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Abstract: This study explores the escape dynamics of bistable systems influenced by
multiplicative noise, extending the classical Kramers rate formula to scenarios involving
state-dependent diffusion in asymmetric potentials. Using a generalized stochastic calculus
framework, we derive an analytical expression for the escape rate and corroborate it
with numerical simulations. The results highlight the critical role of the equilibrium
potential Ueq(x), which incorporates noise intensity, stochastic prescription, and diffusion
properties. We show how asymmetries and stochastic calculus prescriptions influence
transition rates and equilibrium configurations. Using path integral techniques and weak
noise approximations, we analyze the interplay between noise and potential asymmetry,
uncovering phenomena such as barrier suppression and metastable state decay. The
agreement between numerical and analytical results underscores the robustness of the
proposed framework. This work provides a comprehensive foundation for studying noise-
induced transitions in stochastic systems, offering insights into a broad range of applications
in physics, chemistry, and biology.

Keywords: stochastic dynamic; Langevin equations; multiplicative noise; decay rates;
bistable systems

1. Introduction
Dynamical systems often exhibit multiple local equilibrium configurations separated

by potential barriers. The primary mechanism for the decay of these states is thermal
activation over a potential barrier. This phenomenon has been widely investigated due to
its significance in diverse fields such as chemistry, physics, and biology [1].

A simple representation for thermal activation considers a classical particle in a bistable
potential, U(x), undergoing stochastic dynamics governed by a Langevin equation with ad-
ditive white noise. A key quantity in this framework is the escape rate, which characterizes
the particle’s transition from a local minimum of the potential.

Kramers’s pioneering work [2] provides an elegant formula for the escape rate in
symmetric potentials:

radd =

√
ωmin|ωmax|

2π
e−

∆U
σ2 , (1)

where ∆U = U(xmax)− U(xmin) is the barrier height, with xmax and xmin denoting the po-
sitions of the maximum and the minimum of the potential, respectively. The noise intensity,
represented as σ2 ∼ kBT, where kBT is the thermal energy, quantifies the strength of the
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stochastic fluctuations in the system, and ωmin = U′′(xmin)/m and ωmax = U′′(xmax)/m
are frequencies associated with a parabolic approximation of the potential energy. U′′(xmin)

and U′′(xmax) are the local curvatures of the potential at the minimum and the maximum
and m is the mass of the particle. This result holds in the weak noise regime (σ2 ≪ ∆U).

Recently, we extended Kramers’s formula, given by Equation (1), to systems with
multiplicative noise [3]. In such systems, the stochastic dynamics are driven by a state-
dependent diffusion function, g(x). This state-dependent nature add further challenges
and require a careful treatment using stochastic calculus, where the choice of interpretation,
such as those by Itô, Stratonovich, or others, can influence the resulting dynamics [4–6]. Un-
derstanding Kramers’s rate in the context of multiplicative noise is not merely of theoretical
interest but has practical implications. A significant application is stochastic resonance, a
phenomenon in which noise amplifies the response of a nonlinear system to weak periodic
signals [7].

In addition, evidence of heterogeneous diffusion has been observed in very different
systems such as gene expression processes [8], microparticles in confined geometries [9,10],
and colloids [11,12]. From a theoretical perspective, stochastic systems with multiplica-
tive noise, i.e., with heterogeneous diffusion, have been investigated using a variety of
approaches. These range from numerical simulations of Langevin equations [13–16] to
mean-field approximations of Fokker–Planck equations [17] and further to path integral
techniques [18–21], which are particularly well suited for exploring symmetries, conserved
quantities, and fluctuation theorems [22].

While prior studies of Kramers’s escape rate and its generalizations have primarily
addressed symmetric potentials, real-world systems often exhibit asymmetric potential
landscapes. Asymmetries introduce new complexities, such as unequal barrier heights
and different curvatures at the minima, which significantly impact escape dynamics. This
requires further generalization of classic escape rate formulas.

In this work, we derive an explicit analytic formula for the escape rate in stochastic
systems with multiplicative noise under asymmetric potentials. We use a broad stochastic
framework to define the Langevin equation, which includes the most common interpreta-
tions of stochastic integration. Our analysis highlights how asymmetry modifies the escape
rate and its dependence on the stochastic prescription. The main result of this paper is the
explicit analytic expression for the decay rate

r =
g(xm)2

2

(√
ω̃a|ω̃m|
2π

e−
∆Ua

eq
σ2 +

√
ω̃b|ω̃m|
2π

e−
∆Ub

eq
σ2

)
(2)

where ∆Ueq is the height of the equilibrium potential barrier related to each of the minima
x = a or x = b, ω̃s are the local curvatures of the equilibrium potential at the minima or
the maximum of the potential, and g(xm) is the diffusion function evaluated at the local
maximum of Ueq. In this case, the square of the diffusion function is playing the role of the
inverse of the mass, since the actual frequency is proportional to g2ω̃. The main feature
of this expression is that it depends neither on the details of the equilibrium potential nor
on those of the diffusion function. Instead, it relies solely on the local properties of these
quantities, such as the height of the barrier and the local curvatures at the minima and
maximum. On the other hand, all the information about the specific stochastic prescription
defining the multiplicative noise process is encapsulated in the equilibrium potential. This
potential incorporates not only the original bare potential but also information on the
multiplicative noise fluctuations. Moreover, we observe that both minima, the global and
the metastable one, contribute to the decay rate, independently of the initial conditions of
the process.
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We calculate the escape rate using the conditional probabilities of state transitions
over time. The computation employs path integral techniques, utilizing an instanton–anti-
instanton expansion valid in the weak noise limit and long times. Our approach closely
follows the methods in [3,23]. Additionally, we perform extensive numerical simulations of
the Langevin equation for specific potential and diffusion functions. These results enable
us to evaluate the validity and limitations of our approximations.

The structure of this paper is as follows. Section 2 present the theoretical framework
for analyzing asymmetric potentials in the presence of additive and multiplicative noise.
Section 3 reviews the path integral approach to stochastic processes, emphasizing its appli-
cation to escape rate calculations. In Section 4, we derive the weak noise approximations
for escape rates in asymmetric potentials, presenting the main result of this paper given by
Equation (2). Numerical simulations and comparisons with analytic results are presented in
Section 5. Finally, we provide a summary of our findings and discuss potential applications
in Section 6.

2. A Simple Representation of State-Dependent Diffusion
Consider a one-dimensional conservative system characterized by a potential energy

function, U(x), that has a double-well structure. The system interacts with a thermal
bath described by a state-dependent diffusion function, g(x). The overdamped Langevin
equation is given by

dx(t)
dt

α
= f (x(t)) + g(x(t))η(t), (3)

where η(t) is a Gaussian white noise, thus satisfying

⟨η(t)⟩ = 0 ,
〈
η(t)η(t′)

〉
= σ2δ(t − t′) . (4)

The drift force and the diffusion function are represented by f (x) and g(x), respectively,
which are arbitrary smooth functions of x, and σ measures the noise intensity. The symbol
α over the equal sign indicates that the Langevin equation is interpreted in the generalized
Stratonovich [24] convention or α-prescription [25]. In this prescription, α is defined as
a continuous parameter, 0 ≤ α ≤ 1, and each of its values corresponds with a different
discretization rule for the stochastic differential equation. α = 0 corresponds to the Itô
interpretation, while α = 1/2 corresponds to the Stratonovich one. Additionally, α = 1 is
known as the Hänggi–Klimontovich (or kinetic) interpretation [6,26]. It is always good
to emphasize that each stochastic prescription leads to a different stochastic evolution of
Equation (3) and determines specific rules of differential calculus. Thus, the discretization
prescription is an inherent component of the model.

To achieve thermodynamic equilibrium, the drift force f (x) must be connected to the
potential U(x) and the dissipation function g(x) via a generalized Einstein relation [19], in
such a way that

f (x) = −1
2

g2(x)
dU(x)

dx
. (5)

Under this condition, the Langevin Equation (3) can be rewritten as

dx
dt

α
= −1

2
g2(x)

dU(x)
dx

+ g(x)η(t). (6)

The equilibrium probability distribution over long times takes the form

Peq(x) = N e−
1

σ2 Ueq(x), (7)
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where N is a normalization constant, and the equilibrium potential Ueq(x), obtained by
solving the related stationary Fokker–Planck equation [19], is represented by

Ueq(x) = U(x) + (1 − α)σ2 ln
(

µg2(x)
)

, (8)

where µ is an arbitrary scale parameter. Naturally, no physical observable can depend on
this parameter, as it merely represents a constant shift in the potential energy reference.
Notice that the equilibrium distribution depends on the original potential as well as
on the diffusion function g(x) and the stochastic prescription α. Notably, α = 1 (the
kinetic interpretation) is the unique stochastic prescription which results in the Boltzmann
distribution, Ueq(x) = U(x).

There is a relation between stochastic differential equations defined in different pre-
scriptions. Sometimes, it could be useful to represent the same stochastic process in a
different prescription. In this context, the process given by Equation (3) in the α prescrip-
tion can be formulated by using an alternative differential equation defined in another
discretization (say, in the stochastic prescription β) through the following equation:

dx(t)
dt

β
= Fβ(x(t)) + g(x(t))η(t), (9)

with
Fβ(x) = f (x) + (α − β)σ2g(x)g′(x) , (10)

where primes, ( )′, means derivative with respect to x. A thorough proof is provided in
the appendix of ref. [3]. This property is very useful because, depending on the calculation
techniques, some prescriptions are more convenient or easier to be implemented. For
instance, for analytic calculations, the Stratonovich prescription β = 1/2 is simpler because
the calculus rules, such as the chain rule or integration by parts, turn out to be the usual ones.
Alternatively, the Itô interpretation (β = 0) is the unique prescription which guarantees the
non-anticipating property for stochastic calculus [4] and makes easier to perform numerical
simulations.

Although the techniques and results presented here are general, we illustrate the
equilibrium potential Ueq(x) using a simple bistable model,

U(x) =
1
4

x4 − 1
2

x2 + px, (11)

in which the term px breaks the parity symmetry. For the diffusion function, we choose

g(x) = 1 + λx2, (12)

where λ quantifies the multiplicative nature of the noise. For λ = 0, the noise is additive.
To outline the general characteristics of the equilibrium potential, we express Equations (11)
and (12) in arbitrary units. A discussion about dimensions will follow the presentation of
our main result, Equation (35).

The potential U(x) exhibits two minima (degenerated for p = 0) and a local maximum.
The multiplicative noise introduces significant effects in the equilibrium potential. In
Figure 1, the equilibrium potential Ueq(x), defined by Equation (8), is illustrated for the
simplest symmetric model described by Equations (11) and (12) (with p = 0), considering
different values of the parameters σ and α. Figure 1a shows the equilibrium potential
for σ2 = 0.095 under various stochastic prescriptions, α = 0, 1/2, 1. For α = 1, we find
Ueq(x) = U(x), with the minima fixed at xmin = ±1. In contrast, under the Stratonovich
and Itô prescriptions, the minima shift toward the origin. In Figure 1b, the curves are
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computed using the Itô prescription for different noise intensities, σ2 = 0.055, 0.12, 0.25.
In this case, as the noise increases, the minima move closer to zero; for the largest value
σ2 = 0.25, the equilibrium potential exhibits a single global minimum at xmin = 0. As noted
in ref. [3], this behavior resembles a second-order phase transition induced by spontaneous
symmetry breaking. This is in contrast to the asymmetric case shown in Figure 2, where
we fix p = 0.05. In this case, there is a metastable local minimum and a global minimum
separated by a barrier. Similarly to the symmetric case, in Figure 2a, we show how the
minima approach as the prescription goes from α = 1 to α = 0, as well as the differences
in the height of the barrier for the stochastic prescriptions. This aspect clearly impacts the
validity range of the Kramers rate. In Figure 2b, we show the equilibrium potential in
the Itô prescription for different values of noise. It is possible to see that with increasing
noise, the barrier height decreases and the metastable state disappears, in a similar way
to a spinodal decomposition mechanism. Therefore, the effects of multiplicative noise on
the equilibrium properties of the systems are nontrivial, in the symmetric as well as in the
asymmetric case.

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

-0.3

-0.2

-0.1

0.1

0.2

Ueq

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

-0.2

-0.1

0.1

0.2

Ueq

(a) (b)

Figure 1. The equilibrium potential Ueq(x), as defined in Equation (8) with p = 0, is shown.
In panel (a), σ2 = 0.095 is fixed. The solid line corresponds to the anti-Itô prescription (α = 1), the
dotted line represents the Stratonovich prescription (α = 1/2), and the dashed line depicts the Itô
interpretation (α = 0). In panel (b), all curves are calculated using the Itô interpretation. The solid
line corresponds to σ2 = 0.055, the dotted line to σ2 = 0.12, and the dashed line to σ2 = 0.25. In both
panels, we set λ = 1.2.

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

-0.3

-0.2

-0.1

0.1

0.2

Ueq

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

-0.2

-0.1

0.1

0.2

Ueq

(a) (b)

Figure 2. The equilibrium potential Ueq(x), given by Equation (8), with p ̸= 0. In panel (a), σ = 0.5
is fixed. The solid line corresponds to the anti-Itô prescription (α = 1), the dotted line represents
the Stratonovich prescription (α = 1/2), and the dashed line depicts the Itô interpretation (α = 0).
In panel (b), all curves are calculated using the Itô interpretation. The solid line corresponds to
σ2 = 0.055, the dotted line to σ2 = 0.12, and the dashed line to σ2 = 0.2. In both panels, we set
λ = 1.2 and p = 0.05.
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3. Path Integral Representation of Langevin Dynamics with
Multiplicative White Noise

We present here the formalism used to compute conditional probabilities. This section
is not entirely novel; however, it is necessary to introduce the notation and to make a
self-contained presentation. We briefly outline the method and refer the interested reader
to the cited references for technical details.

Conditional probabilities are expressed by the means of the path integral represen-
tation of the generating functional of stochastic correlations. In order to build the path
integral, it is convenient to work in the Stratonovich prescription. Thus, using Equation (9),
with β = 1/2, the stochastic process given by Equation (6), defined in the α-prescription
sense, is described by the Langevin equation

dx(t)
dt

S
= FS(x(t)) + g(x(t))η(t), (13)

with

FS(x) = f (x) +
(

2α − 1
2

)
σ2g(x)g′(x) (14)

where, now, the stochastic differential equation is integrated in the Stratonovich sense. In
this equation, α is just a parameter contained in the definition of the drift force FS.

The transition probability P(x f , t f |xi, ti) plays a fundamental role in studying any
dynamical property of a stochastic process. It represents the conditional probability of the
system being in the state x f at the time t f , given that it was in the state xi at the time ti.
Within the path integral formalism, this probability can be expressed as [21,23,27]

P(x f , t f |xi, ti) =
∫

Dx det−1(g) e−
1

σ2 S[x] , (15)

where the “action” S[x] is given by

S[x] =
∫ t f

ti

dt

{
1

2g2

[
dx
dt

− FS +
1
2

σ2gg′
]2

+
σ2

2
F′

S −
σ4

8
g′2
}

, (16)

with the boundary conditions x(ti) = xi and x(t f ) = x f . Equations (15) and (16) coincide
with the Onsager–Mashlup representation [28] of the conditional probability for the stochas-
tic process governed by Equation (13). Although slightly different versions of Equation (16)
have been reported [21,23,27], essentially due to the covariant properties of the formalism,
the differences are of the order O

(
σ4) [29] and do not affect the present computation of the

transition probability, as we explain below.
Rewriting the action in an alternative form is very insightful. By expanding the

squared bracket in Equation (16) and applying Equations (14), (5), and (8), followed by
integration by parts, we obtain

S[x] =
∆Ueq

2
+
∫ t f

ti

dt L(x, ẋ) , (17)

where ẋ denotes the time derivative. The first term is a state function defined by the
equilibrium potential Ueq, evaluated in the system’s initial and final states, such that
∆Ueq = Ueq(x f )− Ueq(xi), where Ueq is determined by Equation (8). The Lagrangian can
be expressed in the following suggestive form:

L =
1
2

(
1

g2(x)

)
ẋ2 + V(x) , (18)
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where

V(x) =
g2

2

(U′
eq

2

)2

− σ2

(
U′′

eq

2
+

g′

g
U′

eq

)+ O
(

σ4
)

. (19)

The first interesting result is that, for the order σ2, all the dependence on the parameter
α is encoded in the equilibrium potential Ueq (Equation (8)), strengthening the role of this
quantity not only for equilibrium properties but also for dynamic evolution.

Replacing Equation (17) in Equation (15), the conditional probability takes the form

P(x f , t f |xi, ti) = e−
∆Ueq
2σ2 K(x f , t f |xi, ti) (20)

with K(x f , t f |xi, ti) represented by

K(x f , t f |xi, ti) =
∫
[Dx] e−

1
σ2
∫ t f

ti
dt L(x,ẋ) , (21)

which is commonly known as a propagator in the quantum mechanics literature. Here,
the initial and final conditions are considered xi = x(t0) and x f = x(tN). The functional
integration measure takes the form

[Dx] = Dx det−1g = lim
N→∞
∆t→0

N−1

∏
n=0

dxn√
∆t g2( xn+xn+1

2 )
(22)

with xn = x(tn).
Notably, the Equation (21) is the exact propagator for a quantum particle with a

position-dependent mass, m(x) = 1/g2(x), moving in a potential, V(x), written within the
imaginary time path integral formalism t → −it [23]. In this context, the noise intensity σ2

serves as the counterpart of h̄ in the quantum theory.

4. Weak Noise Expansion and the Kramers Escape Rate
We analytically compute K(x f , t f |xi, ti) in Equation (21) in a weak noise approximation.

The propagator can be written in the saddle-point expansion with Gaussian fluctuations as

K(x f , t f |xi, ti) = ∑
n

e−
1

σ2 S[x(n)cl ]
∫
[Dδxn] e−

1
2
∫

dtdt′ δxn(t)S(2) [x(n)cl ](t,t′)δxn(t′) . (23)

The functions x(n)cl (t), with n = 1, 2, 3, . . ., denote the solutions (or approximate solutions)
of the equation of motion

δS[x]
δx(t)

∣∣∣∣
x=x(n)cl

=
d2x(n)cl

dt2 − g2V′ − g′

g
(ẋ(n)cl )2 = 0 (24)

with x(n)cl (ti) = xi and x(n)cl (t f ) = x f as initial and final conditions.
The classical action in Equation (23) is

S[x(n)cl ] =
∫ t f

ti

dt L(x(n)cl (t), ẋ(n)cl (t)) (25)

while the fluctuation kernel is given by

S(2)
cl (t, t′) =

δ2S[x]
δx(t′)δx(t)

∣∣∣∣
x(t)=x(n)cl (t)

. (26)
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In Equation (23), the functional integration measure is represented as

[Dδxn] = lim
N→∞
∆t→0

N−1

∏
j=0

dδx(n)j√
∆t g2

(
x(n)cl (tj)+x(n)cl (tj+1)

2

) (27)

and fluctuations satisfy the boundary conditions δxn(ti) = δxn(t f ) = 0.
The main task is to compute all solutions of Equation (24) and the corresponding

fluctuation integral around each one. In Figure 3, the opposite of the potential V(x) is
displayed, considering its general form given by Equation (19). The first observation
is that −V(x) has three maxima and two minima. The positions of the lateral maxima
roughly align with the minima of the potential U(x), with a difference of the order σ2. The
primary effect of the diffusion function is an increase in the curvature at each maximum by
a factor proportional to g2(xmax) > 1. A key feature, important for computing conditional
probabilities, is that the height differences between the peaks are of the order σ2. Therefore,
in a weak noise regime, the three maxima are quasi-degenerated.

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

-0.08

-0.06

-0.04

-0.02

0.02

0.04

-V(x)

Figure 3. The opposite of the potential V(x) given by Equation (19), for the Itô prescription (α = 0),
with σ = 0.1 and p = 0.08. The additive noise case, given by λ = 0 in the diffusion function
(Equation (12)), is depicted with dashed lines, while multiplicative noise, taking λ = 1, is illustrated
with a continuous line.

For simplicity, let us generically call x = a the position of one of the lateral maxima,
say, x ∼ −1 in Figure 3, and x = b the position of the other maximum x ∼ 1 in the same
figure. Moreover, we call x = xm the position of the central maximum (x ∼ 0 in the figure).

We are interested in computing, for example, the probability that the system remains
within one of the wells of U(x), specifically around x = a. In this case, given that xi = x f ,
∆Ueq = 0 in Equation (20), and the propagator corresponds to the probability of the system
staying in the same state. Thus, we want to compute

P(a, t/2|a,−t/2) = K(a, t/2|a,−t/2) . (28)

The first task is to compute solutions of the equation of motion, Equation (24), with the
conditions x(±t/2) = a. A trivial solution is simply xcl = a, and it is possible to compute
its contribution to the propagator. Details of the calculation can be found in ref. [3]. So,
we obtain

K(0)(a, t/2|a,−t/2) =

(
g2

aU′′
eq(a)

2πσ2

)1/2

, (29)

denoting g(a) by ga and where the superscript (0) is used to highlight the contribution of
the constant solution to the propagator.
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Moreover, for very long times, the dynamics of the system exhibit topological time-
dependent solutions with finite action that connect the maxima of the potential. These
solutions, commonly referred to as instantons and anti-instantons, play a critical role
in calculating the propagator. Over extended time intervals, nontrivial contributions
to the path integral arise from the well-separated superposition of instantons and anti-
instantons. The methodology for summing over these configurations, known as the dilute
instanton/anti-instanton gas approximation, has been extensively developed to compute
tunneling amplitudes in quantum mechanics [30–32]. In the context of stochastic processes,
this approach has been applied to systems driven by additive white noise [33], as well as
to scenarios involving colored noise [34–37]. Stochastic systems with multiplicative noise
and symmetric potentials were recently treated in ref. [3]. In this paper, we generalize the
results presented in the last reference to asymmetric potentials.

In our case, the simplest instanton/anti-instanton solution that satisfies the boundary
conditions is a trajectory that begins at x = a at the time −t/2, goes to x = xm at some
intermediate time, tm, and goes back to x = a at the time t/2. We use the schematic notation
a ⇆ xm to indicate this trajectory. By following standard, albeit laborious, procedures, we
obtain [3]

K(1)
(

a,
t
2

∣∣∣a,− t
2

)
= −g2(xm)t K(0) Γa , (30)

where K(0) represents the contribution from the constant solution, as expressed in
Equation (29), and

Γa =

(
U′′

eq(a)|U′′
eq(xm)|

)1/2

2π
exp

{
−

Ueq(xm)− Ueq(a)
σ2

}
. (31)

As can be observed in Equation (30), at long times, the contribution to the propagator
of a simple instanton/anti-instanton configuration is a linear function of time. Furthermore,
the structure of the coefficient Γa is revealing. This is the unique term in the theory
containing the equilibrium potential, Ueq, which, at the same time, completely encloses the
information relative to the stochastic calculus. Additionally, Γa depends on the curvature
at the maximum and the minimum of the equilibrium potential, U′′

eq(xm) and U′′
eq(a),

respectively, and on the barrier height, Ueq(xm)− Ueq(a), without any dependence on the
explicit details of Ueq(x).

The propagator also receives important contributions from other solutions of
Equation (24). There are trajectories that contain two instantons and two anti-instantons,
which we schematically depict as a ⇆ b. This is the case, for example, of trajectories
beginning in x = a that go to x = b, passing through x = xm, and then return to x = a. The
contribution of these trajectories to the propagator can be computed by following the same
technique as for the previous calculation of a ⇆ xm trajectories [3]. Performing so, in this
case, we find

K(2)
(

a,
t
2

∣∣∣a,− t
2

)
=

(g2(xm)t)2

2!
K(0) ΓaΓb , (32)

where Γb has the same structure of Γa given by Equation (31), just by changing a → b
in all places. As can be seen, trajectories of this kind (a ⇆ b) produce a quadratic time
contribution to the propagator, with a coefficient proportional to ΓaΓb.

Combinations of these types of configurations are, in the long-time approximation,
also quasi-solutions of Equation (24) and should be considered in the summation of the
propagator of Equation (23). Typical trajectories would be

a
p times
⇆ xm

q times
⇆ b (33)
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where p, q are integer numbers. The final infinite summation is a combinatory problem that
can be exactly summed [3,33], obtaining

P(a, t/2|a,−t/2) =
K(0)

Γa + Γb

{
Γb + Γae−rt} (34)

where the decay rate is given by r = g(xm)2(Γa + Γb)/2. Explicitly, we find, for the
decay rate,

r =
g(xm)2

2

(√
ω̃a|ω̃m|
2π

e−
∆Ua

eq
σ2 +

√
ω̃b|ω̃m|
2π

e−
∆Ub

eq
σ2

)
(35)

where ω̃a = U′′
eq(a), ω̃b = U′′

eq(b) and ω̃m = U′′
eq(xm) are the local curvatures at the minima

and the maximum of the equilibrium potential. Moreover,

∆Ua
eq = Ueq(xm)− Ueq(xa) (36)

∆Ub
eq = Ueq(xm)− Ueq(xb) (37)

are the barrier height, measured from each of the asymmetric minima.
Equation (35) is the main contribution of this paper. It presents an analytic expression

for the Kramers decay rate in the case of state-dependent diffusion for asymmetric poten-
tials. The main approximations involved in our calculation are the assumption of a weak
noise, σ2 ≪ ∆Ua

eq ∼ ∆Ub
eq, and the expansion for long times, rt ≫ 1.

At this point, it is useful to verify the dimensional consistency of Equation (35). Starting
from the overdamped Langevin equation, Equation (3), and using the Einstein relation,
Equation (5), we deduce that [g] = L/([σ]

√
[t]) and [U] = [σ2], where [·] denotes the

dimensional units of a quantity and L represents a characteristic unit of length. From these
considerations, it follows straightforwardly that [r] = 1/[t], as expected. Interestingly,
given a characteristic length scale, [x] = L, and the energy scale [σ2], the characteristic time
scale is determined by the value of the diffusion function g2. These are the only parameters
that appear in the Langevin equation, Equation (3).

Equation (35) is a nontrivial generalization of previous results. For instance, for p = 0
in the original potential, Ueq(x) = Ueq(−x) and, in this case, a = −b. In these conditions,
Equation (35) reduces to the expression computed in ref. [3]. On the other hand, for λ = 0
or g(x) = 1, the stochastic dynamics are additive and our results converge to that of
reference [33].

5. Numerical Simulations
For the purpose of validating the expression for the Kramers escape rate given by

Equation (35), we performed extensive numerical simulations for the stochastic process
governed by the Langevin Equation (6) by using the Euler–Maruyama scheme. This
algorithm was based on an Itô interpretation of the stochastic differential equation (SDE).
Therefore, given that the Langevin equation was initially considered in the general α-
prescription, it had to be transformed to an Itô-defined Langevin equation by the means
of Equation (10), taking β = 0. Consequently, any α-defined SDE, for 0 ≤ α ≤ 1, could be
represented through the following Itô differential equation:

dx
dt

=− 1
2

g2(x)
dU(x)

dx
+ σ2αg(x)g′(x) + g(x)η(t). (38)
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For the model described by Equations (11) and (12), the Itô stochastic differential equation
can be explicitly written as

dx =

(
1 + λx2)

2

{(
1 + λx2

)[
x
(

1 − x2
)
− p

]
+ 4λσ2αx

}
dt +

(
1 + λx2

)
dW , (39)

where W(t) is a standard Wiener process with ⟨W(t)⟩ = 0 and ⟨W(t)W(t′)⟩ = σ2min(t, t′).
The white noise η(t) is formally defined as the time derivative of the Wiener process. This
relation is understood in the context of distributions, where η(t) represents a generalized
derivative [4].

In Figure 4, a typical path from Equation (39) is depicted for a particular noise realiza-
tion and by making p = 0.08 in the expression of the potential function U(x), Equation (11).
With the initial condition x(0) = 1 fixed, the dynamics of the stochastic variable x(t)
become evident, as they fluctuate around the potential minima xmin ∼ ±1, transitioning
between them at seemingly irregular intervals. In this case, the global minimum of the
potential is the negative one, xmin ∼ −1, and its barrier is higher, further increasing the
likelihood that the system remains around this minimum for longer periods.

Figure 4. x(t), obtained by numerically integrating Equation (39) for a specific noise realization, with
the parameters p = 0.08; λ = 0.5; α = 1; and σ2 = 0.085. The time interval 0 < t < 2000 was divided
into 7 × 104 steps.

To ensure reliable statistical results, the mean value ⟨x(t)⟩ was computed over a
significant number of distinct noise realizations. Figure 5 displays the results obtained
by averaging over 8 × 104 noise configurations for various stochastic prescriptions. As
expected, ⟨x(t)⟩ converges exponentially toward the equilibrium value

xeq ≡ ⟨x⟩eq =
∫ +∞

−∞
dx x Peq(x) (40)

with the equilibrium probability distribution Peq(x) represented by Equation (7).
Figure 5 also reveals that the typical decay rate varied across different stochastic

prescriptions, with rI > rS > rK, where rI , rS, and rK represent the decay rates for the Itô,
Stratonovich, and Kinetic prescriptions, respectively. This is aligned with the observation
in Figure 2a, which shows that the height of the equilibrium potential barrier increases as α

grows. This behavior is independent of the initial condition used in the SDE integration.
As shown in Figure 6, simulations starting near both the metastable and global minima
illustrate this point. It is possible to observe that the reached equilibrium state as well as
the decay rates do not depend on initial conditions. It can also be distinguished that the
equilibrium state for the Itô prescription has the smallest absolute value, while it is the
largest for the anti-Itô convention. This is further represented in Figures 1a and 2a; the
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Itô-defined SDE always exhibits the lowest potential barrier, facilitating transitions between
minima in this prescription.

Figure 5. ⟨x(t)⟩ computed from Equation (39), obtained by averaging over 8 × 104 noise configu-
rations. The initial condition x(0) = 1 and parameter values λ = 0.5 and σ2 = 0.085 were fixed.
The curves represent different stochastic prescriptions: α = 0; α = 1/2; and α = 1. Solid lines
represent the numerical simulations while the dashed, dotted, and dash–dotted lines correspond to
the theoretical expression given by Equation (41), in the Itô, Stratonovich, and Kinetic prescriptions,
respectively. The only fitting parameter was the amplitude A ∼ 1.

Figure 6. ⟨x(t)⟩ computed from Equation (39), obtained by averaging over 8 × 104 noise configu-
rations for two different initial conditions, x(0) = 1 and x(0) = −1. Numerical simulations were
performed for different stochastic prescriptions: α = 0; α = 1/2; and α = 1. The parameter values
λ = 0.5 and σ2 = 0.085 were fixed. The values of r and xeq were independent of the initial conditions.

By means of the asymptotic conditional probability distribution derived in Section 4,
Equation (34), it was possible to obtain an analytical expression for ⟨x(t)⟩ in the long-time
limit. It can be shown that, for t ≫ r−1,

⟨x(t)⟩ = A e−rt + xeq, (41)

where r is given by Equation (35) and A is a constant used as a fitting parameter. Equa-
tion (41) was used to fit the numerical simulations curves and is graphically represented in
Figure 5, demonstrating excellent agreement between the theoretical result and simulations
across all three stochastic prescriptions.

As an additional validation of the results, we plotted the logarithm of fluctuations
around the equilibrium state,

ln[δx(t)] = −rt + ln A , (42)
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where ln[δx(t)] = ln
[
⟨x(t)⟩ − xeq

]
, and a linear least-square fitting of ln[δx(t)] was made.

We used an arbitrary scale to split up ln[δx/A], since it does not affect the value of rt.
Notice that the decay rate is given by the slope of the linear function and does not depend
on any fitting parameter. This number, measured from the data, must be compared with
the analytic expression of the decay rate given by Equation (35). Using this approach, we
explored a broad range of the parameter space {α, σ2}.

In Figure 7, the decay rate r, represented as a function of the noise intensity σ2, is
displayed for the three stochastic prescriptions under consideration. The continuous,
dashed, and dash–dotted curves were derived from Equation (35), corresponding to the
Itô, Stratonovich, and kinetic (or anti-Itô) interpretations, respectively. Numerical results,
obtained via the least-squares fitting of ln[δx(t)], are represented by diamond markers.
Each diamond reflects computations based on at least 8 × 104 numerical simulations for
each pair of values of α and σ2, with λ = 0.5 and p = 0.08. A remarkable agreement can
be perceived across nearly the entire range of noise intensity. A slight deviation occurs for
higher noise values, where ∆Ueq/σ2 ∼ 1, as expected, since the Arrhenius approximation
becomes less reliable in this regime. The first noticeable deviations in the results correspond
to the Itô interpretation, as further highlighted in Figure 8.

The decay rate r as a function of the stochastic prescription α, with 0 ≤ α ≤ 1, is
shown in Figure 9, for a noise range from σ2 = 0.055 to σ2 = 0.085. Once again, an
excellent agreement between the theoretical predictions derived from Equation (35) and the
results obtained through numerical simulations of the Langevin equation is observed. It is
important to highlight that this analytic expression was obtained in the limit σ2 ≪ ∆Ueq =

Ueq(xmax)− Ueq(xmin). Therefore, the most precise and accurate values of r(σ2), given by
Equation (35) are expected for σ2/∆Ueq ≪ 1.

For the sake of comparison between the different stochastic prescriptions, in Figure 8,
σ2/∆Ueq is displayed as a function of the noise σ2 for the Itô (dash–dotted line),
Stratonovich (dotted line), and kinetic (dashed line) conventions. The figure shows that
in the kinetic prescription, this quantity is always less than unity within the studied noise
range. This indicates that the noise intensity is consistently much lower than the potential
barrier, resulting in an excellent agreement, as observed in Figures 7 and 9. On the other
hand, for the Stratonovich and Itô prescriptions, we observe a critical value of σ2 in which
σ2/∆Ueq ∼ 1. For noise intensity above this critical value, a good agreement between
analytical and simulation results is no longer expected.

Figure 7. The decay rate r computed through Equation (35), represented as a function of the noise
intensity σ2. The solid line represents the decay rate for the Itô prescription, while the dashed
and dash–dotted curves correspond to the Stratonovich and kinetic (or anti-Itô) interpretations,
respectively. The points (diamonds) were obtained via the least-squares fitting of ln

[
⟨x(t)⟩ − xeq

]
based on numerical simulations for each case. For all cases, the parameters were fixed at λ = 0.5 and
p = 0.08.
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Figure 8. σ2/∆Ueq as a function of the noise σ2. The dashed line represents the kinetic prescription
α = 1, the dotted line corresponds to the Stratonovich prescription, α = 1/2, while the Itô prescription,
α = 0, is represented by the dash–dotted line. The parameters λ = 0.5 and p = 0.08 were fixed for all
the curves.

Most of the results exhibited in Figures 7 and 9 correspond to values of σ2 within
the interval [0.055, 0.085]. The results are highly accurate within this range; however, as
pointed before, for the Itô prescription, the value of r at σ2 = 0.085 slightly deviates
from the numerical data. At this noise intensity, σ2/∆Ueq ∼ 1.2. The deviation becomes
more pronounced in Figure 7 for the Itô prescription at σ2 = 0.095, as confirmed by the
corresponding curve in Figure 8. This general behavior is expected because, as noted in
Section 2, the barrier height decreases as α → 0 and for increasing values of noise. Indeed,
there is a critical noise level at which the barrier completely disappears and the system
dramatically changes its dynamics.

Figure 9. The decay rate r computed through Equation (35) for different values of σ2, represented as
a function of the stochastic prescription α. The solid line corresponds to σ2 = 0.085 and the dashed
one corresponds to σ2 = 0.075, while the dash–dotted and dotted lines correspond to σ2 = 0.065
and σ2 = 0.055, respectively. The points (diamonds) were obtained via the least-squares fitting of
ln
[
⟨x(t)⟩ − xeq

]
based on numerical simulations for each case. The parameters λ = 0.5 and p = 0.08

were fixed for all the curves.

6. Discussion and Conclusions
In this paper, we explored the dynamics of bistable systems influenced by multiplica-

tive noise, presenting both analytical and numerical approaches to understand escape
rates within asymmetric potentials. Our work generalized Kramers’s formula to systems
with state-dependent diffusion, highlighting the impact of the stochastic prescription and
asymmetry of the potential on equilibrium properties and transition rates. Among other
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applications, it serves as a starting point for studying stochastic resonance in systems
governed by stochastic differential equations with multiplicative noise.

The main result of this paper is presented by Equation (35). The derived analytic
expression for decay rates, validated through extensive numerical simulations, provides a
robust framework for analyzing stochastic systems with multiplicative noise. Interestingly,
the weak noise approximation was demonstrated to be effective, as evidenced by the
excellent agreement between theoretical predictions and simulation data across various
noise intensities and stochastic prescriptions.

In Figure 7, it can be clearly observed that the decay rate computed using the Itô
prescription is greater than that computed with the Stratonovich interpretation, which
in turn is greater than the rate computed with the Hänggi–Klimontovich prescription.
Furthermore, in Figure 9, we demonstrate that the decay rate as a function of the pre-
scription, r(α), is a monotonically decreasing function. This behavior is due to two main
reasons. First, the decay rate is primarily related to the first moment of the probability
distribution, as rt ∼ ln(⟨x(t)⟩) in the long-time limit where rt ≫ 1. It has been analytically
shown [18,19], at least for short times, that in systems with state-dependent diffusion the
stochastic prescription significantly influences the mean value ⟨x(t)⟩ while leaving the
mean square displacement (MSD) ⟨x2(t)⟩ relatively unchanged. This agrees with numerical
simulations, which show that the scaling properties of the MSD are independent of the
stochastic prescription. Indeed, the prescription only affects the prefactor of the MSD, with
a rather weak dependence [15]. Second, the most significant effect of the prescription lies
in its modification of the equilibrium potential Ueq(x), as described by Equation (8). In
Figures 1a and 2a, we illustrate how heterogeneous diffusion alters the potential. It is
evident that for the same noise level, the parameter α changes the height of the potential
barrier. Specifically, in the Hänggi–Klimontovich prescription (α = 1), the barrier is the
highest. Thus, the particle remains more time in the well, resulting in the smallest decay
rate. Conversely, in the Itô prescription, the barrier is the lowest, leading to the greater
decay rate since the particle can escape from the well more easily. This effect can be so
pronounced that it modifies the entire structure of the potential for sufficiently large noise
levels, as shown in Figures 1b and 2b.

Equation (35) for the decay rate underscores the critical role of the equilibrium poten-
tial Ueq(x), which completely codifies the dependence of the dynamics on the stochastic
discretization prescriptions. Our findings reveal that the choice of stochastic prescriptions
directly influences decay rates, reflecting the underlying physics encoded in the critical
points of the equilibrium potential and its local curvatures. Furthermore, the generalization
to asymmetric potentials enriches the applicability of Kramers’s framework, accommodat-
ing a broader class of real-world systems.

Future investigations could extend this work by exploring higher-order corrections
to the weak noise approximation and considering multidimensional landscapes. Such
endeavors would further deepen our understanding of noise-induced transitions in
complex systems.
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