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Abstract: In this article, we extend a recently introduced kinetic model for consensus-based
segmentation of images. In particular, we will interpret the set of pixels of a 2D image
as an interacting particle system that evolves in time in view of a consensus-type process
obtained by interactions between pixels and external noise. Thanks to a kinetic formulation
of the introduced model, we derive the large time solution of the model. We will show
that the parameters defining the segmentation task can be chosen from a plurality of loss
functions that characterize the evaluation metrics.

Keywords: kinetic equations; interacting particle systems; consensus models; image
segmentation; clustering

1. Introduction

The primary objective of image segmentation is to partition an image into distinct pixel
regions that exhibit homogeneous characteristics, including spatial proximity, intensity
values, color variations, texture patterns, brightness levels, and contrast differences, thereby
enabling more effective analysis and interpretation of the visual data. The application of
image segmentation methods plays an important role in clinical research by facilitating
the study of anatomical structures, highlighting regions of interest, and measuring tissue
volume [1-6]. In this context, the accurate recognition of areas affected by pathologies can
have a great impact on more precise early diagnosis and monitoring in a great variety of
diseases that range from brain tumors to skin lesions.

Over the past few decades, a variety of computational strategies and mathematical
approaches have been developed to address image segmentation challenges. Among
these, deep learning techniques and neural networks have emerged as some of the most
widely used methods in contemporary image segmentation tasks [7-15]. Leveraging a
set of examples, these techniques are capable of approximating the complex nonlinear
relationship between inputs and desired outputs. While deep learning models excel in
complex segmentation problems, their dependence on large annotated datasets remains
a significant challenge, particularly in fields such as biomedical imaging, where data
availability is limited and manual labeling can be both expensive and time-consuming. A
different approach is based on clustering methods [16-21]. These methods group pixels with
similar characteristics, effectively partitioning the image into distinct regions. Clustering-
based methods offer an attractive alternative to deep learning techniques as they do not
require supervised training and therefore can be used on small unlabeled datasets. In this
direction, a kinetic approach for unsupervised clustering problems for image segmentation
has been introduced in [22,23]. In these works, microscopic-consensus-type models have
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been connected to image segmentation tasks by considering the pixels of an image as an
interacting system where each particle is characterized by its space position and a feature
determining the gray level. A virtual interaction between the particles will then determine
the asymptotic formation of a finite number of clusters. Hence, a segmentation mask
is generated by assigning the mean of their gray levels to each cluster of particles and
by applying a binary threshold. Among the various nonlinear compromise terms that
have been proposed in the literature, we will consider the Hegselmann—Krause model
described in [24], where it is supposed that each agent may only interact with other agents
that are sufficiently close. This type of interaction is classically known as a bounded
confidence interaction function. As a result, two pixels will interact based on their distance
in space and their gray level. The approach developed in [22] is based on the methods
of kinetic theory for consensus formation. In recent decades, following the first model
developed in [25-28], several approaches have been designed to investigate the emergence
of patterns and collective structures for large systems of agents/particles [29-32]. To this
end, the flexibility of kinetic-type equations has been of paramount importance to link the
microscopic scale and the macroscopic observable scale [33-39].

In order to construct a data-oriented pipeline, we calibrate the resulting model by
exploiting a family of existing evaluation metrics to obtain the relevant information from
a ground truth image [40-45]. The main development of this study, compared to the
one described in [46], relies on the fact that we evaluate multiple metrics to quantify
segmentation error, which is crucial for the optimization of the internal model parameters.
In particular, we will concentrate on the Standard Volumetric Dice Similarity Coefficient
(Volumetric Dice), a volumetric measure based on the quotient between the intersection
of the obtained segmented images and their total volume, and the Surface Dice Similarity
Coefficient, which is analogous to Volumetric Dice but exploits the surface of the segmented
images [46]. Furthermore, we test the Jaccard Index, which is an alternative option to
evaluate the volumetric similarity between two segmentation masks, and the Fﬁ-measure,
which is a performance metric that facilitates balance between precision and sensitivity.
In this paper, we describe these metrics in detail and analyze how such choices regarding
evaluation metrics influence the parameter optimization process. Furthermore, we discuss
the most suitable metrics for the final assessment of the produced segmentations. This
expanded evaluation provides novel insights into the impact of evaluation metrics on
model performance and enhances our understanding of how to efficiently optimize the
introduced segmentation pipeline.

In more detail, the manuscript is organized as follows. In Section 2, we introduce
an extension of the Hegselmann—Krause model in 2D and present the structure of the
emerging steady states for different values of the model parameters. Next, we present a
description of the model based on a kinetic-type approach. Furthermore, we show how this
model can be extended and applied to the image segmentation problem. In Section 3, we
present a Direct Simulation Monte Carlo (DSMC) method to approximate the evolution of
the system and introduce possible optimization methods to produce segmentation masks
for particular images. To this end, we introduce the definition of the principal optimization
metrics used in the context of biomedical images and their principal characteristics. In
Section 4, we show the results for a simple case of segmenting a geometrical image with
a blurry background and compare the results obtained for different choices regarding
the diffusion function. Finally, we present the results obtained for various brain tumor
images and discuss how the choice regarding different metrics may affect the final result.
We show that the Fg-measure does not produce consistent results for different values of
B. We reproduce the expected relationship between the Volumetric Dice Coefficient and
Jaccard Index and show that both metrics plus the Surface Dice Coefficient yield similar
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results. Nevertheless, we argue that, for this type of image, the Surface Dice Coefficient
produces more accurate loss values, and its definition is more representative compared to
the Volumetric Dice Coefficient and Jaccard Index.

2. Consensus Modeling and Applications to Image Segmentation

In recent years, there has been growing interest in exploring consensus formation
within opinion models to gain a deeper understanding of how social forces affect nonlinear
aggregation processes in multiagent systems. To this end, various models have been
proposed considering different scenarios and hypotheses on how the pairwise interactions
may lead to the emergence of a position. For a finite number of particles, the dynamics are
usually defined in terms of first-order differential equations with the general form

Xm' N

ar - Z XZ,X] Xi)/ 1)

where x;(t) € R? d > 1 characterize the position of theagenti = 1,..., N attime t > 0, and
P(-,-) > 0 tunes the interaction between the agents x;, X; € RY; see, e.g., [24,30,32,47 48].

In addition to microscopic-agent-based models, in the limit of an infinite number
of agents, it is possible to derive the evolution of distribution functions characterizing
the collective behavior of interacting systems. These approaches, typically grounded in
kinetic-type partial differential equations (PDEs), are capable of bridging the gap between
microscopic forces and the emerging properties of the system; see [37].

2.1. The 2D-Bounded Confidence Model

We now consider the bidimensional case d = 2, and we specify the interaction function
based on the so-called bounded confidence model. In more detail, we consider N > 2 agents
and define their opinion variable through a vector x = (x;(t),y;(t)) € R?, characterized
by initial states {x1(0),...,xn(0)}. Agents will modify their opinion as a result of the
interaction with other agents only if Ix; — x]-| < A, where A > 0is a given confidence level.
Hence, we can write (1) as follows

d 1N
FicinN Y Palxi ;) (x; = xi), )
j=1

where Py(x;,x;) = x(|xi —x;| < A) : R* — {0,1} and x(A) being the characteristic
function of the set A C R2. We can easily observe that the mean position of the ensemble
of agents is conserved in time, indeed

N 1 N
in NZ x(Ixi — ]|<A)( —x;) =0, 3)

i=1 =1

2 =

thanks to the symmetry of the considered bounded confidence interaction function. The
bounded confidence model converges to a steady configuration, meaning that the systems
achieve consensus in finite time. The structure of the steady state depends on the value of
A; see [38].

Furthermore, to account for random fluctuations provided by external factors in the
opinion of agents, we may consider a diffusion component as follows:

1

dxifﬁ Pa(lxi — xj| < A)(x; — x;)dt + V202dW; (4)

|| Mz
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where {W;}Y | is a set of independent Wiener processes. The impact of the diffusion is
weighted by the variable c> > 0. To visualize the interplay between consensus forces
and diffusion, we depict in Figure 1 the steady configuration of the model (4) for different
combinations of the model parameters. For 02 = 0, the system forms a finite number of
clusters depending on the value of A > 0, as illustrated in Figure 1a. For values of the
diffusion coefficient > > 0, the number of clusters of the system varies as depicted in
Figure 1b. The right panel of Figure 1b shows the scenario in which the diffusion effect
becomes comparable to the tendency of agents to cluster. Finally, in Figure 1c, for o = 0.05,
the diffusion effect dominates the grouping tendency, resulting in a homogeneous steady
state distribution.
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Figure 1. Large time distribution of the 2D-bounded confidence model for different parameters
characterizing the compromise propensity and the diffusion for N = 10° particles in [0, T] with
T = 100 and At = 0.01. In (a), the final state converges to a number of clusters depending on the
value of A. As we reduce the range of interaction, more clusters are created. In rows (b,c), we can
see the interplay between the tendency of particles to aggregate and diffuse. In the first column, we
see that the steady state converges to a Gaussian distribution with a standard deviation provided
by 2. In the second column, for (b,c), we see that the final states differ greatly in their structure.
Finally, the last column shows the final states in the case where the diffusion surpasses considerable
aggregation tendency.
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2.2. Kinetic Models for Consensus Dynamics

In the limit N — 400, it can be shown that the empirical density

z

FN0 = g Lot x(0)

of the system of particles (4) converges to a continuous density f(x,t) : R> x Ry — Ry
solution to the following mean-field equation

A (0t) = V- [B1f](x,1) + 2V, f 5
f(x,0) = fo(x)
where E[f](x, t) is defined as follows
EUA1060) = [, Palxix) (x—x)f(x., Hx.; ©)

see, e.g., [49].

We can derive (5) using a kinetic approach by writing x := x;(t) and x. := x;(t) for a
generic pair (i, j) of interacting agents/particles, and we approximate the time derivative
in (4) in a time step € = At > 0, through a Euler-Maryuama approach, in the same spirit
as [34,50]. Hence, we recover the binary interaction rule

X' = x4 €Pa(X,%:) (X« — x) + V2027

)
X, = X« + €Pp (xs, %) (X — X)) + V2027,

where X' = x;(t 4 €), x|, = xj(t 4 €) and ], 7 are two independent 2D-centered Gaussian
distribution random variables such that

M =0)=0 () =e 8)

where (-) denotes the integration with respect to the distribution #. Furthermore, in (7), we
shall consider P(x,x.) = x(|x — x«| < A). We can remark that, if ¢ = 0, since P, € [0,1]
and € € (0,1), we obtain

(x' +x,) = x+x: + At(Pp(X, X ) — Pa(Xs, X)) (X —X) =

= X + X4

©)

since the interaction function P, is symmetric, consistent with (3). This shows that the
mean position is conserved at every interaction. Finally, we have

|2+ ()2 = [X]? + x|2 — 2AtPa[x — x|? +0(At) (10)

and the mean energy is dissipated at each interaction since Py > 0. Hence, we consider
the distribution function f = f(x,t) : R x Ry — R such that f(x,t)dx represents the
fraction of agents/particles in [x1,x1 + dx1) X [xX2, X2 + dxp| at time t > 0. The evolution
of f as a result of binary interaction scheme (7) is obtained by a Boltzmann-type equation,
which reads in weak form

% R2 P(x)f(x, t)dx =

</R4(€0(X’) - q)(x))f(xrt)f(x*,t)dxdx*>, (11)
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¢(-) being a test function. As observed in [39], when At = € — 0T, we can observe that the
binary scheme (7) becomes quasi-invariant, and we can introduce the following expansion

()~ 9(0) = (x' —x) - Vxp(x) + 5 (¢ ~0)HIgI(X —x)) + Re(xx.)  (12)

Re(x, x+) being a reminder term and H|[¢] the Hessian matrix. Hence, scaling T = et and
the distribution fe(x, T) = f(x,7/€), we may plug (12) into (11) to obtain

% /]RZ POx)fe(x D :% /R4<x’ —x) - Vx@(X) fe (X, T) fe(Xs, T)dxdx,~+
1

2 ot (¢ =T HIQ( (X = x0) fe(x, 7) fe (s, Tt +
1

s /R4 Re (X, Xx) fe (X, T) fe (Xs, T)dxdx,

€

Following [22], see also [37], we can prove that
/4 Re (%, %) fe (%, T) fe (x4, T)dxdx, — 0T,
R

as € — 01. Hence, integrating back by parts the first two terms, we obtain (5). In more
detail, we can prove that f. converges up to extraction of a subsequence to a probability
density f(x, T) that is weak solution to the nonlocal Fokker—Planck Equation (5).

2.3. Application to Image Segmentation

An application of the Hegselmann—Krause model for data clustering problems has
been proposed in [23]. The idea is to extend the 2D model by characterizing each particle
with an internal feature ¢; € [0,1] that represents the gray color of the ith pixel. Therefore,
we interpret each pixel in the image as a particle characterized by a position vector and the
static feature c as shown in Figure 2.

(xi,yi, Ci)

Figure 2. A schematic representation of the proposed model, where each pixel is interpreted as a
particle (x;, y;, c;), with ¢; being a static feature in the interval [0, 1] that represents the grey level.

To address the segmentation task, we can define a dynamic feature for the system of
pixels through an interaction function that accounts for alignment processes among pixels
with sufficiently similar features. In particular, let us consider the following:

Pay,n, (X3, %j,ci65) = x(Ixi —xj| < A1)x(lei — ¢ < D). (13)
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Therefore, the time-continuous evolution for the system of pixels is provided by

d 1 N
G5 =N Y Paya, (X, Xj, ¢, ¢) (%) — X;)
=1 (14)
d
@i =0

In this case, we introduced two confidence bounds Ay > 0, Ay > 0, taking into account
the position and the gray level of the pixels, respectively. In this way, the interactions
between the pixels will generate a large time distribution that is characterized by several
clusters depending on the values of A; and A;. Hence, consistent with k-means methods,
see, e.g., [44], a pixel belongs to a cluster C, = {x; : [|x; — p|| < a}, with & > 0 being the
pixel size, if it is sufficiently close to the local quantity # € R?. We highlight how we are
only interested in clustering with respect to the space variable.
This dynamics are represented in Figure 3.

@

.,’Q
l
l

000
. 0000

000 ®

o ” ® O

) t3 ty

Figure 3. Representation of the evolution of pixels as they tend to aggregate in different clusters.

Biomedical images are often subject to ambiguities arising from various sources of
uncertainty related to clinical factors and potential bottlenecks in data acquisition pro-
cesses [2,9]. These uncertainties can be broadly categorized into aleatoric uncertainty,
stemming from inherent stochastic variations in the data collection process, and epistemic
uncertainty, relating to uncertainties in model parameters, potentially leading to deviations
in the results. Aleatoric uncertainties poses significant challenges in image segmentation
as image processing models must contend with limitations in the raw acquisition data.
Addressing these uncertainties is critical, and the study of uncertainty quantification in
image segmentation is an expanding field aimed at developing robust segmentation al-
gorithms capable of mitigating erroneous outcomes. To this end, in [22], an extension
of (14) has been proposed to consider segmentation of biomedical images. In particular,
the particle model (15) has integrated a nonconstant stochastic part to take into account
aleatoric uncertainties arising from the data acquisition process. These uncertainties may
include factors such as motion artifacts or field inhomogeneities in magnetic resonance
imaging (MRI). They modified Equation (14) as follows:

1N
dx; = N | Pay,a, (Xir X, €1, €5) (Xj — x;)dt + 1/ 202D (c)dW;
j=1 (15)
d

Eclzo

where {Wi}fi 1 is set of independent Wiener processes, Pa, a, (-, -, -) € [0,1] is the inter-
action function defined in (13), and D(c) > 0 quantifies the impact of diffusion related to
the value of the feature ¢ € [0, 1]. Since the aleatoric uncertainties are expected to appear
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far away from the static feature’s boundaries, only diffusion functions that are maximal at
the center and satisfy D(0) = D(1) = 0 are considered. Similarly to (7), we may introduce
the following binary interaction scheme by writing (x, x.) := (x;(),x;(t)), with a random
couple of pixels having features (c, c.) := (c;(t),¢;(t)). We obtain

X' =X+ €Pa, p, (%, X4, ¢, 04 ) (X — X) + /202D ()7

X, = Xs 4 €Pp p, (X4, X, €4, €) (X — X4) 4+ 1/202D(c4 )1 (16)

Cyp = Cx
d =c,

where (X', x) := (x;(t + At),x;(t + At)) and (¢, c}) = (ci(t + At), cj(t + At)). At the
statistical level, as in [22], we may follow the approach described in Section 2.2. Hence,
we introduce the distribution function f = f(x,c,t) : R* x [0,1] x Ry — Ry, such that
f(x, t)dx represents the fraction of agents/particles in [x1, x1 + dxq) X [x2, xp + dx2] charac-
terized by a feature c € [0, 1] at time t > 0. The evolution of f, whose interaction follows
the binary scheme (16), is provided by the following Boltzmann-type equation:

% /01 /Rz p(x,c)f(x,c, t)dxdc =

(17)
/
</[0’1]2 /ﬂ@(q)(x ,€) — @(x,0)) f(x,¢,t) f(Xx, Cs, F)dxdx, dc dc*>,
Hence, since the feature is not evolving in time, we can proceed as in Section 2.2 to derive
in the quasi-invariant limit for e — 07 the corresponding Fokker-Planck-type PDE

dtf(x,c,t) =Vy- [.E[g]Al,Az(x, o, t)f(x,ct)+ (rzD(c)fo(x, c,t)} (18)

where

1
Blglaa, (X0 t) = /0 /RZ Pa,n, (X, X, €, €5) (X — X ) f (X, Co, £)dXs di.

3. Evaluation Metrics and Parameter Estimation

In this section, we present a classical Direct Simulation Monte Carlo (DSMC) method
to numerically approximate the evolution of (17) as a quasi-invariant approximation of
the Fokker-Planck Equation (18). The resulting numerical algorithm is fundamental to
estimate consistent parameters from MRI images. To this end, we present several loss
metrics with the aim to compare the result of our model-based approach with existing
methods for biomedical image segmentation. In this work, we focus exclusively on binary
metrics. For evaluation of segmentation with multiple labels, we direct the reader to [45]
for a detailed presentation of various metrics.

3.1. DSMC Algorithm for Image Segmentation

The numerical approximation of Boltzmann-type equations has been deeply investi-
gated in recent decades; see, e.g., [51,52]. The approximation of this class of equations is
particularly challenging due to the curse of dimensionality brought up by the multidimen-
sional integral of the collision operator, and the presence of multiple scales. Furthermore,
the preservation of relevant physical quantities is essential for a correct description of the
underlying physical problem [53].

In view of its computational efficiency, in the following, we will adopt a DSMC
approach. Indeed, the computational cost of this method is O(N), where N represents the
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number of particles. Next, we describe the DSMC method based on a Nanbu—-Bavosky
scheme [52]. We begin by randomly selecting N /2 pairs of particles and making them
evolve following the binary scheme presented in (7). We consider a time interval [0, T],
which we divide into N; intervals of size At > 0. The DSMC approach for the introduced
kinetic equation is based on a first-order forward time discretization. In the following, we
will always consider the case At = € > 0 such that all the particles are going to interact;
see [52] for more details. We introduce the stochastic rounding of a positive real number
x as

Sround(x) = |x] +1 with probability —x — |x] 19)

|x] with probability 1 —x+ |x]

where | x| is the integer part of x. The random variable # is sampled from a 2D Gaussian
distribution centered at zero and a diagonal covariance matrix.

3.2. Generation of Model-Oriented Segmentation Masks

In this section, we present the procedure to estimate the segmentation masks of brain
tumor images. The procedure described in this section closely follows the methodology
presented in [22]. For a given image, we define the feature’s values in relation to the gray
level of each pixel. In more detail, for a given pixel i € {1,..., N}, we define

Ci —min;—;, N G;

c; = - € 10,1
" maxi—y, NG —mini_q NG 0.1],

Ci,i =1,...,N being the gray value of the original image. Therefore, the value c; = 1
represents a white pixel and ¢; = 0 represents black pixel.

In particular, for this work, we used the brain tumor dataset that consists of
3D multi-parametric MRI of patients affected by glioblastoma or lower-grade glioma,
publicly available in the context of the Brain Tumor Image Segmentation Challenge
http:/ /medicaldecathlon.com/ (accessed on 28 November 2024). The acquisition sequences
include T;-weighted, post-Gadolinium contrast T;-weighted, T>-weighted, and T, Fluid-
Attenuated Inversion Recovery volumes. Each MRI scan is accompanied by corresponding
ground truth segmentation mask, which is a binary image where anatomical regions of
interest are highlighted as white pixels while all other areas are represented as black pix-
els. These ground truth segmentation masks were manually delineated by experienced
radiologists and specifically identify three structures: “tumor core”, “enhancing tumor”,
and “whole tumor”. We evaluate the performance of the DSMC algorithm for two different
segmentation tasks: “tumor core” and “whole tumor” annotations. For the first task, we
use a single slice in the axial plane of the post-Gadolinium contrast T;-weighted scans,
while, for the second task, we use a single slice in the axial plane of the T-weighted scans.
The procedure to generate the segmentation masks is as follows:

1. Webegin by associating each pixel with a position vector (x;, y;) and with static feature
c;. We scale the vector position to a domain [—1,1] x [—1,1] and the static feature
to [0,1].

2. We apply a DSMC approach as described in Algorithm 1 to numerically approximate
the large-time solution of the Boltzmann-type model defined in (17). This approach
enables pixels to aggregate into clusters based on their Euclidean distance and gray
color level.

3.  The segmentation masks are generated by assigning to the original position of each
pixel the mean values of the clusters they belong to. Thus, we generate a multi-level
mask composed of a number of homogenous regions.
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4. Finally, we obtain the binary mask by defining a threshold & such that
lifc>¢
¢ = fez (20)
Oifc<é

Original

For all the following experiments, ¢ is defined as the 10th percentile of pixels in the
image that belong to the region of interest. This percentile was chosen as an optimal
value for brain tumor images; however, it could also be considered as a parameter to
be optimized within the process outlined in the section on parameter optimization.

Algorithm 1 DSMC algorithm for Boltzmann equation

1: Given N particles (x(,)l, cg), withn = 1,...,N computed from the initial distribution
folx,);

2: fort =1to N; do

3 setn, = Sround(N/2);

4: sample 1, pairs (7,j) uniformly without repetition among all possible pairs of
particles at time step ¢;

5: for each pair (i, j), sample 7,1«

6: for each pair (i, j), compute the data change
Axt = €Pp a, (X}, x],cO c?)(x]t —xt) 4+ 1/202D(%)y o
Ax]t» = ePAl,Az(x],xl,c?,c )(xh — x )+ 4 /202D(c?)11*
compute
xfjl = xf,]- + Axf’j (22)
7. end for

Following this procedure, we apply two morphological refinement steps to remove
small regions that have been misclassified as foreground parts and to fill small regions
that have been incorrectly categorized as background pixels. We begin by labeling all the
connected pixels in the foreground and reassigning to the background those whose number
of pixels is less than a certain threshold. Then, we repeat the same procedure but for the
pixels in the background. To this end, we use the scikit-image Python library that detects
distinct objects of a binary image [54]. This enables us to obtain more precise segmentation
masks by reducing small imperfections. This entire process is illustrated in Figure 4.

Multi - level mask Binary mask Final mask

»

Figure 4. Summary of the segmentation process. The first image shows the input image. By means of
Algorithm 1, we generate the multi-level mask where we reassign each picture’s gray level to the
mean value of the cluster it is assigned to. The binary mask is produced as result of the binarization
process. The final mask is the result after the two morphological refinement steps have been applied.
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Parameter Optimization

In this section, we outline the procedure for optimizing the parameters A; > 0, Ay > 0,
and ¢ > 0 that best approximate the ground truth segmentation masks. The goal is to
identify the parameter configuration that minimizes the discrepancy between the computed
and ground truth masks, measured through a predefined loss metric. To achieve this, we
solve the following minimization problem:

Al,zr;i(gw Loss(Sg, S¢) = Al,IAIzl,itg>0 1 — Metric(Sg, St) (23)
where Sg is the ground truth segmentation mask and S; is the segmentation mask computed
by the model. The different loss metrics quantify the discrepancy between the masks, with
lower values indicating greater similarity. Accordingly, the metric function, detailed in
Section 3.3, measures the similarity between the two masks, with higher values indicating
better agreement. The relationship loss = 1 — metric is satisfied when the metric is defined
to take a value of 1 for perfect agreement and 0 for complete mismatch.

To solve the optimization problem (23), we used the Hyperopt package [55]. This
optimization method randomly samples the parameter configurations from predefined
distributions and selects the configuration that minimizes the loss metric. This sampling
process is repeated for a predefined number of iterations. In this work, we sample the
values of our parameters from the following distributions:

A1 ~ U(Ax,0.7)
Ay ~ U(0.05,0.3) (24)

0 ~ log-uniform(e~>,1)

where Ax represents the distance between the initial positions of the pixels at t = 0. We
perform 300 iterations of the optimization process. To ensure reproducibility and correctly
compare the different results obtained, the random seed for parameter sampling is fixed.

3.3. Segmentation Metrics

Next, we introduce the principal optimization metrics used for evaluating a binary
segmentation mask. We define {SO, S;,, S?, St1 }, where Sg, and S;, represent the sets of pixels
that belong to the background and foreground of the ground truth segmentation mask,
respectively. The same applies for S?, S} but for the binary mask we want to evaluate. One
could also wish to assess the validity of a segmentation mask with multiple labels; we refer
to [45] for an introduction to the subject. Figure 5 presents a summary of the key terms
used in the definitions of metrics.

S} N Sg (TP) StUS;

7 A
(a) (b)

Figure 5. Cont.
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S} — Sg (FP) Sg — St (EN)

4 4
(c) (d)
Bi="nB;=° B~ B~?

/ <%
(e) ®

Figure 5. Representation of the relevant areas between the predicted S} and ground truth Sé segmen-
tation masks. By and B represent the corresponding boundaries with a 7 threshold. (a) Intersection
area or true positive (TP). (b) Union area. (c) False positive (FP). (d) False negative (FN). (e) Intersec-
tion of boundaries at T = 0. (f) Intersection of boundaries at T > 0.

3.3.1. Volumetric and Surface Dice Indexes

The Volumetric Dice Index, also known as the Standard Volumetric Dice Similarity
Coefficient, first introduced in [42], is the most used metric when evaluating volumetric
segmentation masks. It is defined as follows:

2[Sg N S|
DICE = ——=—— (25)
|Sgl + 1541
where | - | indicates the total number of pixels of the considered region. This metric is

equal to one if there is a perfect overlap between the two segmentation masks and null if
both segmentation masks are completely disjoint. Since the Volumetric Dice Coefficient
is the most commonly used metric, especially in the biomedical field, the results are
highly interpretable and can be compared with those obtained in other studies. However,
when assessing surface segmentation masks, the Volumetric Dice Coefficient can yield
suboptimal results. This limitation arises because the Volumetric Dice Coefficient evaluates
the similarity between segmentation masks based on pixel overlap without considering
the spatial accuracy of the boundaries. Specifically, it treats all pixel displacements equally
without considering how far a segmentation error might be from the true boundary of the
object. This means that segmentation masks with minor errors spread across multiple areas
and those with a major error in a single area might receive similar scores. To address this
limitation, the Surface Dice Similarity Coefficient was presented in [5] as a metric that can
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assess the accuracy of segmentation masks by considering the similarity of their boundaries.
We define { : I — R? as a parameterization of dS;, the boundary of the segmentation mask
S;. The border region Bl.(T), which is a region around the boundary 95! with tolerance T, is
defined as

B = {xe R/ 3y elst|lx— il <7} (26)

1

where T is a positive real number that defines the maximum allowable distance from the
boundary S’ for a point x to be considered part of the border region B i(T)' The Surface Dice
Similarity Coefficient between S; and S¢ with tolerance 7 is defined as

(7) (1)
o _ Z‘Bg N B!
< @?

(27)

+ |B”

(1)
R,
surfaces, while a score of 0 indicates no overlap. A larger value of T results in a wider

ranges from 0 to 1. A score of 1 indicates a perfect overlap between the two

border region, making the metric more tolerant to small deviations in the boundary.

3.3.2. Jaccard Index

The Jaccard Index (JAC) [43], similar to the Volumetric Dice Coefficient, measures
the similarity between two segmentation masks by quantifying the overlap between the
computed mask and the ground truth. It is defined as the ratio between the intersection
and the union of the foreground’s segmentation masks

EakH

AC= —/—. 28

The JAC Index and the Volumetric Dice Coefficient are closely related since we have

JAC = _DICE DICE = 2JAC

e il 2
2 — DICE 1+JAC @9)

From (29), we obtain the relationship between the JAC index and the Volumetric Dice
Coefficient. While both are widely used for measuring segmentation similarity, they can
produce slightly different results. To understand the implications of these differences, we
can analyze how their absolute and relative errors are related.

Definition 1 (Absolute Approximation). A similarity S is absolutely approximated by S with
error € > 0 if the following holds for all y and ij:

S, 9) - S(y.9)| <e

Definition 2 (Relative Approximation). A similarity S is relatively approximated by S with
error € > 0 if the following holds for all y and ij:

S(v,9)
1+e€

<S9) <59 (1+e).
The following result holds.

Proposition 1. JAC and Volumetric Dice approximate each other with a relative error of 1 and an
absolute error of 3 — 2/2.
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We direct the reader to [46] for a deeper comparison between the Jaccard and Volu-
metric Dice indexes.

3.3.3. Fﬁ—Measure

The Fg-measure is commonly used as an information retrieval metric [41,56]. To define
this metric, we first introduce two terms: positive predicted value (PPV) and true positive
rate (TPR), which are also known as precision and sensitivity, respectively. The precision
metric quantifies the proportion of correctly predicted foreground pixels (true positives,
TPs) out of all pixels predicted as foreground (ITPs + false positives, FPs). The sensitivity
measures the proportion of actual foreground pixels (TPs) correctly identified by the model
out of all actual foreground pixels (TPs + false negatives, FNs). These two metrics can be
expressed as follows

Precision = PPV = P
TP + FP
(30)
Sensitivity = TPR = L
ehstvity = T TP+ EN

The precision metric indicates how many of the predicted foreground pixels are
actually correct. The sensitivity metric, on the other hand, measures how many of the
actual foreground pixels were correctly predicted by the model.

We can define the Fg-measure as a combination of precision and sensitivity, with
a parameter 8 that controls the trade-off between these two metrics. Specifically, the
Fg-measure is provided by

(B +1) - PPV -TPR
B2 - PPV + TPR

FMSg = (31)
We may observe that, if § = 1, we obtain the Volumetric Dice metric.

To understand the impact of § in the Fg-measure, we can substitute the definitions of
PPV and TPR into (31), which results in the following

(B*+1)TP?
(% +1)TP? + TP(B2FN + FP)

EMSg = (32)
If B > 1, the Fg-measure emphasizes minimizing false negatives (maximizing sensi-
tivity), which can lead to more false positives (lower precision). If § < 1, the Fg-measure
focuses on minimizing false positives (maximizing precision), potentially increasing the
number of false negatives (lower sensitivity).
Furthermore, it can be noticed that

. (B? +1)TP? o TP
lim = Sensitivity = —— 33
p—eo (B2 +1)TP? 4 TP(B2EN + FP) YT TP+ PN 3

since for B > 0 we neglect the contribution of the false positives by considering only the
contribution of the false negatives where we re-obtain the TPR metrics defined in (30).

In summary, thanks to the g parameter, the Fg-measure offers a flexible way to evaluate
segmentation models by enabling a tunable balance between precision and sensitivity. It
provides a useful metric when dealing with class imbalances, especially in the field of
medical imaging, where the relative importance of false positives and false negatives can
vary according to each segmentation task.
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4. Numerical Results
4.1. Impact of Different Diffusion Functions

In this section, we study the impact of choosing different diffusion functions D(c) in
images consisting of a blurry background and a geometric shape in the center, as shown in
Figure 6. The objective is to detect the shape of the geometric figure and to compare how
the choice of different diffusion functions affects the value of the model parameters, Aq, Ay,
and 02, where the optimization process is identical to the one introduced in the section on
parameter optimization. To this end, we chose the following diffusion functions:

Di(c) =c(1—c) D(c) = 4c*(1 —¢)?

ifc <05 (34)

Dy(c) = 64c*(1 — ¢)*.
(1—¢) ifc>05 a(0) -9

Ds(c) =

NI NIo

We direct the reader to Figure 7 for a summary of the various introduced diffusion
functions in (34).

True Reconstructed

(@)

True Reconstructed

(b)

Figure 6. Images used to test different diffusion functions. The first column displays the original

images, the second column presents the expected segmentation mask, and the third column shows
the resulting binary mask. Each picture consists of (256, 256) pixels. For the optimization procedure,
we set T = 200 and At = 0.1. We define the number of iterations at 50. Row (a) shows the image
with a square on a blurry background, while row (b) displays a similar image but with a circle. Only
one resulting binary mask was reported for each of the images because all the tests described in this
section obtain the same segmentation mask.
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Figure 7. Diffusion functions defined in (34) to assess the variability related to a given feature’s level.

For both the square and circle images, the Surface Dice Coefficient was used to optimize
the parameters with a tolerance equal to the length of 1 pixel. Both images have a shape
of (256,256) pixels. The final time was set to T = 200 with At = 0.1. The resulting binary
mask was the same for all choices of diffusion functions, obtaining the same loss function
value. The results are shown in Figure 6. In the case of the square in Figure 6a, we can
see from Table 1 that, for D;(c) and D3(c), the values of A; do not differ greatly for these
two diffusion functions. In the case of A, we obtain a slightly smaller value for D;(c)
compared to the one obtained for D3(c) and a larger value of the parameter ¢ > 0 for
D3(c) compared to the one obtained for D;(c). If we look at Figure 7, we notice that
D;(c) > Ds(c). Therefore, a larger value of the diffusion functions is balanced by a smaller
value of ¢ to obtain a similar diffusion effect. This holds also for D;(c) and D3(c) for the
circle in Figure 6b. Furthermore, comparing D, (c) and Dy/(c) for the square image, we can
see that the resulting parameters are smaller for D, (c) in contrast to the one obtained with
Dy(c). This is consistent because, again, we can see from Figure 7 that Dy(c) > Dy(c). If
we now compare D;(c) and Dy(c) for the circle image, we can see that the value of ¢ is
similar in this case. Nevertheless, in this case, the difference is provided by the values of
A1 and A, which are both smaller for D,(c). This indicates that, for different diffusion
functions, the optimal parameters adjust to yield similar results. A very straightforward
approach is to obtain similar values of A; and A, and a lower value of ¢ for the diffusion
function that has a higher value, as in the case of the square image. However, the example
of the circle image shows us that we can also obtain different combinations of parameters
so as to counter the effect of a larger diffusion function.

From Table 2, we can see the parameters obtained by minimizing three different
optimization metrics using as a diffusion function D;(c) for the square image. For all the
cases, the resulting Surface Dice Coefficient was equal to one, indicating perfect overlap
between the computed and ground truth segmentation masks. The resulting binary masks
obtained were the same for the three examples and are equivalent to the ones shown in
Figure 6. For the Volumetric and Surface Dice coefficients, we can see that the parameters
obtained were identical. Nevertheless, for the Jaccard Index, the resulting parameters
differed, being smaller in this case. The loss is null in both cases, consistent with the
relationship in (29).
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Table 1. Parameters obtained for different diffusion functions for the square and circle images. The
loss metric used to obtain these parameters was the Surface Dice Coefficient with a tolerance equal to

the length of 1 pixel.
Square
A Ay o2
D1 (c) 0.884 0.310 0.889
Ds(c) 0.351 0.054 0.047
Ds(c) 0.817 0.407 1.341
Dy(c) 0.442 0.081 0.624
Circle
A Ay o?
Ds(c) 0.435 0.341 1.829
Ds(c) 0.013 0.160 2.717
Ds(c) 0.408 0.268 2.693
Dy(c) 0.154 0.228 2.572

Table 2. Parameters obtained for the square image by minimizing the Jaccard Index and the Volumet-
ric and Surface Dice coefficients. For the Surface Dice Coefficient, the tolerance was set to the length
of 1 pixel. The loss obtained was zero for the three cases.

Square
Al Az 0'2
Vol. Dice 0.884 0.310 0.889
Surf. Dice 0.884 0.310 0.889
JAC 0.442 0.081 0.624

4.2. Determining the Final Time

In this section, we specify the criteria that we implemented to determine the final time
T > 0. As defined in Section 3.1, we approximate the solution of (18) through a DSMC
approach even though we have no analytical insight on the form of the steady state. The
objective is to find the values of the final time T > 0 such that a numerical steady state
can be defined. We stress that the time taken to reach the equilibrium state for different
initial conditions is not the same, so we need to determine the time parameters for all the
images we want to analyze. To this end, if f"(x, ¢) is the approximation of the density at
time t" = nAt, we define

— n+1 7
T= B2 (0.1 [ (x,¢) — f(x,c)|dxdc, (35)
which represents an index of variation between two successive time steps of the recon-
structed kinetic density. As the solution evolves, this quantity decreases and tends to zero
as the equilibrium state is reached, as illustrated in Figure 8 for the case of the square image
with a blurry background. Hence, we may introduce a breaking criterion based on the
condition 7 < 4 for some § > 0. When this condition is satisfied, the reconstructed density
is considered to be an approximation of the steady state.
The same procedure was conducted for all images presented in this work so as to
fulfill the condition presented in this section.
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Figure 8. Evolution of 7, where the kinetic density is that considered in Figure 6a. The image consists
of (256,256) pixels. We can observe how 7 decreases until condition 7 < ¢ is reached with § = 0.005.

4.3. Optimization Metrics for Biomedical Image Segmentation

In this section, we study the impact that the different optimization metrics have on
the resulting binary masks for the core and whole tumor. We also analyze the parame-
ters obtained for the different optimization metrics. Both brain tumor images consist of
N = (240, 240) pixels, and, for the optimization procedure, we determine T = 300 and
At = 0.01 for both the core and whole tumor for all the optimization metrics addressed in
this section. For each segmentation mask generated, we evaluated 300 different combina-
tions of parameters. Figure 9 shows the segmentation masks obtained for both the whole
and core tumor by optimizing the Jaccard Index and the Volumetric Dice Coefficient. In
Table 3, the resulting parameters and the loss obtained for both optimization metrics are
presented; in this case, the loss is equal to 1 for a perfect overlap and 0 if the images are
totally disjoint. First, we can observe that the loss values obtained with both metrics satisfy
(29) as expected. It can be noticed that, for both segmentation masks, the loss obtained is
greater for the Volumetric Dice Coefficient. Furthermore, the parameter A; obtained with
both optimization metrics is similar for both the core and whole tumor. Nevertheless, we
can see that, for the whole tumor, the A, parameter obtained with the Jaccard Index is
larger than the one obtained with the Volumetric Dice Coefficient. For the case of the core
tumor instead, the A; parameter is larger for the Volumetric Dice Coefficient. If we compare
this to the values obtained for o2 in both cases for both metrics, we can see that a larger
diffusion value is countered by a smaller value of A; so as to obtain similar segmentation
masks, as demonstrated in Figure 9.

Table 3. Parameters obtained for the whole and core tumor using the Volumetric Dice Coefficient,
Jaccard Index, and Surface Dice Coefficient. The loss reported is 1 for perfect overlap and 0 for
complete deviation.

Whole Tumor
Opt. Function M Ay o2 Loss
Vol. Dice 0.4972 0.0888 2.6867 0.9292
JAC 0.5075 0.1187 2.3631 0.8672

Surf. Dice 0.6383 0.0579 2.6504 0.7447
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Table 3. Cont.
Core Tumor
Opt. Function M Ay o2 Loss

Vol. Dice 0.3795 0.1254 2.1808 0.9360

JAC 0.3823 0.1004 2.7001 0.8796
Surf. Dice 0.6841 0.0760 1.4155 0.8727

Original Ground Truth Mask

JAC - Binary Mask

(@)

Figure 9. Cont.

DICE - Binary Mask
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Original Ground Truth Mask

JAC - Binary Mask DICE - Binary Mask

(b)

Figure 9. Segmentation masks obtained by minimizing the Jaccard Index and the Volumetric Dice
Coefficient. (a) Shows the results for the core tumor and (b) shows the results for the whole tumor.
Both images consist of 240 x 240 pixels. For the optimization procedure, we set T = 300 and At = 0.01.
In both cases, we considered 300 iterations of the optimization algorithm. In both cases, the loss
reported by the Jaccard Index was smaller compared to that obtained with the Volumetric Dice
Coefficient. Furthermore, it can be noticed that the losses reported satisfy (29) as expected. From the
values of the parameters, we can observe that a larger value of the diffusion is countered by a smaller
value of A,.

For the Surface Dice Coefficient, the tolerance T was set to the length of 1 pixel, both
when used as the optimization loss and when used as the evaluation metric. Figure 10
shows the resulting binary mask obtained with the Surface Dice Coefficient and the Vol-
umetric Dice Coefficient for the core and whole tumor. In the case of the whole tumor,
the loss obtained with the Surface Dice Coefficient is smaller than that obtained with the
Jaccard Index and the Volumetric Dice Coefficient. For the core tumor, the loss obtained
with the Surface Dice Coefficient is similar to that reported by the Jaccard Index, and both
are smaller than that obtained with the Volumetric Dice Coefficient. For the whole tumor,
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we can see that the resulting parameters are similar for all the optimization metrics. Never-
theless, for the core tumor, we can notice that the parameters obtained with the Surface Dice
Coefficient differ compared to the ones obtained with the Jaccard Index and the Volumetric
Dice Coefficient. In particular, we obtained a smaller value for o2 and slightly larger value
for Ay. This indicates that a smaller value for the diffusion of the particles is compensated
by enabling the particles to aggregate with others that are slightly more separated than
regarding Volumetric Dice and the Jaccard Index. Given that both the Volumetric Dice
Coefficient and Jaccard Index are a measure of the superposition between two volumes (in
this case two surfaces), they do not represent the proximity between two surfaces, making
the Surface Dice Coefficient more suitable to use as a loss metric when comparing two
different surfaces.

Original Ground Truth Mask

Surface Dice - Binary Mask DICE - Binary Mask

(@)

Figure 10. Cont.
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Surface Dice - Binary Mask DICE - Binary Mask

(b)

Figure 10. Segmentation masks obtained by minimizing the Surface and Volumetric Dice coefficients.
(a) Shows the results for the core tumor and (b) shows the results for the whole tumor. Both images
consist of 240 x 240 pixels. For the optimization procedure, we set T = 300 and At = 0.01. In both
cases, we considered 300 iterations of the optimization algorithm. For the Surface Dice Coefficient, we
set the tolerance T equal to the length of 1 pixel. Given that both the Volumetric Dice Coefficient and
Jaccard Index are a measure of the superposition between the two surfaces and do not account for the
proximity between the two surfaces at every given point, the Surface Dice Coefficient represents a
more suitable metric when comparing two different surfaces.

For the Fg-measure, we can see in Figure 11 the binary masks obtained for different
values of j for the core and whole tumor. For the case of the core tumor, we can observe
that, for § = 0.25, we obtain areas of misclassified pixels in the tumor region. This can also
be seen from Table 4, where the number of false negatives is larger and the number of false
positives is smaller compared to the results obtained for larger values of . If we recall (31),
we can see that, for low values of B, the false negatives are multiplied by a factor of 82, thus
having a smaller weight compared to the false positives. As we increase the value of §, we
can notice from both Table 4 and Figure 11 that modifying the value of B has no impact
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on the resulting binary mask. This also holds true for the whole tumor as no difference
can be noticed in the results obtained for different values of B. Finally, in Figure 12, we see
the loss reported for different values of B, where the loss equal to 1 represents a perfect
overlap. First, it can be noticed that we obtain the higher value of the loss for § = 0.25,
meaning that this should be the most accurate result, which is balanced anyway by the
fact that we obtain a larger number of false negatives. Again, we observe that this can be
obtained from (31), where low values of  reduce the impact of a large number of false
negatives on the resulting loss. Secondly, we observe that the loss decreases for larger
values of B. This behavior arises because the loss is inversely proportional to 8, while the
resulting segmentation masks remain unchanged, as shown in Table 4. This shows that the
Fg-measure may not be a reliable metric for these types of segmentation masks and this

segmentation method, and that modifying the value of B provides no advantage.

B=0.25 B=0.5

@)
Figure 11. Cont.
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B=0.25

(b)

Figure 11. Segmentation masks obtained for the Fg-loss metric. (a) Shows the segmentation masks
obtained for g = 0.25,0.5,0.75, and 1.5 for the core tumor and (b) shows the segmentation masks
obtained using the same values of § for the whole tumor. Both images consist of 240 x 240 pixels. For
the optimization procedure, we set T = 300 and At = 0.01. In both cases, we considered 300 iterations
of the optimization algorithm. In (a), we can observe that, for § = 0.25, the resulting segmentation
masks display areas of misclassified pixels, while, for larger values of j, the resulting segmentation
mask does not differ. In (b), no zoomed area is shown as the segmentation masks display no visible
differences for the different values of B. This is also evident in Table 4 by observing the number of
false positives (FPs), false negatives (FNs), and true positives (TPs) obtained for both images.
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Figure 12. Relationship between the Fg-loss value and the § value for both the core and whole
tumor images. As 8 increases, the Fﬁ—loss decreases, showing that, for lower values of B, we should
obtain a more precise segmentation mask as the loss indicated in this figure is 1 for perfect overlap.
Nevertheless, the resulting binary mask is less accurate for lower values of B, showing that this is not
an appropriate metric for optimizing the consensus-based model.

Table 4. Parameters obtained for the Fg-measure for different values of B. The loss reported is 1 for
perfect overlap and 0 for complete deviation. The numbers of false positives (FPs), false negatives
(FNs), and true positives (TPs) are presented for the resulting segmentation masks for each value of .

Whole Tumor
A Ay o? FP FN TP Loss
B=025 06873 0.1707 2.2395 134 347 3170 0.9559
B=05 03351 0.1080 2.7051 134 350 3167 0.9470
B=075 05939 0.2304 2.6718 134 350 3167 0.9373
B=15 05316 0.1092 2.7105 136 349 3168 0.9179
B=50 05662 0.1225 2.7043 136 349 3168 0.9032
B=10.0 0.6061 0.2835 2.1243 136 349 3168 0.9013
Core Tumor

A Ay o? FP FN TP Loss

B=025 0.6575 0.2725 0.0257 9 206 849 0.9763
B=05 03989 0.0637 1.8094 25 107 948 0.9582
B=075 04073 0.0942 1.6972 25 105 950 0.9460
B=15 05444 0.2077 2.3545 25 105 950 0.9220
B=50 05587 0.1742 2.6864 25 105 950 0.9032
B=100 06137 0.2425 1.9757 25 105 950 0.9012

5. Conclusions

In this paper, we presented a consensus-based kinetic method and demonstrated how
this model can be applied for the problem of image segmentation. A pixel in a 2D image
is interpreted as a particle that interacts with the rest through a consensus-type process,
which enables us to identify different clusters and generate an image segmentation. We
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developed a procedure that enables us to approximate the ground truth segmentation
masks of different brain tumor images. Furthermore, we presented and evaluated different
optimization metrics and studied the impact on the results obtained. In particular, we
found that the Jaccard Index and Volumetric and Surface Dice coefficients are appropriate
metrics to optimize our model. Nevertheless, given that the Surface Dice Coefficient is a
measure of discrepancy between the boundaries of two surfaces, it is a better representation
compared to the Jaccard Index and the Volumetric Dice Coefficient as they account only for
absolute differences and do not capture pointwise differences. Furthermore, we assessed
the use of Fg-loss as a potential optimization metric. We found that both the loss values
and corresponding results were difficult to interpret as low loss values often corresponded
to low accuracy, making this metric challenging to apply effectively for optimization in
this context. Future research will focus on the case of multidimensional features to deal
with color images as RGB color models are defined by 3D features specifying red, green,
and blue values. As a result, we plan to define a pipeline for learning model parameters
depending on these multidimensional characteristics, aiming to enhance accuracy and
applicability in real-world scenarios.
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