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Abstract: Two different processes take place in self-reproducing protocells, i.e., (i) cell
reproduction by fission and (ii) duplication of the genetic material. One major problem
is indeed that of assuring that the two processes take place at the same pace, i.e., that
they synchronize, which is a necessary condition for sustainable growth. In previous
theoretical works, using dynamical models, we had shown that such synchronization can
spontaneously emerge, generation after generation, under a broad set of hypotheses about
the architecture of the protocell, the nature of the self-replicating molecules, and the types
of kinetic equations. However, an important class of cases (quadratic or higher-order
self-replication) did not synchronize in the models we had used, but could actually lead to
divergence of the concentration of replicators. We show here that this behavior is due to
a simplification of the previous models, i.e., the “buffering” hypothesis, which assumes
instantaneous equilibrium of the internal and external concentrations of those compounds
which can cross the cell membrane. That divergence disappears if we make use of more
realistic dynamical models, with finite transmembrane diffusion rates of the precursors
of replicators.

Keywords: self-reproduction; self-replication; diffusion rate; Fick’s law; transmembrane
diffusion; chemical kinetics

1. Introduction
It is well known that the process of cell division (fission) is of the utmost importance

for every living species, either unicellular or multicellular. In this paper we will consider
only the case where a single mother cell gives birth to two daughters; in order to assure
that every daughter cell receives a full copy of the mother’s genetic material, cell fission
is usually preceded by duplication of its DNA which, in present-day cells, is guaranteed
by sophisticated control mechanisms [1]. However, it is highly unlikely that such control
mechanisms were in place in the early days of primordial protocells.

Protocells are entities that resemble in some way, but are much simpler than, present-
day cells and that are supposed to have been their predecessors. Several interesting
intermediate results have been obtained in the laboratory [2–4], however full-fledged
protocells, able to continuously generate several successive generations, have not yet
been achieved.

While very many different hypotheses about the “architecture” of protocells have
been suggested, most research works are based on lipid vesicles, which are spontaneously
formed under a broad set of conditions in aqueous solutions of amphiphiles [5–9]. Such
lipid vesicles resemble cells in that their aqueous interior is surrounded by an approximately

Entropy 2025, 27, 154 https://doi.org/10.3390/e27020154

https://doi.org/10.3390/e27020154
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5991-5470
https://orcid.org/0000-0002-1417-5106
https://doi.org/10.3390/e27020154
https://www.mdpi.com/article/10.3390/e27020154?type=check_update&version=1


Entropy 2025, 27, 154 2 of 15

spherical membrane composed of a lipid bilayer. Moreover, if further lipids are supplied,
the size of vesicles can grow and, under some experimental conditions, their splitting has
been observed [2,10–13]—a process which is reminiscent of cell fission.

Actual “wet” experiments are expensive and require long times; therefore, mathemati-
cal and computational models are extremely important to indicate directions of research, to
test the suitability of different hypotheses, and to point out major problems which need to
be addressed [14–16]. In this paper we will indeed consider broad classes of mathematical
and computational models of protocells, all based upon semipermeable lipid vesicles which
will be assumed to spontaneously undergo fission when they reach a certain size. Moreover,
it will also be assumed that each protocell hosts in its internal water phase some chemi-
cals (“replicators”) which are able to collectively self-replicate, and that some replicators
also increase the rate of growth of the membrane (e.g., by catalyzing the synthesis of its
amphiphiles). For simplicity, we consider a single type of lipid, so the set of replicators
determines the identity (i.e., the properties) of the protocell itself, and can be regarded
as its proto-genetic material. In general, we will neglect other chemicals which might be
found inside the protocell, which are not directly involved in the self-replication nor in the
synthesis of membrane lipids.

Two different processes take place in these vesicles, i.e., (i) cell reproduction by fission
and (ii) replication of replicators. One major problem is indeed that of assuring that the two
processes take place at the same pace, i.e., that they synchronize (since fission gives rise to
two offsprings, synchronization is achieved if and only if also replication leads to doubling
the quantity of replicators). If cell reproduction were much faster than duplication, the
proto-genetic material would be increasingly diluted through generations, while in the
opposite case its quantity would continue to increase and accumulate in cells. In both
cases no sustainable growth of a population of protocells would take place, and therefore
life could not emerge in a robust way; even if some protocell were able to reproduce, this
property would be lost by its descendants.

It cannot be taken for granted that the rates of these two different kinetic processes are
born identical, but it is interesting to understand under which conditions, in an evolving
population, they can converge to a common value, generation after generation. In this case,
their synchronization might have spontaneously taken place in early (proto)life.

In a series of previous works, we used simplified mathematical and computational
models to address this issue. The goals, results, and limitations of these models have
been discussed in several papers and in a book [17]; in Section 2 of this paper, we will
briefly summarize their main features, referring the interested reader to those works for
further information. In order to avoid filling the reference list with many self-citations, we
limit ourselves here to mentioning the two foundational papers [18,19], where the physical
hypotheses are discussed in depth, and the book [17], where one can find proper references
to most previously published papers. We will also directly cite, where necessary, our more
recent works.

In these models, protocells are supposed to be semipermeable, and indeed a Boolean
approximation is introduced, thus sharply distinguishing those chemicals which can cross
the membrane from those which cannot. Diffusion is assumed to be extremely fast in the
bulk, both inside the protocell and in the external environment, so there is no need to
consider concentration gradients which instantaneously vanish, and space is homogeneous,
both inside and outside. Moreover, also transmembrane diffusion of the species which can
cross the membrane (in the following called also “permeable species”) is assumed to be
instantaneous, so that their internal and external concentrations are the same (the “buffering
hypothesis”, in chemical jargon). Note that reactions which take place inside the protocell
can make the internal and external compositions different, if they involve non permeable
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species. Note also that the external environment acts as a large reservoir, and that the
concentrations of various chemicals are not affected by the activities of the protocell.

The models host two kinds of kinetic equations, those which rule the growth of the
membrane and those which describe the interactions among replicators. It may also happen
that the growth of the population stops, a condition which we refer to as the “starvation” of
the population, although no explicit model of cell death is introduced: we simply say that a
population starves when it stops (or never starts) growing. It may happen that the same
equation system supports either growth or starvation, depending upon the values of some
parameters. We refer to these kinds of equations as “synchronizing”, since synchronization
can actually be achieved, for some parameter values.

We have examined different models, analyzing different types of linear and nonlin-
ear kinetic equation systems, and it was shown that synchronization actually emerges
under a surprisingly wide set of different hypotheses, without resorting to any specific
evolutionary mechanism.

In these models, fission takes place when the size of the cell reaches a threshold value,
giving rise to two identical daughters, whose size equals the initial size of their mothers.
When synchronization is achieved (this is literally true only in the limit t → ∞), the initial
concentration of replicators in the daughters is also identical to that of their mothers,
therefore they take the same time to reach the threshold size for fission; all the generations
tend to become identical, and to have the same duration. Therefore, the doubling times
tend to be equal, so that the growth of the population is exponential, and this implies, as
first observed by [20], that selection (which takes place only when population growth is
somehow limited) is of the Darwinian type (survival of the fittest), even when the kinetic
equations for replicators are nonlinear.

An interesting phenomenon has also been reported in some cases, when the time
interval needed to reach the fission threshold changes from one generation to the following
one, doing so in a cyclic way, so that the duplication time of generation k is the same as that
of generation t + k (in the long-time limit). This is still a kind of (periodically oscillating)
synchronization, and it has therefore been called super-synchronization.

In a few interesting cases, synchronization can be analytically proven, in other cases
it can be verified by numerical simulations. It can thus be shown that it is robust with
respect to random fluctuations of the size of the newborn cells and of the value of the
splitting threshold.

The results discussed in this paper refer to models where the replicators are all in
the internal water phase, but synchronization has also been proven for different protocell
architectures, including the so-called “surface reaction models” (SRMs) (for clear reasons,
the models which are studied in this paper have been called Internal Reaction Models—
IRMs), where the replicators are located in the lipid membrane, and simplified models of
the GARD kind (where the replicators are themselves lipids) [21,22] and of self-replicating
micelles [18].

This is good news; synchronization can be an emergent phenomenon under a broad
set of hypotheses about the model equations and architectures, and it may have allowed
sustainable protocell growth before the onset of the sophisticated checkpoints of evolved
cells. However, there is an important exception, which is observed when the growth rate of
replicators is (in a sense which will be precisely defined in Section 2) “too fast”, leading to
divergence of the concentration of replicators.

For example, in the simplified case of a single replicator, this happens when the
growth rate of the mass of the lipid container C, dC/dt, is proportional to the quantity of that
replicator X, while dX/dt depends upon X2 (see Section 2 for more precise details). This may
seem quite an odd hypothesis when there is a single type of replicator, but quadratic terms



Entropy 2025, 27, 154 4 of 15

are quite often found in models with mutual catalysis of different replicators—and the same
type of divergence is also observed in those models. Therefore, the lack of synchronization
in case of quadratic or higher order kinetic terms in the equations is not only a point of
mathematical rigor, without relevance for the hypothetical events of early life, but it actually
limits the range of synchronizing models.

Therefore, we analyzed with care what happens when the order of the kinetic equations
approaches two from below, observing that the internal quantities of replicators increase
sharply, while duplication times approach zero: the growth of the internal concentration
diverges, the time to duplication vanishes.

As mentioned above, one of the hypotheses of the class of models which had been an-
alyzed is the “buffering” of the concentrations of the permeable species, which corresponds
to assuming infinitely fast transmembrane diffusion. This hypothesis is quite frequent in
chemical kinetics, when diffusion is much faster than the other dynamical processes which
take place. But when one such process becomes infinitely fast, as in the case of the increase
in the concentration of the replicators, then the buffering hypothesis loses its bases.

One should then look at the behavior of slightly different models, where a finite
diffusion rate is introduced. We do so, as described in Section 3 below, by explicitly
taking into account precursors of the replicators, which can cross the membrane with
finite diffusion rates while the membrane is impermeable to replicators. It is extremely
interesting and satisfying to remark that this simple modification suffices to get rid of all
the observed divergences, so that every model we have considered actually synchronizes
or supersynchronizes (unless starvation occurs).

The outline of the paper is as follows. In Section 2, we quickly summarize the
“buffered” models we use and previous results about synchronization, showing also that
it is not achieved when the kinetic equation for the replicators are quadratic. In Section 3,
we introduce models with finite diffusion rates, showing in a simple one-dimensional case
that divergence is removed, and then we analyze a number of different models, showing
that in all the cases which have been examined there is no divergence. Finally, Section 4
provides some further comments.

2. The Buffered Models
In this section we briefly summarize previous works. Interested readers can find

further information and in-depth discussions of the model features in [17] and in the
original papers quoted there. The protocell is assumed to be spherical, with an aqueous
interior surrounded by a membrane, composed of a single type of lipid, whose thickness is
δ. If r is the radius of the internal part, its surface S and its volume V are obviously also
determined. The volume VM of the membrane equals the difference between the volume
of a sphere with radius r + δ and that of a sphere of radius r which, when δ << r, can
be approximated by Sδ. The membrane is homogeneous, with volume density ρ, so the
total quantity of lipids in the protocell membrane, C = ρVM ∼= ρδS, provides a measure
of its size (for a large cell with a thin membrane, V is approximately proportional to
C3/2, and S is approximately proportional to C). The hypothesis of a spherical protocell
thus allows us to relate in a simple way the size of the protocell to the outcomes of the
kinetic equations (remember that some replicators catalyze the synthesis of the membrane
lipids). The splitting processes, where deformations from a spherical shape necessarily take
place, are supposed to be fast with respect to the protocell growth, so they are regarded as
instantaneous and they are not explicitly modeled. Splitting takes place (at a fixed value
C = θ), giving birth to two identical offsprings. We usually suppose that no lipids are lost
during splitting (other hypotheses may be - and have been - made; they do not modify the
validity of the conclusions about synchronization); in order to comply with the spherical
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shapes of the newborn cells, one must admit that there is a loss of about 30% of the total
internal volume.

The protocell is an open system, with a semipermeable membrane which prevents
transmembrane diffusion of some chemicals. It is placed in a large external volume (a
reservoir), whose concentrations are not affected by exchanges with the protocells. Those
chemicals which can cross the membrane, i.e., the permeable chemicals, are buffered, so
their internal volume concentrations always equal their (constant) external values.

In these models, the dynamics of a protocell between its birth and its fission are
ruled by ordinary first-order differential equations, which describe how the quantities of
replicators X = (X1. . .XN), and the quantity of lipid C change in time:

dC
dt = f

(
C,

→
X
)

d
→
X

dt = g
(

C,
→
X
) (1)

It is usually assumed (i) that the kinetic equations for the replicators are given by the
law of mass action, i.e., that they are proportional to the expected frequency of encounters
between their types and (ii) that rate-limiting terms, which could play a role when products
accumulate, can be neglected before fission occurs.

Note that Equation (1) involves quantities, while the more familiar equations of
chemical kinetics are written in terms of concentrations, which are directly related to the
frequencies of encounters. The same equations could of course also be written in terms
of concentrations, without modifying our conclusions. We found that using quantities
simplifies the approach in a case with changing volume like ours—therefore we usually
resorted to quantities, although we sometimes also used concentrations [19].

The size of the mother cell when splitting takes place is fixed, as well as the initial size
of the newborns. The volume concentrations of the replicators of the newborns are equal
to those of the mother cell at division time. Equation (1) thus allows us to compute the
relationship between the initial quantities of replicators at successive generations; if X(k)
denotes the initial quantities of replicators at generation k, they determine the discrete map
which relates X(k + 1) to X(k). In order to prove synchronization, it is necessary to show
that they tend to constant values as k → ∞; since the size of each protocell at the beginning
of a new generation is fixed, this condition guarantees that the total quantity of replicators,
in the pair of daughter protocells, is twice that of the mother.

The differences among various specific IRM models should be found in the different
types of kinetic equations. Although we have also considered terms where the container
growth rate depends upon some power of the replicators [17], in order to limit the number
of different cases of study, in this paper we will always assume that dC/dt increases linearly
with X (it can depend upon a single component Xk, or upon a sum of such linear terms).

We analyzed discrete maps which are obtained from different types of linear and non-
linear kinetic equations for the replicators, and it was possible to show that synchronization
actually emerges under a surprisingly wide set of different hypotheses, without resorting
to any specific evolutionary mechanism, provided of course that the term g(C,X) provides
a significant increase in the quantity of replicator in a generation. This somewhat vague
statement can be given precise meanings when the form of the kinetic equations is specified.
For example, in the case of a system of linear equations for the replicators such as

d
→
X

dt
= M

→
X (2)
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it is related to the sign of the real part of the eigenvalue with the largest real part of the
NxN matrix M (when some entries Mhk are negative, supersynchronization can sometimes
be observed) [17], which must be positive to assure synchronization. In another interesting
case, where the equations are based on the binary polymer model [23,24], it can be shown
that synchronization depends upon the presence of so-called RAF sets [25,26].

In a few cases, synchronization can indeed be analytically demonstrated; in other
cases, it can be verified by numerical simulations. As it has been anticipated in Section 1,
synchronization is also robust with respect to random fluctuations of the size of the new-
born cells and of the value of the splitting threshold, and it holds for different protocell
architectures. But it does not always happen.

Let us consider the case where there is a single replicator X, whose rate of growth is
an increasing function of the quantity X. If the growth law is linear, i.e., dX/dt = ηX, then
there is synchronization if η > 0, otherwise starvation occurs. But the effective rates of
autocatalysis can also depend upon nonlinear exponents. In general, with a single replicator
X, the equation system [1] becomes (for the detailed form of Equation (3), in particular the
dependence upon V1−n, see [17]) { .

C = αX
.

X = ηV(1−ν)Xν
(3)

(recall that V is a known function of C).
In this case, it can be analytically proven [17] that there is no synchronization when

ν = 2. While using a quadratic equation for a single type of replicator may look somewhat
odd, it should be observed that the same lack of synchronization is observed also when
different types of replicators quadratically interact (for example, in the case of only two
types of replicators, there are terms proportional to XY both in the equation for dX/dt and
dY/dt). These and other cases will be studied in Section 3; here we will show only the
single-replicator case.

The ν = 2 value leads to divergence of the quantity of replicators in the protocell, and
it cannot obviously be simulated. But we can simulate the behavior of Equation (3) for
different ν values and look at how it changes when ν approaches 2 from below, i.e., in a
region of parameter space where synchronization is observed.

In Figure 1, one can see two different behaviors. In Figure 1a, the asymptotic concen-
tration of the replicator (which catalyzes the growth of membrane lipids) sharply decreases
as the exponent ν approaches 2; consequently, the duplication times become longer and
longer. As discussed above, although we do not model cell death, we call this behavior
starvation, since the lack of replicators slows down cell duplication. The data in Figure 1b
differ from the previous ones in that the growth rate of the replicator η is higher, while the
coupling coefficient α with the protocell growth rate is unchanged. In this case, the asymp-
totic concentration of replicators increases faster and faster as the exponent ν approaches 2
(where it diverges, as it can be proven analytically [27]), while the time needed to reach the
threshold value for fission (i.e., the duration of a generation) decreases to zero. In this case,
a rapid increase in replicators does not seem to support a stable growth of the protocell
population, a very counterintuitive outcome. It should also be said that in the literature,
there are several models in which the reaction order is quadratic, or higher [15,22,28,29].
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Figure 1. (a) Asymptotic time required for duplication (i.e., duration of a single generation) and
asymptotic replicator concentration at the time of duplication, for low values of the η coefficient.
In this situation, the growth of the exponent ν leads to increasingly lower values of replicator
concentration and to increasingly higher duplication times (“starvation”). (b) The same variables for
higher η value. In this situation, the growth of the exponent ν leads to increasingly higher replicator
concentration values and ultimately to divergence, and consequently to increasingly shorter and
ultimately vanishing duplication times. The α coefficient is 0.05 in both images.

If the co-presence of more than one replicator is required to obtain another, we can
write the scheme {

X + Y + Px → 2X + Y
X + Y + Py → X + 2Y

(4)

where PX and PY are precursors of X and Y, respectively, which can cross the membrane. In
the buffered models, their internal concentrations are the same as the external ones, which
are constant. Therefore, the precursors can be omitted from the dynamic equations, and
Equation (4) can be simplified to the following{

X + Y → 2X + Y
X + Y → X + 2Y

(5)

Therefore, if we suppose that the reaction rates are proportional to the frequency of
encounters of the two reactants, and that the container growth is influenced only by X, the
model equations for the 2D case of mutual catalysis are

.
C = αX

.
X = η′V−1XY
.

Y = η′′V−1XY

(6)

This model also shows divergence, like the one-dimensional model of Equation (3)
when ν = 2, as it can be proven with analytical methods [17].

3. Finite Diffusion Rate
For reasons which have been extensively discussed in Section 1, the “buffering” ap-

proximation, which can provide useful results when transmembrane diffusion is much
faster than chemical processes, can no longer claim validity when some reaction rates
tend to infinite values. Therefore, we must leave it aside and consider the effects of finite
diffusion rates. A way to do so is suggested by the notion of precursors which can cross the
membrane (the “permeable” substances already mentioned in Section 1).
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We will now suppose instead that precursors can cross the membrane, at a rate given
by Fick’s law. Let us first consider the one-dimensional case, whose reactions are

X + Px → 2X (7)

Let ϕx be the inflow rate of Px and let D’ be its nonvanishing diffusion coefficient.
Then, according to Fick’s law, ϕx is proportional to the product D = D’/δ (δ indicating the
thickness of the membrane) times the membrane area S times the difference between the
external concentration P* (which remains constant in the reservoir) and the concentration
[Px] = Px/V in the internal water phase. The case corresponding to Equation (3) is therefore
ruled, when diffusion rate is finite, by the following system:

dC
dt = αX

dX
dt = ηV

(
X
V

)ν Px
V = η(V)−ν(Xi)

νPx
dPxi
dt = DS

(
P∗ − Px

V

)
− η(V)−ν(Xi)

νPx

(8)

The explicit introduction of the exponent ν, as in Equation (3), allows for greater
generality, summarizing more complex reaction systems as, for example, chemical chain
reactions [30].

As shown in Figure 2b, in the case of a protocell with finite diffusion through the
membrane, an increasing efficiency of the replicator production reaction (high ηi and
increasing value of the exponent ν) is accompanied by a corresponding decrease in the
internal asymptotic concentration of the precursor, while the asymptotic concentration
of the product remains almost constant (and consequently so does the duplication time).
This happens because the internal concentration of the precursor becomes so low with
respect to the external one that the flow of material (dependent on the difference between
the two concentrations) cannot significantly increase. This limit implies that the precursor
cannot be replaced effectively, and its concentration decreases; the decrease slows down
the production of the replicator, which in turn cannot keep up with excessively rapid
duplication rates. For high ν, at a steady state, the replicator depends directly on the
incoming precursor flow, which cannot grow above the indicated limit, hence the constancy
of the replicator concentration.

As already commented, low values of ν lead to increasingly lower asymptotic values
of replicator concentration (Figure 2d), with corresponding increasingly higher duplication
times (Figure 2c).

In the case of mutual catalysis with finite diffusion, the reaction scheme is given by
Equation (4), and the full model is

.
C = αxX + αyY
.

X = ηxV−1YPx.
Y = ηyV−1XPy

.
Px = DxS

(
P∗

x − Px
V

)
− ηxV−1YPx

.
Py = DyS

(
P∗

y − Py
V

)
− ηyV−1XPy

(9)

As shown in Figure 3, when starvation does not occur, synchronization is always
observed, notwithstanding the significant variation in the diffusion coefficient across the
membrane.
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Figure 3. (a) Duplication time of a protocell composed of two replicators and two precursors that
cross the membrane as the diffusion coefficient across the membrane varies—here, Dx = Dy, ηx = 9.0
× 10−4, ηy = 10−3, αx = 5.0 × 10−2, αy = 5.0 × 10−2. (b) The concentrations at duplication time of
replicators and precursors. There are no out-of-sync situations.

The same behavior also occurs in the case of systems composed of more than two
replicators, where each replicator receives a positive catalytic contribution from at least one
of the other replicators and where the precursor of each replicator is provided from the
external environment.

We also considered the effects of finite transmembrane diffusion rates on models with
a reaction order greater than 2; for example, in systems in which the catalytic intervention of
two substances is required to carry out the reaction, in a way similar to the case of reactions
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needing enzymes and co-enzymes when substrate, enzymes and co-enzymes play similar
roles [30]. We anticipate that in the case of a finite diffusion rate across the membrane, the
divergences disappear.

The reaction system is then
dC
dt = κV[Xi] = κXi

dXi
dt = ηV

Xj
V

Xk
V

Pxi
V = η(V)−2XjXkPxi

dPxi
dt = DAiSK

(
Pxi

∗ − Pxi
V

)
− η(V)−2XjXkPxi

(10)

where it is assumed that each replicator is produced by a modification of its precursor,
catalyzed by two other species.

The coupling between the catalyst pairs (j,k) and the catalyzed species i can be repre-
sented by a matrix, where a “1” appears in each row if species j (or k) participates in the
catalysis of species i. The sum of the elements of each row is therefore equal to 2, while there
are no constraints on the sum of the columns. In this work, we assume that only one pair
of catalysts contributes to the formation of species i, and that there is only one trophic level
(all necessary reagents—the precursors of the internal species—pass through the membrane
and are therefore supplied by the external environment, where their concentrations are
kept constant). The order of the reactions is equal to 3.

In the case of extreme uniformity (diffusion coefficients DAi all exactly equal to each
other, as well as the ηi to each other), the distribution of the non-zero elements in the matrix
is indifferent, and all the chemical species have the same exact behavior. This is obviously a
very particular case, and in this work, therefore, we use an ensemble approach in which
the networks belonging to each group share the same matrix, while the reaction constants
change in the ensemble. We also performed other ensemble studies, keeping the values
of the reaction rates constant, while randomly varying the coupling matrix; in some other
cases, we varied both.

In the following, the variability of the kinetic parameter values involves multiplying
the desired mean value times, or dividing by, a random coefficient with equal probability
drawn from a uniform distribution in the interval [1.0, 3.0]. By observing the simulation
results it is possible to draw some general regularities.

In case of high ηi coefficient values, the protocells always synchronize, regardless of
the specific matrices used. In case of low ηi coefficient values, the concentrations of the
internal chemical species always decline—and consequently the precursors’ concentration
values reach those of the external milieu—regardless of the matrices used (Figure 4).

However, for intermediate values of the ηi coefficients, it is possible that the protocells
synchronize or not depending on the details of the matrix or on the particular values of the
coefficients (Figure 4). In some situations, supersynchronization is possible, which is not
observed in the case of high or low parameter magnitudes (Figure 5).

In any case, by increasing the value of the reaction coefficients, protocells that do
not synchronize begin to synchronize, confirming that the fundamental parameter is the
magnitude of the reaction coefficients. Figure 6 shows some typical results (duplication
times, and relationship between a replicator and its precursor) of protocells belonging to an
ensemble in which reaction coefficients tending towards synchronization are used.
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value of the reaction coefficients varies (the constants αi are all set to 0.01). Statistics are calculated
on 20 runs involving ensembles of 100 protocells, each protocell containing 15 replicators and the
corresponding precursors; protocells that do not starve synchronize. The transition occurs in the
narrow interval [0.0005, 0.01]; outside this zone all protocells have the same behavior (starvation,
or synchronization).

Entropy 2025, 27, x FOR PEER REVIEW 11 of 15 
 

 

 

Figure 4. Minimum, mean, median, and maximum number of protocells that dilute as the mean 
value of the reaction coefficients varies (the constants αi are all set to 0.01). Statistics are calculated 
on 20 runs involving ensembles of 100 protocells, each protocell containing 15 replicators and the 
corresponding precursors; protocells that do not starve synchronize. The transition occurs in the 
narrow interval [0.0005,0.01]; outside this zone all protocells have the same behavior (starvation, or 
synchronization). 

  
(a) (b) 

  
(c) (d) 

Figure 5. (a) The behavior of the duplication time in an example of synchronizing protocell, and (b) 
the corresponding concentrations of internal precursors (αi set to 0.01, random ηi with mean close to 
0.01). All measurements are taken immediately before the time of division. (c,d) The same behaviors 
in an observed case of supersynchronization (αi set to 0.01, random ηi with mean close to 0.001—as 
commented in the main text, the variability of ηi values involves multiplying the desired mean value 
by, or dividing by, a random coefficient drawn from a uniform distribution in the interval [1.0,3.0]). 

Figure 5. (a) The behavior of the duplication time in an example of synchronizing protocell,
and (b) the corresponding concentrations of internal precursors (αi set to 0.01, random ηi with
mean close to 0.01). All measurements are taken immediately before the time of division. (c,d) The
same behaviors in an observed case of supersynchronization (αi set to 0.01, random ηi with mean
close to 0.001—as commented in the main text, the variability of ηi values involves multiplying the
desired mean value by, or dividing by, a random coefficient drawn from a uniform distribution in the
interval [1.0, 3.0]).



Entropy 2025, 27, 154 12 of 15Entropy 2025, 27, x FOR PEER REVIEW 12 of 15 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. (a) Distribution of duplication times of an ensemble of 5000 protocells, composed of 15 
replicators and their precursors (αi equal to 0.01, random ηi with mean equal to 0.01). Only 15 pro-
tocells did not synchronize and therefore are not present in the distribution. (b) Relation at dupli-
cation time between the concentrations of a (randomly chosen) replicator and its precursor in the 
5985 protocells that synchronized. (c) Concentration distribution of this precursor and (d) of the 
associated replicator. 

  
(a) (b) 
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Figure 6. (a) Distribution of duplication times of an ensemble of 5000 protocells, composed of
15 replicators and their precursors (αi equal to 0.01, random ηi with mean equal to 0.01). Only
15 protocells did not synchronize and therefore are not present in the distribution. (b) Relation at
duplication time between the concentrations of a (randomly chosen) replicator and its precursor in
the 5985 protocells that synchronized. (c) Concentration distribution of this precursor and (d) of the
associated replicator.

Let us remark that, while in this work we present the results concerning protocells
composed of 15 replicators and 15 precursors, we actually tested systems of very different
sizes and in no case—out of thousands of matrices—did the equivalent “buffered” protocell
model show synchronization (see Figure 7 for an example).
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4. Conclusions and Indications for Further Work
The main outcome of this study is that of highlighting the importance of finite diffusion

when the kinetic equations are nonlinear. The fact that all the different kinetic models
which we have considered, which support the growth of the population of protocells, do
actually synchronize, extends our previous conclusions on buffered models (where some
divergences had been encountered) and makes a strong case in favor of the widespread
appearance of spontaneous synchronization in early life.

In the past, we had already worked with some protocell models with finite diffusion,
showing that they synchronized, but they were introduced either (i) to provide a “more
realistic” system or (ii) to slow down the overall process [17]. In this paper, we provide
a much more careful analysis of the way in which divergence occurs in buffered models,
showing that it is due to an unrealistic “infinitely fast” inflow of permeable species, which
provides a sound basis to resort to models with finite diffusion rates.

Moreover, in our recent studies it was possible to test that synchronization was always
achieved in models of the kind we examined. We cannot claim that we have proven that
synchronization happens for every conceivable set of kinetic equations, but this seems
definitely to be the case whenever the equations are related to the law of mass action, i.e.,
when the reaction rates are proportional to frequencies of encounters of reactants, maybe
raised to some non-integer exponent to account for complex reaction schemes.

Let us also remark that synchronization can spontaneously emerge when fission leads
to two daughter protocells of equal size, perhaps perturbed by some random fluctuation,
but it cannot emerge when the mechanism of cell division consistently leads to offsprings of
different sizes, like in the case of budding. However, it has recently been proved that even
in this case, sustainable population growth can occur, since the internal composition of the
protocell (i.e., the ratios between the quantities of different types of replicators) is conserved
in the case of buffered IRMs [31]. There is no reason to believe that this property does not
hold when finite diffusion rates are taken into account, but this still has to be verified.

Last but not least, let us observe that the work presented here does not address the
fundamental issue of understanding the evolution of control mechanisms which guarantee
that cell reproduction takes place only after gene duplication, as happens in modern cells.
This point is still open to further study, while our results support the idea that spontaneous
forms of synchronization might have predated these more sophisticated mechanisms,
allowing sustained population growth before they set in.
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