Biocatalytically Oligomerized Epicatechin with Potent and Specific Anti-proliferative Activity for Human Breast Cancer Cells
Abstract
:Introduction
Results and Discussion
Enzymatic Oligomerization
Circular Dichroism studies on oligomeric catechins
In-vitro studies on the anti-proliferative activity of oligomerized epicatechins
Conclusion
Experimental
General
Acknowledgements
References
- Mitscher, L.A.; Jung, M.; Shankel, D.; Dou, J.H.; Steele, L.; Pillai, S. Chemoprotection: A Review of the potential therapeutic antioxidant properties of green tea(Camellia Sinensis) and certain of its constituents. Med. Res. Rev. 1997, 17, 327–365. [Google Scholar] [CrossRef]
- Ahmad, N.; Mukhtar, H. Cutaneous photochemoprotection by green tea: A brief review. Skin Pharmacol. Appl. Skin Physiol. 2001, 14, 69–76. [Google Scholar] [CrossRef]
- Berger, S.J.; Gupta, S.; Belfi, C.A.; Gosky, D.M.; Mukhtar, H. Green tea constituent (-)-epigallocatechin-3-gallate inhibits topoisomerase I activity in human colon carcinoma cells. Biochem. Biophys. Res. Commun. 2001, 288, 101–105. [Google Scholar] [CrossRef]
- Ji, B.T.; Chow, W.H.; Hsing, A.W.; McLaughlin, J.K.; Dai, Q.; Gao, Y.T.; Blot, W.J.; Fraumeni, J.F., Jr . Green tea consumption and the risk of pancreatic and colorectal cancers. Int. J. Cancer 1997, 70, 255–288. [Google Scholar] [CrossRef]
- Fujiki, H.; Suganuma, M.; Okabe, S.; Sueoka, N.; Komori, A.; Sueoka, E.; Kozu, T.; Tada, Y.; Suga, K.; Imai, K.; Nakachi, Kei. Cancer inhibition by green tea. Mutat. Res. 1998, 402, 307–310. [Google Scholar] [CrossRef]
- Demeule, M.; Michaud-Levesque, J.; Annabi, B.; Gingras, D.; Boivin, D.; Jodoin, J.; Lamy, S.; Bertrand, Y.; Beliveau, R. Green Tea Catechins as Novel Antitumor and Antiangiogenic Compounds. Curr. Med. Chem.-Anti-Cancer Agents 2002, 2, 441–463. [Google Scholar] [CrossRef]
- Proniuk, S.; Liederer, M.B.; Blanchard, J. Preformulation Study of Epigallocatechin Gallate, a promising antioxidant for topical skin cancer prevention. J. Pharm. Sci. 2002, 91, 111–117. [Google Scholar] [CrossRef]
- Moyers, S.B.; Kumar, N.B. Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nutr. Rev. 2004, 62, 204–211. [Google Scholar] [CrossRef]
- Kurisawa, M.; Chung, J.E.; Kim, Y.J.; Uyama, H.; Kobayashi, S. Amplification of antioxidant activity and xanthine oxidase inhibition of catechin by enzymatic polymerization. Biomacromolecules 2003, 4, 469–472. [Google Scholar] [CrossRef]
- Kurisawa, M.; Chung, J.E.; Uyama, H.; Kobayashi, S. Laccase-catalyzed synthesis and antioxidant property of poly(catechin). Macromol. Biosci. 2003, 3, 758–762. [Google Scholar] [CrossRef]
- Hamada, S.; Kontani, M.; Hosono, H.; Ono, H.; Tanaka, T.; Ooshima, T.; Mitsunaga, T.; Abe, I. Peroxidase-catalyzed generation of catechin oligomers that inhibit glucosyltransferase from Streptococcus sobrinus. FEMS Microbiol. Lett. 1996, 143, 35–40. [Google Scholar] [CrossRef]
- Kurisawa, M.; Chung, J.E.; Uyama, H.; Kobayashi, S. Oxidative Coupling of Epigallocatechin Gallate Amplifies Antioxidant Activity and Inhibits Xanthine Oxidase Activity. Chem. Commun. 2004, 293–294. [Google Scholar]
- Kozikowski, A.P.; Tuckmantel, W.; Bottcher, G.; Romanczyk, L.J. Studies in Polyphenol Chemistry and Bioactivity: Synthesis of Trimeric, Tetrameric, Pentameric, and Higher Oligomeric Epicatechin-Derived Procyanidins Having All-4,,8-Interflavan Connectivity and Their Inhibition of Cancer Cell Growth through Cell Cycle Arrest. J. Org. Chem. 2003, 68, 1641–1658. [Google Scholar] [CrossRef]
- Bruno, F.F.; Nagarajan, R.; Stenhouse, P.; Yang, K.; Kumar, J.; Tripathy, S.K.; Samuelson, L.A. J. Macr. Sci., Part A - Pure Appl. Chem. 2001, A38, 1417–1426.
- Bruno, F.F.; Nagarajan, S.; Nagarajan, R.; Kumar, J.; Samuelson, L.A. Biocatalytic synthesis of water soluble oligo-catechins. J. Macromol. Sci. - Pure Appl. Chem. 2005, 42, 1547–1554. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kiso, M.; Goto, T. Efficiency of the extraction of catechins from green tea. Food Chem. 1999, 67, 429–433. [Google Scholar] [CrossRef]
- Goto, T.; Yoshida, Y.; Kiso, M.; Nagashima, H. Simultaneous analysis of individual catechin and caffeine in green tea. J. Chromatogr. A. 1996, 749, 295–299. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Green, R.J. Analysis of catechins from milk-tea beverages by enzyme assisted extraction followed by high performance liquid chromatography. Food Chem. 2006, 99, 484–491. [Google Scholar] [CrossRef]
- Kiatgrajai, P.; Wellons, J.D.; Gollob, L.; White, J.D. Kinetics of Epimerization of (+)-Catechin and its Rearrangement to Catechinic Acid. J. Org. Chem. 1982, 47, 2910–2912. [Google Scholar] [CrossRef]
- Bruno, F.F.; Braunhut, S.J.; Kumar, J.; Nagarajan, S.; Nagarajan, R.; Samuelson, L.A.; Gorski, K. Synthesis of oligo/poly(catechins) and methods of use. WO 2006-US15872; A2, 2006. [Google Scholar]
- Roy, A.M.; Baliga, M.S.; Katiyar, S.K. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor–negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol. Cancer Ther. 2005, 4, 81–90. [Google Scholar]
- Kim, S.; Lee, M.; Hong, J.; Li, C.; Smith, T.J.; Yang, G.; Seril, D.N.; Yang, C.S. Plasma and Tissue Levels of Tea Catechins in Rats and Mice during Chronic Consumption of Green Tea Polyphenols. Nutr. Cancer 2000, 37, 41–48. [Google Scholar] [CrossRef]
- Chisholm, K.; Bray, B.J.; Rosengren, R.J. Tamoxifen and epigallocatechin gallate are synergistically cytotoxic to MDA-MB-231 human breast cancer cells. Anticancer Drugs 2004, 15, 889–897. [Google Scholar] [CrossRef]
- Ohmori, K.; Ushimaru, N.; Suzuki, K. Oligomeric catechins: An enabling synthetic strategy by orthogonal activation and C(8) protection. Proc. Natl. Acad. Sci. 2004, 101, 12002–12007. [Google Scholar] [CrossRef]
- Jo, E-H.; Lee, S-J.; Ahn, N-S.; Park, J-S.; Hwang, J-W.; Kim, S-H.; Aruoma, O.I.; Lee, Y-S.; Kang, K-S. Eur. J. Cancer Prev. 2007, 16, 342–347.
- Sahoo, S.K.; Liu, W.; Samuelson, L.A.; Kumar, J.; Cholli, A.L. Biocatalytic Polymerization of p-Cresol: An in-Situ NMR Approach To Understand the Coupling Mechanism. Macromolecules 2002, 35, 9990–9998. [Google Scholar] [CrossRef]
- Hosny, M.; Rozassa, J.P.N. Novel Oxidations of (+)-Catechin by Horseradish Peroxidase and Laccase. J. Agric. Food Chem. 2002, 50, 5539–5545. [Google Scholar] [CrossRef]
- Lopez-Serrano, M.; Barcelo, A.R. Reversed-phase and size-exclusion chromatography as useful tools in the resolution of peroxidase-mediated (+)-catechin oxidation products. J. Chromatogr. A. 2001, 919, 267–273. [Google Scholar] [CrossRef]
- Sample availability: not available.
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nagarajan, S.; Nagarajan, R.; Braunhut, S.J.; Bruno, F.; McIntosh, D.; Samuelson, L.; Kumar, J. Biocatalytically Oligomerized Epicatechin with Potent and Specific Anti-proliferative Activity for Human Breast Cancer Cells. Molecules 2008, 13, 2704-2716. https://doi.org/10.3390/molecules13112704
Nagarajan S, Nagarajan R, Braunhut SJ, Bruno F, McIntosh D, Samuelson L, Kumar J. Biocatalytically Oligomerized Epicatechin with Potent and Specific Anti-proliferative Activity for Human Breast Cancer Cells. Molecules. 2008; 13(11):2704-2716. https://doi.org/10.3390/molecules13112704
Chicago/Turabian StyleNagarajan, Subhalakshmi, Ramaswamy Nagarajan, Susan J. Braunhut, Ferdinando Bruno, Donna McIntosh, Lynne Samuelson, and Jayant Kumar. 2008. "Biocatalytically Oligomerized Epicatechin with Potent and Specific Anti-proliferative Activity for Human Breast Cancer Cells" Molecules 13, no. 11: 2704-2716. https://doi.org/10.3390/molecules13112704
APA StyleNagarajan, S., Nagarajan, R., Braunhut, S. J., Bruno, F., McIntosh, D., Samuelson, L., & Kumar, J. (2008). Biocatalytically Oligomerized Epicatechin with Potent and Specific Anti-proliferative Activity for Human Breast Cancer Cells. Molecules, 13(11), 2704-2716. https://doi.org/10.3390/molecules13112704