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Abstract:



The purpose of this work is to investigate the entropy generation in a laminar, gravity-driven conducting liquid film with fully developed velocity flowing along an incline heated plate in the presence of a transverse magnetic field. The upper surface of the liquid film is considered free and adiabatic. The effect of heat generation by viscous dissipation is included in the analysis. The influence of the applied magnetic field and the viscous dissipation on velocity, temperature and entropy generation is examined.
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Introduction


Entropy generation is closely associated with thermodynamic irreversibility, which is encountered in all heat transfer processes. Different sources are responsible for generation of entropy such as heat transfer and viscous dissipation [1982; 1996]. The analysis of entropy generation rate in a circular duct with imposed heat flux at the wall and its extension to determine the optimum Reynolds number as function of the Prandtl number and the duty parameter were presented by Bejan [1996; 1979]. Sahin [1998] introduced the second law analysis to a viscous fluid in circular duct with isothermal boundary conditions. In another paper, Sahin [1999] presented the effect of variable viscosity on entropy generation rate for heated circular duct. A comparative study of entropy generation rate inside duct of different shapes and the determination of the optimum duct shape subjected to isothermal boundary condition were done by Sahin [1998]. Narusawa [1998] gave an analytical and numerical analysis of the second law for flow and heat transfer inside a rectangular duct. In a more recent paper, Mahmud and Fraser [2003; 2002] applied the second law analysis to fundamental convective heat transfer problems and to non-Newtonian fluid flow through channel made of two parallel plates. The study of entropy generation in a falling liquid film along an inclined heated plate was carried out by Saouli and Aïboud-Saouli [2004]. As far as the effect of a magnetic field on the entropy generation is concerned, Mahmud et al. [2003] studied the case of mixed convection in a channel.



The purpose of this article is thermodynamics analysis of a fully developed liquid film flowing along an inclined heated plate in the presence of a transverse magnetic field. The effect of heat generation by viscous dissipation is included in the analysis. Expressions for dimensionless velocity and temperature, entropy generation number are obtained.




Problem formulation and analytical solution


The problem as shown in Fig. 1 concerns a fully developed Newtonian, laminar, gravity-driven liquid film of thickness [image: there is no content] flowing along an inclined heated plate in the presence of a transverse uniform magnetic field [image: there is no content]. The magnetic Reynolds number [image: there is no content] is assumed to be small, so that the induced magnetic field is neglected and the Hall effect of magnetohydrodynamics is ignored.


Figure 1. Schematic diagram of the problem.
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Neglecting the inertia terms in the momentum equation compared to the body force and the magnetic term, the momentum equation is then:


[image: there is no content]



(1)




where [image: there is no content] is the dynamic viscosity, [image: there is no content] the fluid density, [image: there is no content] the electric conductivity and [image: there is no content] the gravity acceleration.



The boundary conditions are:


[image: there is no content]



(2a)






[image: there is no content]



(2b)







The velocity profile is obtained by integrating Eq. (1) and using the boundary conditions given by Eq. (2). It may be written:


[image: there is no content]



(3)







Introducing the following dimensionless variables for the velocity and the transverse distance [image: there is no content], [image: there is no content], the dimensionless velocity becomes:


[image: there is no content]



(4)




where [image: there is no content] is the Hartman number defined as:


[image: there is no content]



(5)




and


[image: there is no content]



(6)







The liquid mass flow rate [image: there is no content] is:


[image: there is no content]



(7)




Substituting Eq. (3) into Eq. (7), the liquid mass flow rate is:


[image: there is no content]



(8)




In absence of the magnetic field, the liquid mass flow rate is [10]:


[image: there is no content]



(9)




Therefore the liquid mass flow rate may be written:


[image: there is no content]



(10)







The energy equation for the present problem is:


[image: there is no content]



(11)







The boundary conditions are:


[image: there is no content]



(12a)
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(12b)






[image: there is no content]



(12c)







Using the following dimensionless variables:


[image: there is no content]



(13)




where [image: there is no content] is a reference temperature difference defined as:


[image: there is no content]



(14)







The energy equation can be written in the following dimensionless form:


[image: there is no content]



(15)




subjected to the following boundary conditions:


[image: there is no content]



(16a)






[image: there is no content]



(16b)






[image: there is no content]



(16c)




[image: there is no content]=[image: there is no content] is the Brinkman number.



To get a solution of Eq. (15), a separation of variables solution is assumed in the following form [10]:


[image: there is no content]



(17)







The first term in the right-hand side of Eq. (17) is significant for decaying initial transition and entrance effect, the second term is significant for axial temperature rise due to accumulated wall heat flux and the third term is significant for transverse temperature variation to wall heat flux into fluid. Neglecting entrance effect and assuming that the system already passed the decaying initial transition. Then the first term at the right-hand side of Eq. (17) will disappear [8, 9]. Combination of Eq. (15) and Eq. (17) leaves two separated ordinary equations [10]. The solution of these two ordinary equations is:


[image: there is no content]



(18)




where [image: there is no content], [image: there is no content] and [image: there is no content] are constants of integration.



Using the boundary conditions (16b) and (16c), it is found that:


[image: there is no content]



(19)







In the above expression [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] can be defined by:


A1=sinh(Ha)Ha(cosh(Ha)−1),A2=cosh(Ha)cosh(Ha)−1A3=BrHa2(cosh(Ha)−1)2(2Hacosh(Ha)sinh(Ha)−12Hasinh(2Ha))−1A4=BrHa2cosh2(Ha)(cosh(Ha)−1)2



(20)







To evaluate the constant of integration [image: there is no content], the bulk mean temperature given in Eq. (21) is examined:


[image: there is no content]



(21)




where the area element [image: there is no content] and the area [image: there is no content] are:


[image: there is no content]



(22)







Using Eq. (21), the bulk mean temperature is:


[image: there is no content]



(23)







The boundary conditions defined by Eq. (16a) leads the following condition on the bulk mean temperature:


[image: there is no content]



(24)







Substituting Eq. (18) in Eq. (23) and using Eq. (24), the constant of integration is:


[image: there is no content]



(25)







According to Woods [1975], the entropy generation rate is:


[image: there is no content]



(26)







The dimensionless entropy generation number is defined by the following relationship:


[image: there is no content]



(27)




using the dimensionless velocity and temperature, Eq.(27) can be rewritten as:


[image: there is no content]



(28)






[image: there is no content]



(29)




where [image: there is no content]=[image: there is no content] and [image: there is no content]=[image: there is no content] are respectively the Peclet number and the dimensionless temperature difference. [image: there is no content] and [image: there is no content], are respectively the entropy generation numbers due to the conductive heat in the axial and the transverse directions. [image: there is no content] is the entropy generation number due to the fluid friction and [image: there is no content] is the entropy generation due to the hydromagnetic effect.




Results and discussion


The velocity profiles [image: there is no content] are represented in Fig. 2 for various values of the Hartman number [image: there is no content]. As it can be seen, the action of the applied magnetic field [image: there is no content] is to flatten the velocity profile near the free surface of the liquid film. The influence of the Hartman number on the liquid mass flow rate is illustrated in Fig. 3. As the Hartman number increases, the liquid mass fluid rate decreases. This means that the mean velocity of the liquid decreases. The application of the magnetic field induces a resistive force acting in the opposite direction of the flow, thus causing its deceleration.


Figure 2. Velocity Profiles as function of the transverse distance for different Hartman numbers.
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Figure 3. Influence of the Hartman number on the liquid mass flow rate.
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Fig. 4 presents a comparison between the temperature profiles [image: there is no content] across the liquid film without the hydomagnetic effect, with hydromagnetic effect and with hydromagnetic and viscous dissipation effects. The temperature decreases along the transverse direction. For given transverse and axial directions, the temperature increases with the application of the magnetic field and the presence of viscous dissipation because of the heat generated by the hydromagnetic and viscous dissipation effects.


Figure 4. Comparison between the temperature profiles across the liquid film without the hydomagnetic effect, with hydromagnetic effect and with hydromagnetic and viscous dissipation effects.
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For a given axial distance [image: there is no content] and Brinkman number [image: there is no content], the effect of the Hartman number [image: there is no content] on the temperature profile [image: there is no content] is illustrated in Fig. 5. An increase of the Hartman number yields higher temperature profiles because of the heat dissipation due the action of the magnetic field.


Figure 5. Temperature profiles as function of the transverse distance at different Hartman numbers.
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The action of the Brinkman number [image: there is no content] on the temperature profiles for given axial position [image: there is no content] and Hartman number [image: there is no content] is illustrated in Fig. 6. As the Brinkman number increases, the temperature increases consequently because of the heat generated by viscous dissipation.


Figure 6. Temperature profiles as function of the transverse distance at different Brinkman numbers.
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The effect of the Hartman number [image: there is no content] on the transverse distribution of the entropy generation number is plotted in Fig. 7. As the Hartman number increases the entropy generation number increases in the transverse direction and a minimum in the entropy generation number appears near the heated plate. At the upper surface where both velocity and temperature are maximum (or minimum) which cause zero velocity and temperature gradients leaving no contribution to the entropy generation number ( second and third term of Eq. (28)), the entropy generation number is most sensitive to the Hartman number which is proportional to the magnetic field. The presence of the magnetic field creates additional entropy (fourth term of Eq. (28)).


Figure 7. Entropy generation number as function of thetransverse distance at different Hartman number.
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Fig. 8 illustrates the effect of the Brinkman number [image: there is no content], for fixed Hartman number and dimensionless group, on the transverse distribution of the entropy generation number, in which there is a minimum near the heated plate. For a given transverse position, the entropy generation number is higher for higher Brinkman number. The augmentation of the Brinkman number increases the contribution of the entropy generation number due to the conductive heat in the transverse direction because of the viscous dissipation. In all cases the heated plate acts as a strong source of irreversibility.


Figure 8. Entropy generation number as function of thetransverse distance at different Brinkman numbers.
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The effect of the dimensionless group [image: there is no content], on the transverse distribution of the entropy generation number is depicted in Fig. 9. The dimensionless group determines the relative importance of viscous effect. For small dimensionless group, the entropy generation number decreases along the transverse distance. For higher dimensionless group, the entropy generation number decreases first, then increases with increasing transverse distance. For a given transverse position, the entropy generation number is higher for higher dimensionless group. This is due to the fact that for high dimensionless group, the entropy generation numbers due to the fluid friction and to the magnetic field increase (third and fourth term of Eq. (28)).


Figure 9. Entropy generation number as function of the transversedistance at different dimensionless group.
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Conclusion


This paper presents the application of the second law of thermodynamics to a gravity-driven liquid film along an inclined heated plate in the presence of a transverse magnetic field and viscous dissipation effects. The velocity and temperature profiles are obtained and used to evaluate the entropy generation number. The effects of the Hartman number, Brinkman number and the dimensionless group on velocity, temperature and entropy generation number are discussed.



From the results the following conclusions could be drawn:



Higher Hartman number causes flattened velocity profiles because the magnetic field slows down the movement of the fluid along the plate.



Temperature profiles shift to higher temperatures with increasing Hartman and Brinkman numbers because of the heat generated by magnetic and viscous dissipation.



The entropy generation number increases with Hartman number, Brinkman number and dimensionless group. As the Hartman number, Brinkman number and dimensionless group increases, the entropy generation number due respectively to the magnetic field, the conductive heat in the transverse direction and the fluid friction increases.







Nomenclature








	[image: there is no content]
	
area, (m2)





	[image: there is no content]
	
magnetic induction, (Wb.m-2)





	[image: there is no content]
	
Brinkman number, [image: there is no content]





	[image: there is no content]
	
specific heat, (J.kg-1.K-1)





	[image: there is no content]
	
Hartman number, [image: there is no content]





	[image: there is no content]
	
entropy generation number, magnetic induction





	[image: there is no content]
	
entropy generation, axial conduction





	[image: there is no content]
	
entropy generation, fluid friction





	[image: there is no content]
	
entropy generation number, total





	[image: there is no content]
	
entropy generation number, transverse conduction





	[image: there is no content]
	
Peclet number,[image: there is no content]





	[image: there is no content]
	
wall heat flux, (W.m-2)





	[image: there is no content]
	
liquid mass flow rate, (kg.m-1.s-1)





	[image: there is no content]
	
liquid mass flow rate in absence of the magnetic field, (kg.m-1.s-1)





	[image: there is no content]
	
Reynolds magnetic number, [image: there is no content]





	[image: there is no content]
	
entropy generation rate, (W.m-3.K-1)





	[image: there is no content]
	
temperature, (K)





	[image: there is no content]
	
axial velocity, (m.s-1)





	[image: there is no content]
	
dimensionless axial velocity





	[image: there is no content]
	
axial distance, (m)





	[image: there is no content]
	
dimensionless axial distance





	[image: there is no content]
	
transverse distance, (m)





	[image: there is no content]
	
dimensionless transverse distance









Greek symbols








	[image: there is no content]
	
scalar constant





	[image: there is no content]
	
thickness of the liquid film (m)





	[image: there is no content]
	
reference temperature difference, [image: there is no content]





	[image: there is no content]
	
magnetic permeability, (H.m-1)





	[image: there is no content]
	
dynamic viscosity, (kg.m-1.s-1)





	[image: there is no content]
	
thermal conductivity, (W.m-1.K-1)





	[image: there is no content]
	
dimensionless temperature, [image: there is no content]





	[image: there is no content]
	
dimensionless temperature difference, [image: there is no content]





	[image: there is no content]
	
density of the fluid, (kg.m-3)





	[image: there is no content]
	
electric conductivity, (Ω-1.m-1)









Subscripts 








	[image: there is no content]
	
bulk value





	[image: there is no content]
	
maximum value





	[image: there is no content]
	
inlet value, reference value
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