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Abstract: We develop a novel framework for fiducial inference in linear mixed-effects
(LME) models, with the standard deviation of random effects reformulated as coefficients.
The exact fiducial density is derived as the equilibrium measure of a reversible Markov
chain over the parameter space. The density is equivalent in form to a Bayesian LME with
noninformative prior, while the underlying fiducial structure adds new benefits to unify the
inference of random effects and all other parameters in a neat and simultaneous way. Our
fiducial LME needs no additional tests or statistics for zero variance and is more suitable
for small sample sizes. In simulation and empirical analysis, our confidence intervals (CIs)
are comparable to those based on Bayesian and likelihood profiling methods. And our
inference for the variance of random effects has competitive power with the likelihood
ratio test.

Keywords: confidence interval; fiducial inference; LME; MCMC; zero-variance inference
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1. Introduction
The linear mixed-effects (LME) model is very popular in many fields like physics,

biology and social sciences [1], where both within-subject and between-subject variations
are studied. There have been a wealth of LME-based methodologies developed in the
past decades, such as model selection [2], model averaging [3], semiparametric [4] and
nonparametric [5] estimations, etc. Large-sample asymptotics of likelihood-based LME
models are well studied [6]. Bayesian LME models also perform well under medium-to-
large samples. For small samples, the inference based on the maximum likelihood needs
finite-sample corrections or approximations [7], and Bayesian models rely much more on
the prior.

The analysis of variance (ANOVA) and t-test summaries are two common ways
of statistical inference in LME models. For fixed effects, F statistics in ANOVA and t
statistics are available in most software. However, testing zero-variance components in
random effects is challenging for small samples and has not been well resolved in the
statistical literature. When some of the within-subject variances are zero or close-to-zero,
Bayesian estimations may encounter issues [8]. And the inference of zero variance involves
additionally constructed statistics like the profiling restricted maximum likelihood (REML)
ratio test [9] or posterior evidence ratio with properly built prior [10]. Comparisons among
multiple nested models are often unskippable.

From a frequentist viewpoint, aside from asymptotic approximations, the inference can
be facilitated by nonparametric approaches [11,12], which are also known to be performant
in LME models for small sample sizes. According to a comparative study [13] on various
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bootstrap methods in LME models, a nonparametric bootstrap with resampling on subjects
is recommended [11].

Fiducial inference, initiated by Fisher [14] and revitalized in the 21st century [15], has
unique advantages in small-sample inference in parametric statistical models, despite its
limits in nonparametric statistics and computing cost [16]. Unlike Bayesian posterior built
upon prior, fiducial distribution derived from data generation equations thus relieves the
need for prior. For LME, Li et al. [17] proposed a fiducial test for within-subject variances,
but they did not consider other parameters. Hari et al. [18] studied a two-component LME
with partially known structures on covariances. Hannig et al. [19] developed a generalized
fiducial inference (GFIlmm) for interval data. Although GFIlmm can be adapted to non-
interval cases by artificially adding the intervals, the estimations vary with the interval
widths. And its numerical algorithm in practice is inefficient on models with more than
nine parameters.

In this study, we propose a new framework for non-asymptotic inference in LME
models via a fiducial approach, which reduces computational burden and does not require
duplicates within each group. Moreover, our approach naturally incorporates the zero-
variance inference, thus cutting the labor of extra tests and calculation.

The rest of this article is organized as follows: Sections 2 and 3 are about the method-
ology and algorithms. Section 4 is the simulation and section 5 is a real data illustration.
Section 6 is the conclusion and discussion of our study.

2. Fiducial Distribution in LME
We assume the data is generated as

yi = xiβ + ziγi + ei, i = 1, · · · , m, (1)

where β ∈ Rp×1 is a vector of fixed coefficients; γi ∼ Nq(0, D) is a random coefficient vector;
yi is the ni × 1 response of the ith subject; xi and zi are the ni × p and ni × q covariate matrix
of fixed and random effects, respectively; and ei ∼ N(0, σ2 Ini ) is independent of γi, ni ≥ 1,
i = 1, . . . , m, ∑m

i=1 ni = n. In this study, we assume a diagonal D = diag(σ2
1 , . . . , σ2

q ).

2.1. Conditional Fiducial Distribution

Let δ = (σ1, . . . , σq)′, Ui
i.i.d∼ N(0, Iq) and zU,i = zidiag(Ui), then model (1) can be

rewritten as
yi = xiβ + zU,iδ + ei, i = 1, · · · , m.

It can be further specified in matrix form as

Y = Xβ + ZUδ + ϵ, (2)

with Y = (y′1, · · · , y′m)′, X = (x′1, · · · , x′m)′, ZU = (z′U,1, · · · , z′U,m)
′, U = (U′

1, · · · , U′
m)

′

and ϵ = (e′1, . . . , e′m)′. The σj in random effects are formulated as a coefficient vector δ in
Equation (2). This brings two benefits: 1. The inference of random effects can be realized
by a general fiducial recipe [16] like all other parameters, avoiding extra tests and statistics
like the LR tests. 2. We do not need ni ≥ q. The model can still be estimated even if ni = 1.
So, our method can handle inadequate within-subject measures.

Let θ = (β′, δ′)′, XU = (X, ZU)n×(p+q) and PU = XU(X′
UXU)

−1X′
U , then model (2)

given U = u can be reformed as

Y = Xβ + Zuδ + ϵ = Xuθ + ϵ,
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For observed Y = y, the conditional fiducial density of θ and σ2 given u, denoted as
ry(θ|σ2, u) and ry(σ2|u), respectively, could be derived from the conditional fiducial
quantities [17] below:

Qy(σ
2|u) = y′(I − Pu)y/ξ, (3)

Qy(θ|u) = (X′
uXu)

−1X′
uy + Q

1
2
y (σ

2|u)(X′
uXu)

− 1
2 ζ, (4)

where ξ ∼ χ2
n−p−q, ζ ∼ N(0, Ip+q) independently, irrespective of any parameters in an

LME model. Let η = (θ′, σ2)′, then the conditional fiducial density of η given u is

ry(η|u) = ry(σ
2|u)ry(θ|σ2, u)

=
exp

(
− y′(I−Pu)y

2σ2

)
( y′(I−Pu)y

2σ2 )
n−p−q

2 −1

σ4Γ( n−p−q
2 )

exp
(
− 1

2σ2 (θ − (X′
uXu)−1X′

uy)′(X′
uXu)(θ − (X′

uXu)−1X′
uy)

)
(2π)

p+q
2 σp+q|X′

uXu|−
1
2

=
(y′(I − Pu)y)

n−p−q
2 −1

σn−p−q+2Γ( n−p−q
2 )2

n−p−q
2 −1

exp(− ∥y−Xuθ∥2

2σ2 )

(2π)
p+q

2 σp+q|X′
uXu|−

1
2

=
2|X′

uXu|
1
2 (y′(I − Pu)y)

n−p−q
2 −1

Γ( n−p−q
2 )π

p+q−n
2

exp(− ∥y−Xuθ∥2

2σ2 )

(2π)
n
2 σn+2

△
= C(Xu, y)

p(y|u, η)

σ2 .

(5)

Here, C(Xu, y) = 2|X′
uXu |

1
2 (y′(I−Pu)y)

n−p−q
2 −1

Γ( n−p−q
2 )π(p+q−n)/2 and p(y|u, η) is the likelihood function of (2)

given U = u.
U is invisible in reality. But, it is easy to see that Ui|η, y ∼ Nq(E(Ui|η, y), Var(Ui|η, y))

with
E(Ui|η, y) = D

1
2 z′i(σ

2 Ini + ziDz′i)
−1(yi − x′iβ),

Var(Ui|η, y) = Iq − D
1
2 z′i(σ

2 Ini + ziDz′i)
−1ziD

1
2 ,

(6)

i = 1, . . . , m. We denote the conditional density of U as p(u|η, y) hereinafter.

2.2. Gibbs Sampler and the Final Fiducial Distribution

With both ry(η|u) and p(u|η, y) available, the fiducial distribution could be realized

by a Gibbs sampler. Let K(η, η̃)
△
=

∫
ry(η|u)p(u|η̃, y)du. By Equations (5) and (6), we have

K(η, η̃) =
∫

C(Xu, y)
p(y|u, η)

σ2 p(u|y, η̃)du

=
∫

C(Xu, y)
p(y, u|η)
σ2 p(u)

p(u|y, η̃)du

=
p(y|η)

σ2

∫ C(Xu, y)
p(u)

p(u|y, η)p(u|y, η̃)du

△
=

p(y|η)
σ2 h(η, η̃),

(7)

where h(η, η̃) =
∫ C(Xu ,y)

p(u) p(u|y, η)p(u|y, η̃)du and p(y|η) is the likelihood function with U

integrated out. Obviously, h(·, ·) is symmetric and p(y|η)
σ2 satisfies the detailed balance below:

p(y|η̃)
σ̃2 K(η, η̃) =

p(y|η̃)
σ̃2

p(y|η)
σ2 h(η, η̃) =

p(y|η)
σ2

p(y|η̃)
σ̃2 h(η̃, η) =

p(y|η)
σ2 K(η̃, η). (8)
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The final fiducial density, as the stationary distribution of η, can be derived by the
reversibility [20] of the Markov chain on η:

ry(η) ∝
p(y|η)

σ2 , (9)

which is equivalent to a Bayesian LME with uniform prior on β and δ and prior 1
σ on σ.

In practice, once a u sampled by Equation (6) makes Xu(X′
uXu)−1X′

uy close to y, the
Qy(σ2|u) in Equation (3) also becomes close to 0, making Qy(θ|u) in Equation (4) nearly
constant and the Monte Carlo Markov Chain (MCMC) degenerated. So, we restrict σ’s
parameter space away from zero by a small c0 > 0 so that σ2 ∈ [c0,+∞) and use the
constrained fiducial quantity by a trimmed χ2

n−p−q as follows:

Q∗
y(σ

2|u) = y′(I − Xu(X′
uXu)−1X′

u)y

F−1
χ2

n−p−q
(Fχ2

n−p−q
( y′(I−Xu(X′

uXu)−1X′
u)y

c0
)U (0, 1))

, (10)

where F(·) is the cumulative distribution function, F−1(·) is its inverse, and U (0, 1) is a
uniform random variable on (0, 1). In this paper, we set c0 = 0.01. The Gibbs sampling
algorithm is given in Algorithm 1.

Algorithm 1: Gibbs sampling for ry(η)

1. Initialize U(0) by U(0)
i

i.i.d∼ N(0, Iq), i = 1, · · · , m.
2. Given current U(l), sample β(l), δ(l)from Equation (4) and σ(l) from Equation (10),

respectively.
3. Update U(l+1) by Equation (6).
4. For l = 0, 1, 2, · · · iterate between step 2 to 3 until the MCMC chain gets well mixed.

Remark 1. We can also start with Equation (9) by setting corresponding prior in ready-made
Bayesian packages that employ algorithms with better quality like HMC or NUTS [21]. However,
HMC is time consuming and loses the advantages of direct inference for σj = 0. The histogram of a
Gibbs sample on δ can directly reflect how much the distribution is concentrated around zero. So,
we mainly use Gibbs in this study and leave HMC for future research.

Remark 2. When D is non-diagonal, Ui
i.i.d∼ N(0, Iq) becomes Ui

i.i.d∼ Nq(0, R), where R is the
correlation matrix. And p(u|η, y) becomes p(u|η, R, y). Given U = u, the fiducial density of
R, say ru(R), is also available [22]. The Gibbs sampler turns into iterations among three parts:
ry(η|u), p(u|η, R, y) and ru(R). The fiducial density here is no longer equivalent to Equation (9)
and cannot be readily implemented by Bayesian packages. We also leave this for future research.

3. Fiducial Inference for LME
Given the observed y, the fiducial distribution of a parameter of interest g = g(η) can

be given as

Fy(g) =
∫
{g(η)≤g}

ry(η)dη.

3.1. Interval Estimation

A 1 − α fiducial interval for parameter g(η) is formed by the α
2 and 1 − α

2 quantiles of
Fy(g), denoted as g α

2
and g1− α

2
, respectively, which are the solutions of

Fy(g α
2
) =

α

2
, Fy(g1− α

2
) = 1 − α

2
.
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Then, the 1 − α equal-tailed fiducial interval is [g α
2
, g1− α

2
].

Once we find a numerical sample of η as Section 2.2 described, the 1 − α fiducial
interval of g = g(η) can be obtained from the empirical distribution of Fy(g), which is
given in Algorithm 2.

Algorithm 2: Interval estimation for g(η)

1. Generate η1, . . . , ηN according to Algorithm 1.
2. Compute gi = g(ηi), i = 1, · · · , N, and sort gi in ascending order to get (g(1), . . . , g(N)).
3. Find the α

2 sample quantile g([N· α
2 ])

and 1 − α
2 sample quantile g([N·(1− α

2 )])
. Then

[g([N· α
2 ])

, g([N·(1− α
2 )])

] is the 1 − α fiducial interval estimation.

Noting that σj is conventionally nonnegative, we use its zero-truncated distribution
to construct the CI such that the left end is max{0, σ(N α

2 ),j
}. According to remark 2.1

and theorem 2.2 in [17], a truncated fiducial quantity uniquely solved from the fiducial
structural equations has the same theoretical property as the untruncated one for inference
in a restricted parameter space.

3.2. Fiducial p-Value

For a hypothesis test H0:g(η) = g0 with a two-sided alternative, the fiducial p-value is

p = 2min{Fy(g0), 1 − Fy(g0)}.

Given a significance level α, H0 is rejected when p < α. The computing procedure is given
in Algorithm 3.

Algorithm 3: Fiducial p-value for H0:g(η) = g0

1. Generate η1, . . . , ηN according to Algorithm 1.
2. Compute gi = g(ηi), i = 1, · · · , N .

3. Calculate p = 2 min
{

∑N
i=1 1[gi>g0 ]

N ,
∑N

i=1 1[gi≤g0 ]
N

}
.

4. Reject H0 if p < α.

Remark 3. Algorithms 2 and 3 are routine constructions of the CI and p value in unimodal
distributions. All the histograms of δ that we have plotted so far are unimodal in a Gibbs sampler,
probably because the sign of δ and that of U are interdependent in model (2) while Gibbs updates
δ largely based on U. But, this does not mean the bimodal shape will not occur for δ in other
algorithms bypassing the sampling of r(θ|u, y) since δ in Equation (9) is symmetric at about 0. For
a bimodal distribution, routine p value and CI are not applicable but a histogram or density curve
can directly tell.

4. Simulation
4.1. Confidence Intervals

We compare the coverages and lengths of CIs constructed by our method (Fiducial),
the profiling method (Profiling) in R package lme4 [9], the Bayesian LME (Bayeisan) with
default prior in R package brms (version 2.22.0) [10], and the nonparametric bootstrap (Boot-
strap) in [13]. We generate a chain over 6000 in length, with the first 300 as a warmup, and
select every 3 steps to gather a sample size N = 2000 for the Gibbs sampler in Algorithm 1.
We also try the HMC in Remark 1 by setting a uniform prior for β and σj, and 1

σ is ap-
proximated by an inverse gamma prior IG(0.001, 0.001) in brms (The density of IG(a, b)
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is bae−b/σ

Γ(a)σa+1 , σ > 0. 1
σ = lim

b→0
lim
a→0

bae−b/σ

Γ(a)σa+1 thus can be approximated by IG(a,b) with a and b

close to 0.) Bootstrap CIs are constructed by percentiles of 2000 replicates resampled among
subjects, and each replicate is estimated by REML (lmer in package lme4). All MCMCs
are set as a single chain with a sample size of 2000. Coverages (nominal level 95%) are
annotated in figures and tables, averaged over 1000 runs.

Example 1. yij = β0 + zijγi1 + eij with zij ∼ N(0, 1), γi1 ∼ N(0, σ2
1 ), eij ∼ N(0, σ2),

1 ≤ j ≤ 2, 1 ≤ i ≤ 10, β0 = 0.8, σ1 = 0.75, σ = 0.7. In general, the Profiling CIs are
narrower but susceptible to low coverages (Figure 1). Fiducial CIs are comparable to the Bayesian
except those on σ1 are often wider. This can be improved by HMC yet it is much slower. We use
Gibbs for our method afterward. Bayesian LME is time-consuming yet performs well, partly due
to its advantages in small samples and partly due to the suitability of the default prior for this
parameter setting. Bootstrap has the lowest coverages; perhaps the sample size here is too small for it
to take effect. The relative CPU time for model fit plus CI construction in fiducial (Gibbs), profiling,
Bayesian, and bootstrap is about 2:1:30:40. Given the underperformance of bootstrap in coverage
and computation efficiency, we do not discuss it in later examples. The variations in CI length are
similar across different methods. So, we summarize the median length in the table hereinafter.

Example 2. yij = β0 + γi0 + zijγi1 + eij with γi0 ∼ N(0, σ2
0 ), σ0 = 0, and the others the same

as example 1. That is, we add a false random effect γi0 ≡ 0. Bayesian LME is unable to directly
detect zero variance (coverage = 0 for σ0, Table 1). Profiling CIs can have zero end points to keep
reasonable coverages, but other parameters are affected, especially σ. Also, 5% ∼ 10% of lmer’s
output contains NA or ∞ when ni = q = 2. This is not a big issue when ni = 4 > q, but σ’s
coverage is still lower. In contrast, fiducial CIs capture both zero and nonzero variances in random
effects and have stable coverages (Table 1).

Fid-Gibbs: 95%       Fid-HMC: 97%       Profiling: 94%          Bayesian:97% Bootstrap: 91%  

Fid-Gibbs: 96%       Fid-HMC: 98%       Profiling: 91%          Bayesian:98% Bootstrap: 89%  

Fid-Gibbs: 96%       Fid-HMC: 94%       Profiling: 93%          Bayesian:94% Bootstrap: 92%  

Fixed effect

Random effect

Sigma

Figure 1. Confidence intervals in example 1.
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Table 1. Coverage (length) of CIs in example 2.

ni = 2, m = 10 β0 = 0.8 σ0 = 0 σ1 = 0.75 σ = 0.7

Fiducial 0.99 (0.99) 0.95 (1.01) 0.97 (1.63) 0.95 (0.71)
Profiling 0.93 (0.80) 0.97 (0.70) 0.89 (1.38) 0.87 (0.64)
Bayesian 0.97 (1.03) 0.00 (0.98) 0.97 (1.49) 0.96 (0.77)

ni = 4, m = 5 β0 = 0.8 σ0 = 0 σ1 = 0.75 σ = 0.7

Fiducial 1.00 (1.30) 0.98 (1.50) 0.96 (2.21) 0.95 (0.60)
Profiling 0.95 (0.86) 0.99 (0.65) 0.93 (1.78) 0.92 (0.54)
Bayesian 1.00 (1.15) 0.00 (1.38) 0.97 (1.99) 0.95 (0.67)

Example 3. yi = β0 + γi0 + i · β1 + i · γi1 + ei with γi0, γi1, ei all from N(0, 1), i = 1, ..., 10,
i.e., a longitudinal setting with ni = 1, q = 2 so ni < q. lmer does not work in this scenario, which
makes profiling and bootstrap inapplicable. Bayesian CIs, overall, are wider with lower coverages
than fiducial CIs (Table 2).

Table 2. Coverage (length) of CIs in example 3.

ni = 1,
m = 10 β0 = 10 β1 = 0 σ0 = 1 σ1 = 1 σ = 1

Fiducial 0.99 (16.31) 0.98 (3.36) 1.00 (9.89) 0.98 (2.06) 1.00 (6.26)
Profiling NA NA NA NA NA
Baysian 0.97 (20.87) 0.94 (4.36) 0.97 (9.01) 0.96 (2.79) 0.77 (8.58)

4.2. Zero-Variance Test for Random Effects

We plot the histograms of fiducial samples on zero and nonzero δ. They are indeed
different (Figure 2). Negative δ generated by Equation (4) helps in measuring the signifi-
cance of the random effect. We further compare p value distributions under null (=0) and
alternative ( ̸=0) hypotheses by treating example 2 as yij = β0 + γi0 + zijβ1 + zijγi1 + eij

with β1 = 0 and others unchanged. Frequentist p values are calculated by the package
lmerTest [23] with fixed effects based on Satterthwaite-approximated t tests and random
effects based on likelihood ratio (LR) tests. Fiducial p values are calculated simultaneously
as described in Section 3. The type I error and power at a 5% significance level are an-
notated in Figure 3. The Satterthwaite p value has a higher type I error than the fiducial
test (Figure 3). The type I errors of the fiducial and LR tests do not differ much, but the
power of the fiducial test is higher. Moreover, the LR p value has a weird peak near 1 under
alternative hypothesis (Figure 3), which is an obvious drawback in small data analysis.
From this perspective, we think our fiducial approach can contribute to the inference in
LME for small samples.

zero variance

delta

D
en
si
ty

-2 -1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

nonzero variance

delta

D
en
si
ty

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 2. Fiducial density for δ = 0 and δ = 1.
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Figure 3. p value comparison for fixed and random effects, n = 20.

4.3. Comparison with GFIlmm

For the GFIlmm in [19] (simplified as GFI hereinafter), we set a simpler scenario that
their R package gfilmm (version 2.0.5) can run for comparsion: yij = β0 + γi + β1xij + ei.
Here, β0 = 0.8, β1 = 0.5, γi ∼ N(0, δ2), xij ∼ N(0, 1) and ei ∼ N(0, 1), j = 1, 2; i = 1, . . . , 10.
Intervals are added as yij − 0.01 < yij < yij + 0.01. Performances on both zero and nonzero
δ are compared (Table 3). The CIs in the nonzero case are comparable, and GFI is better in
the zero case. We also plot histograms of the two fiducial p values. At a 5% significance
level, our method has lower type I error and higher power than GFI (Figure 4).

Table 3. Coverages (length) of CIs in comparison with GFI.

Parameter β0 = 0.8 β1 = 0.5 δ = 0.75 σ = 1

Fiducial 0.97 (1.56) 0.94 (0.83) 0.98 (1.55) 0.96 (0.82)
Profling 0.94 (1.43) 0.92 (0.82) 0.94 (1.25) 0.96 (0.79)

GFI 0.96 (1.60) 96 (0.93) 1.0 (1.45) 0.95 (0.93)

Parameter β0 = 0.8 β1 = 0.5 δ = 0 σ = 1

Fiducial 0.98 (1.23) 0.95 (1.00) 0.98 (1.21) 0.95 (0.78)
Profling 0.93 (0.96) 0.93 (0.75) 0.96 (0.88) 0.91 (0.66)

GFI 0.97 (1.15) 0.94 (0.82) 0.98 (1.09) 0.96 (0.77)

Figure 4. p value distributions on zero and nonzero random effects (ni = 2, m = 10).



Entropy 2025, 27, 161 9 of 11

5. Empirical Analysis
We use the sleepstudy data in R package lme4 as an illustration, which contains a

sleep-deprived group of 18 subjects for 10 days of the study in [24]. Day0 and Day1 were
adaptation and training, so altogether 18 × 8 = 144 observations. The reaction time of the
ith subject on Dayj after sleep deprivation is modeled as

reactionij = β0 + γi1 + β1Dayj + γi2Dayj + eij,

with γi1 ∼ N(0, σ2
1 ), γi2 ∼ N(0, σ2

2 ), and ei ∼ N(0, σ2). Both the fixed and random effects
are significant [9]. We resample 25% of the data for a subset with n = 9 × 4 = 36 to see
how much the inference based on a smaller sample agrees with that on the whole dataset.
We conduct resampling 50 times and plot the CI lengths of β0, β1, σ1, and σ2 in Figure 5.
Different from the simulation, the Bayesian intervals are much wider this time since the
default prior does not well suit the real data. We annotate the percentage of CIs excluding
0 in Figure 5 as an estimated power, on which the fiducial LME are generally higher. We
further try a combination of m = 18 and ni = 2, retaining n = 36, but neither lmer nor brms
can fit all the cases successfully this time. Our fiducial LME still works. The percentages of
significance are 100% on β0, 80% on β1, 21% on σ1, and 74% on σ2, respectively.
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Figure 5. CI length in resampled sleep data.

6. Conclusions
We study the fiducial inference in LME with the group-level variation innovatively

modeled as coefficients. We derive the fiducial density by the stationary theory of Markov
chains and demonstrate its advantages in small sample sizes by using simulation and real
data. Our study facilitates the inference of zero variance in random effects and reveals a
deep relationship between fiducial and Bayesian inference. On one hand, it confirms the
rationality of the commonly used noninformative prior in Bayesian LME. On the other,
the equivalence to a Bayesian LME is only for independent random effects. It is difficult
to make a direct inference of zero variance in random effects if we simply treat the final
density as a posterior distribution with a flat prior. But, from the perspective of fiducial
structural equations, it turns out to be feasible.

We compare four inferential methods on ni > q, ni = q, and ni < q respectively. Our
approach outperforms others on ni ≤ q. This is helpful in prescreening random effects
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since q can easily exceed ni when we test if all the predictors have random effects. The
minimal sample size on which our fiducial LME can work stably is much smaller than
other methods. We also tried the parametric bootstrap in lme4. But, its improvement
over nonparametric bootstrap is quite limited regarding coverage under the scenarios in
Section 4.1.

There is also much space for improvement. The Gibbs algorithm is not fine enough.
More advanced numerical algorithms can also be considered and will be studied in the
future. The theoretical property of the truncated δ in the fiducial sample and the inference
for correlated random effects (non-diagonal D) also need further investigation.
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