increased
variance, the results changed drastically. Under this condition, unlearning with the naïve
approach failed and resulted in a loss in representation of the training data, as shown
in Figure 7e. As discussed in Section 3.6.2, unlearning of dissimilar samples violates
assumption D⊂ ∩D∼ ≈ ∅, which can result in negative values of SN and can break the
necessary symmetry of SN . Simply decreasing the update rate η− is not sufficient, as it
reduces the effect of increasing the epistemic uncertainty and may cause local minima
to remain in parts of the distribution that were intended to be unlearned. In the cases
where unlearning was performed using the proposed iterative approach, the solutions
converged and resulted in an epistemic uncertainty distribution, as shown in Figure 7f. The
shown result depicts the 20th update iteration with parameterization η− = 0.5 and ρ = 3.
Unlearning can be considered successful in this case. Further intermediate update steps at
iterations #5 (top), #10 (middle), and #15 (bottom) are shown in Figure 7g and indicate that
convergence of unlearning occurs at ∼10 iterations.

5. Discussion and Conclusions
The presented work uses epistemic uncertainty as a data model and tackles classical

learning problems from a new perspective by utilizing the epistemic uncertainty gradient.
Typically, learning is considered as the representation (based on error minimization) of
training targets and model outputs. The quality of the learning methods is then interpreted
as the ability to interpolate and extrapolate on the basis of the internalized training samples.
In our proposed approach, learning is solely based on the representation of the training
data in terms of their potential predictive distribution variance and does not rely on explicit
calculation of output targets.

We have demonstrated that classical learning problems such as outlier/anomaly detec-
tion, auto-completion as in associative memories, and regression tasks can be implemented
by using the epistemic gradient. In addition, we propose and evaluate approaches for
local covariance estimates of the learned data distributions and unlearning of data that are
robust against noise and can deal with relatively small overlap of the data, to unlearn with
the original distribution.

The presented theoretical analysis leads to a geometric interpretation of epistemic
uncertainty gradient that differs fundamentally from the ones found in classical learning
approaches. Solutions that are found through minimization of the epistemic uncertainty are
not formed by attractors based on the training data. Instead, the gradient is based on a rep-
resentation of unfavorable solutions that can be considered to act as repellers pushing away
from the “unknown” and, therefore, implicitly approaching the “known”, i.e., approaching
the modeled data distribution as given through the example data. As discussed in this
work, the feature projection from the input space onto an invariant manifold in the feature
space is crucial as it enables non-trivial dynamics toward the previously observed data
distribution through an ensemble of “simple” repelling forces in the feature space during
minimization of the epistemic uncertainty. One key factor of our work that enables this
complex interaction is the random projection, which can be considered distance-preserving
and unbiased, and is, therefore, ideal for preserving information in the hidden space. The
described mechanism and its geometrical interpretation are, to the best of our knowledge,
a new concept in data modeling.

On a more abstract and fundamental level, the proposed approach introduces the ques-
tion of what are the differences between learning data (attractor dynamics) and avoiding
improbable solutions (repelling mechanisms) and how they play out in practice.
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While we cannot give a comprehensive answer yet, we have addressed this question,
at least partially, through comparing the solutions of classical ridge regression and the
epistemic uncertainty gradient for simple function approximation, where overfitting is
a common problem. Our findings suggest that the epistemic uncertainty approach may
be advantageous when strong generalization and extrapolation are required, where the
epistemic gradient fields appear to be much more implicitly regularized. The insights
gained from our study are highly relevant for robust learning, e.g., construction of efficient
world models that require strong generalization as the available data are usually sparse,
ambiguous, and noisy. More work is needed, to further characterize these differences and
the properties of the epistemic uncertainty gradient field.

Outlook

An important practical aspect of this potential work will be the application of the
presented approach to real-world datasets, with a specific emphasis on scalability to
large-scale datasets, noise and imbalanced data, and sparsity of information. Theoretical
investigations could explore if further model architectures, such as multi-layered models,
can implement the presented mechanism for data representation. Potential related studies
could address topics of hierarchical attractor networks, and clarify if, in such cases, local
multi-layer learning without gradient propagation is feasible.

Additionally, we are interested in exploring synergies between our method and ap-
proaches that explicitly learn attractor representations of training data, as in Reinhart and
Steil [40], as well as those proposed more recently in the deep learning community, such
as diffusion models and denoising auto-encoders [41]. We speculate that the presented
approach could lead to potential advancements in representation learning.
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Appendix A. Implementation—Specific Details: Derivation of
Epistemic Uncertainty

Separation of f in Equation (25) leads to expressions
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∂ fi(g)
∂gj

=
∂

∂gj
∑
k

Winpi,k ∑
l

SNk,l gl · (gk(1− gk))

=
∂

∂gj
∑
k,l

Winpi,k
SNk,l gl · (gk(1− gk))

=
∂

∂gj
Winpi,j

SNj,j gj · (gj(1− gj))

+
∂

∂gj
∑

k ̸=j,l=j
Winpi,k

SNk,j gj · (gk(1− gk))

+
∂

∂gj
∑

k=j,l ̸=j
Winpi,j

SNj,l gl · (gj(1− gj))

+
∂

∂gj
∑

k ̸=j,l ̸=j
Winpi,k

SNk,l gl · (gk(1− gk)))︸ ︷︷ ︸
=0

=Winpi,j
SNj,j · (2gj − 3g2

j )

+ ∑
k ̸=j

Winpi,k
SNk,j · (gk(1− gk))

+ Winpi,j
(1− 2gj)∑

l ̸=j
SNj,l gl . (A1)

Appendix B. Implementation—Specific Details: The Hessian of the
Epistemic Uncertainty

For efficient implementation, the Jacobian J f (g(v)) of the outer function f can be
written in matrix notation as

J f (g(v)) =Winp ◦
[
diag(SN)(2ϕ(v)− 3ϕ(v)2)

]
+
[
Winp ◦ (ϕ(v)− ϕ(v)2)

]
SN

−
[
Winp ◦ diag(SN)

]
◦ (ϕ(v)− ϕ(v)2)

+[(SNϕ(v))(1− 2ϕ(v))]Winp

−[(diag(SN)ϕ(v))(1− 2ϕ(v))]Winp (A2)

Note that function diag(·) returns a diagonal matrix in cases where a vector is given as an
argument and returns the vector of the diagonal elements in cases of a matrix. Furthermore,
the operator ◦ denotes the Hadamard product and performs an expansion of vectors into
matrices in cases where the product is calculated between a vector and a matrix.

Appendix C. Implementation—Specific Details: Model Details

Algorithm A1: Representation of training set D, i.e., estimation of SN , given
hyperparameter α and β.

1 function learn(D, α, β)
// Calculate hidden representation Xϕ of D:

2 let X = [x1, . . . , xN ]
T , with xn ∈ D

3 Xϕ ← ϕ(X)
// Estimate the regularized covariance matrix S−1

N :
4 S−1

N = αI + βXT
ϕ Xϕ

// Invert matrix, e.g., through singular value decomposition:
5 QΛQT = QΛQ−1 = S−1

N
6 SN = QΛ−1QT

7 return SN
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Algorithm A2: Query learned data distribution represented in SN on new data
sample x. Perform N minimization steps of the epistemic uncertainty before
returning final estimate x(N) and the epistemic uncertainty U (x(N)).

1 function apply(x, SN, N)
// Initialization:

2 n← 0
3 x(n) = x

// Perform minimization of epistemic uncertainty if requested:
4 while n < N do

// Iterative update of estimate x(n) given update rate η:
5 x(n+1) ← x(n) − η∇x(n)U
6 n← n + 1

// Calculate hidden representation x(n)ϕ of final estimate x(n):

7 x(n)ϕ ← ϕ
(

x(n)
)

// Calculate epistemic uncertainty U (x(n)):

8 U (x(n)) = x(n)ϕ

T
SNx(n)ϕ

// Return estimate x(n) and epistemic uncertainty u(n)
x :

9 return x(n), U (x(n))

Appendix D. Implementation—Specific Details: Iterative Approach
to Unlearning

Algorithm A3: Iterative unlearning procedure.
1 function unlearn_iter(D∼, SN, η−, ρ)

// Initialization:
2 nrep ← MAX_REPS

// Iterative unlearning of data samples in D∼ :
3 while nrep > 0 and D∼ ̸= ∅ do

// Remove uncertain samples from D∼:
4 D∼ ←

{
x∼ : x∼ ∈ D∼, ϕ(x∼)TS−1

N ϕ(x∼) < 1
}

// Calculate hidden representation X∼ϕ of D∼:
5 let X∼ = [x∼1 , . . . , x∼N∼ ]

T , with x∼n ∈ D∼
6 X∼ϕ ← ϕ(X∼)

// Estimate weighting given decay factor ρ:

7 w =

[
e−ρX∼ϕ

TS−1
N X∼ϕ

]2

// Update model with rate η−:

8 SN ←

S−1
N − η−βX−ϕ

T

w1
. . .

wn

X−ϕ

−1

9 nrep ← nrep − 1

10 return SN
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