Progress in the Studies on Rutaecarpine
Abstract
:1. Introduction
Period | 1915-2002 | 2003 | 2004 | 2005 | 2006 | 2007 | Total |
---|---|---|---|---|---|---|---|
Numbers | 192 | 18 | 24 | 31 | 31 | 24 | 320 |
Topic | Number | Topic | Number |
---|---|---|---|
Pharmacology | 81 | Biochemical Methods | 5 |
Alkaloid | 67 | Agrochemical Bioregulators | 2 |
Plant Biochemistry | 47 | Analytical Chemistry | 2 |
Pharmaceuticals & Cosmetics | 39 | Radiation Biochemistry | 2 |
Pharmaceutical analysis | 29 | Toxicology | 2 |
Organic Chemistry | 19 | Biological Chemistry | 2 |
Heterocyclic Compounds (more than one heteroatom) | 9 | Miscellaneous | 14 |
Total | 320 |
2. Sources of Rutaecarpine – their Distribution and Systematic Significance
Family | Name | Ref. | Family | Name | Ref. |
---|---|---|---|---|---|
Rutaceae | Evodia rutaecarpa | [3,16,17,18] | Rutaceae | Z. pistaciiflorum | [32] |
E. ailanthifolia | [19] | Metrodorea flavida | [33] | ||
E. prerparata | [20] | Bouchardatia neurococca | [34] | ||
E. officinalis | [21] | Phellodendron amurense | [35,36,37] | ||
Hortia arborea | [22a] | P. japonicum | [38] | ||
H. regia | [23] | Spiranthera odoratissima | [39] | ||
H. colombiana | [24] | Tetradium sambucinum | [40] | ||
H. badinii | [22b] | T .glabrifolium | [41,42] | ||
Zanthoxylum rhetsa | [25] | T. trichotomum | [43] | ||
Z. pluviatile | [26] | Fagara rhetza | [44] | ||
Z. intergrifoliolum | [27,28,29,30] | Texaceae | Taxus chinensis | [45] | |
Z. budrunga | [31] | Apocynaceae | Winchia calophylla | [46] |
3. Studies on the Derivatives of Rutaecarpine
Compound | Plant | Reference(s) |
---|---|---|
1-Hydroxyrutaecarpine (1h) | Euxylophora paraënsis | [52] |
Vepris louisii | [49] | |
Bouchardatia neurococca | [34] | |
Tetradium glabrifolium | [41,42] | |
Zanthoxylum integrifoliolum | [27,28,29] | |
Zanthoxylum pistaciiflorum | [32] | |
Spiranthera odoratissima | [39] | |
1,2-Dihydroxyrutaecarpine (1i) | Bouchardatia neurococca | [34] |
3-Hydroxyrutaecarpine (1j) | Leptothyrsa sprucei | [50] |
14-N-Formyrutaecarpine (1k) | Zanthoxylum intergrifoliolum | [29] |
7-Hydroxyrutaecarpine (1l) | Tetradium glabrifolium T. ruticarpum Phellodendron amurense Evodia rutaecarpa Evodia officinalis | [53] [53] [36,37] [54] [55] |
7,8-Dihydroxyrutaecarpine (1m) | Phellodendron amurense | [36,42] |
7,8-Dehydrorutaecarpine (2a) | Phellodendron amurense | [35,36,41] |
1-Hydroxy-7,8-dehydrorutaecarpine (2f) | Vepris louisii | [49] |
Position | 1a | 1h | 1i | 1j | 1l | 1m | 2a | 2f | |||
---|---|---|---|---|---|---|---|---|---|---|---|
δH | δC | δH | δH | δH | δC(N) | δH | δH | δH | δC | δH | |
1 | 7.64 | 125.3 | 8.60a | 7.56 | 128.2 | 7.58 | 7.74 | 7.81 | 126.0 |
4. Synthesis
1) 2,3,4,9-Tetrahydro-1H-pyrido[3,4-b]indol-1-one - Derived Synthesis.
2) Tryptamine-Derived Synthesis
Entry | Reaction Conditions | Product (yield in %) | |||||
---|---|---|---|---|---|---|---|
Solvent | Time | Temp. | 1a | 22 | 23 | 24 | |
1 | CHCl3 containing a small amount of HCl (g) | 1 h | Reflux | 44 | - | 26 | - |
2 | CHCl3 saturated with HCl (g) | 1 h | r.t. | 42 | - | 40 | - |
3 | Conc. HCl-H2O-MeOH (1:20:180) | 17 h | r.t. | 9 | 20 | - | 70 |
3) 3,4-Dihydro-β-carboline-Derived Synthesis
4) Mackinazolinone-Derived Synthesis
5) Miscellaneous
5. Biological Properties
CNS U251 | HT-29 | A549/ ATCC | NCI- H460 | OVCAR-4 | 786-0 | Renal ACHN | HS- 578T | |
---|---|---|---|---|---|---|---|---|
Rutaecarpine | 0.02 [73b] | 31.6 [31] | 14.5 [73a] | - | 18.9 [73a] | - | - | 22.6 |
11-OCH3 [73a] | - | - | 0.75 | 1.38 | >25.0 | 0.31 | - | 1.59 |
10,11-OCH2O- | - | - | >25.0 | 1.55 | 1.50 | 1.08 | - | 5.05 |
10-Br [88,73b] | 5 | 33b | 59c | - | 3d | - | >100 | - |
2-CH3,10-Br | 0.3 | 14b | 18c | - | 3d | - | 0.3 | - |
10-SCH3[73b] | 3 | - | - | - | 13d | - | 0.08 | - |
1-OH [31] | - | 7.39 | 10.43 | - | - | - | - | - |
2-Cl [89] | - | 5.62 | 22.4 | - | - | - | - | 21.6e |
12-F [89] | - | 1.26 | 8.4 | - | - | - | - | 3.18e |
6. Metabolism
1) Phase I Studies
Metabolites | In vitro | In vivo | |
---|---|---|---|
Microsomes | Urine | Faeces | |
7/8-Hydroxyrutaecrpinea) | 47.0 ± 1.3 | N.D.b) | N.D.b) |
3-Hydroxyrutaecarpine | 4.9 ± 0.1 | 10.1 ± 0.9 | 9.9 ± 1.4 |
9-Hydroxyrutaecarpine | 2.9 ± 0.1 | 7.2 ± 0.5 | 26.9 ± 4.2 |
10-Hydroxyrutaecarpine | 9.5 ± 0.2 | 24.6 ± 2.5 | 15.6 ± 0.8 |
11-Hydroxyrutaecarpine | 33.9 ± 0.7 | 58.1 ± 2.2 | 47.6 ± 2.6 |
2) Phase II Studies
7. Conclusions
Acknowledgements
References and Notes
- Li, S. C. Pentsao Kang Mu 1596. Li, S. Bencao Gangmu: Compendium of Materia Medica; Foreign Language Press: China, 2003. [Google Scholar] Pedanius, D. De materia Medica; Beck, L. Y., Translator; Georg Olms Verlag: Hildesheim, Germany, 2005. [Google Scholar]
- Chen, A. L.; Chen, K. K. The Constituents of Wuchuyin (Evodia rutaecarpa). J. Am. Pharm. Assoc. 1933, 22, 716–719. [Google Scholar] Liao, J. F.; Chen, C. F.; Chow, S. Y. Pharmacological Studies of Chinese Herbs (9). Pharmacological Effects of Evodia fructus. J. Formosan Med. Assoc. 1981, 79, 30–38. [Google Scholar]
- Asahina, Y.; Kashiwaki, K. Chemical Constituents of the Fruits of Evodia rutaecarpa. J. Pharm. Soc. Jpn. 1915, 1293. [Google Scholar] Asahina, Y.; Mayeda, S. Evodiamine and Rutaecarpine, Alkaloids of Evodia rutaecarpa. J. Pharm. Soc. Jpn. 1916, 871. [Google Scholar] Asahina, Y.; Fujita, A. Constitution of Rutaecarpine. J. Pharm. Soc. Jpn. 1921, 863–869. [Google Scholar]
- Chu, J. H. Constituents of the Chinese Drug Wu-Chu-Yu, Evodia rutaecarpa. Science Record (China) 1951, 4, 279–284, [Chem. Abst. 1952, 46, 11589b]. [Google Scholar]
- Marion, L.; Ramsay, D. A.; Jones, R. N. The Infrared Absorption Spectra of Alkaloids. J. Am. Chem. Soc. 1951, 73, 305–308. [Google Scholar] [CrossRef]
- Raymond-Hamet. Ketoyobyrine. Compt. Rend. 1948, 226, 1379–1381. [Google Scholar]
- Tames, J. ; Bujtas, G. ; Horvath-Dora, K. ; Clauder, O. Alkaloids Containing the Indolo[2,3-c]-quinazolino[3,2-a]pyridine skeleton, IV. The Mass Spectra of Rutaecarpine, Evodiamine, and 3,14-Dihydrorutaecarpine. Acta Chim. Acad. Sci. Hung. 1976, 89, 85–89. [Google Scholar]
- Toth, G.; Horvath-Dora, K.; Clauder, O.; Duddeck, H. Alkaloids with Indolo[2’,3’;3,4]pyrido-[2,1-b]quinazoline Structure, VII. Synthesis and Structure of cis- and trans-Hexahydro-rutaecarpine. Liebigs Ann. Chem. 1977, 529–536. [Google Scholar] Bergman, J.; Bergman, S. Studies of Rutaecarpine and Related Quinazolinocarboline Alkaloids. J. Org. Chem. 1985, 50, 1246–1255. [Google Scholar]
- Fujii, I.; Kobayashi, Y.; Hirayama, N. Molecular Structure of Two Alkaloids, Evodiamine and rutaecarpine, from Evodia Fruit. Z. Kristallogr. 2000, 215, 762–765, Crystallographic data for rutaecarpine can be obtained, free of charge, on application to the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0) 1223-336033 or e-mail: [email protected]). Deposition number: 146432.. [Google Scholar]
- Wang, C.-L.; Liu, J.-L.; Ling, Y.-P. Progress in the Synthesis of Rutaecarpine. Chin. J. Org. Chem. 2006, 26, 1437–1443. [Google Scholar] Kollenz, G. Product Class 10: Imidoylketenes. Sci. Synthesis 2006, 23, 351–380. [Google Scholar] Kikelj, D. Product Class 13: Quinazolines. Sci. Synthesis 2004, 16, 573–749. [Google Scholar] Witt, A.; Bergman, J. Recent Developments in the Field of Quinazoline Chemistry. Curr. Org. Chem. 2003, 7, 659–677. [Google Scholar] Bergman, J. The Quinazolinocarboline Alkaloids. In Alkaloids – Chemistry and Pharmacology; Brossi, A., Ed.; Academic Press: New York, 1983; Vol. XXI; pp. 29–54. [Google Scholar] See also Mhaske, S. B.; Agrade, N. P. The Chemistry of Recently Isolated Naturally Occurring Quinazolinone Alkaloids. Tetrahedron 2006, 62, 9787–9826. [Google Scholar]
- Hu, C.; Li, Y. Research Progress in Pharmacological Actions of Evodiamine and Rutaecarpine. Chin. Pharmacol. Bull. 2003, 19, 1084–1087. [Google Scholar] Chen, C.-F.; Chiou, W.-F.; Chou, C.-J.; Liao, J.-F.; Lin, L.-C.; Wang, G.-J.; Ueng, Y.-F. Pharmacological Effects of Evodia rutaecarpa and its Bioactive Components. Chin. Pharmaceutical J. (Taipei). 2002, 54, 419–435. [Google Scholar] Sheu, J.-R. Pharmacological Effects of Rutaecarpine, an Alkaloid Isolated from Evodia rutaecarpa. Cardiovasc. Drug Rev. 1999, 17, 237–245. [Google Scholar]
- Wang, Y.; Gao, Y. Advances in Modulation of Cytochrome P-450 by Chinese Herbal Medicine. Chin. Tradit. Herb. Drugs (Zhongcaoyao) 2003, 34, 477–478, s1.. [Google Scholar]
- Ueda, J.; Ohsawa, K. Determination of Main Components in Oriental Pharmaceutical Decoctions and Extract Preparations by Ion-Pair High-Performance Liquid Chromatography. J. Tohoku Pharmaceut. Univ. 2002, 49, 13–25. [Google Scholar]
- Hutchnson, J. The Families of Flowering Plants, 2nd Ed. ed; Oxford University Press: Oxford, 1956; Vol. 1; p. 353. [Google Scholar]
- Engler, A. Syllabus der Pflanzenfamilien, 12th Ed.; H. Melchior, H., Ed.; Borntrager: Berlin, 1964; p. 262. [Google Scholar]
- Kamikado, T.; Murakoshi, S.; Tamura, S. Structure Elucidation and Synthesis of Alkaloids from Fruits of Evodia rutaecarpa. Agric. Biol. Chem. 1978, 42, 1515–1519. [Google Scholar] [CrossRef]
- Li, M.-T.; Huang, H.-I. Studies on the Chemical Constituents of the Chinese Drug, Shih-Hu (Evodia rutaecarpa var. officinalis). Acta Pharmaceut. Sin.(Yaoxue Xuebao) 1966, 13, 265–272, [Chem. Abst. 65: 20995]. [Google Scholar] Tschfche, R.; Werner, W. Evocarpin, ein Neues Alkaloids aus Evodia rutaecarpa. Tetrahedron 1967, 23, 1873–1881. [Google Scholar]
- Matsuda, H.; Wu, J.-x.; Tanaka, T.; Iinuma, M.; Kudo, M. Antinociceptive Activities of 70% Methanol Extract of Evodia Fructus (fruit of Evodia rutaecarpa var. bodinaieri) and Its Alkaloidal Components. Biol. Pharm. Bull. 1997, 20, 243–248. [Google Scholar] Yang, X.-W.; Zhang, H.; Li, M.; Du, L.-J.; Yang, Z.; Xiao, S.-Y. Studies on the Alkaloid Constituents of Evodia rutaecarpa (Juss) Benth var. bodinaieri (Dode) Huang and Their Acute Toxicity in Mice. J. Asian Nat. Prod. Res. 2006, 8, 697–703. [Google Scholar]
- Zhao, C.; Zhu, H.; Hao, X.; Yang, X. Study on Chemical Constituents of Evodia ailanthifolia. Tianran Chanwu Yanjiu Yu Kaifa 2006, 18, 418–419, [Chem. Abst. 2007, 147, 230708]. [Google Scholar]
- Bao, T.-d.; Dong, Y.; Yang, Q.; Zhu, X.-x. Determination of Evodiamine, Rutaecarpine, and Evodin in Fructus Evodiae preparata and Its Extract by HPLC. Zhongguo Shiyan Fangjixue Zazhi 2007, 13, 1–3, [Chem. Abst. 2007, 147, 372031]. [Google Scholar]
- Lee, S. W.; Hwang, G. Y.; Kin, S. E.; Kim, H. M.; Kim, Y. H.; Lee, K. S.; Lee, J. J.; Ro, J.-S. Isolation of Modulators for Multidrug Resistance from the Fruits of Evodia officinalis. Saengyak Hakhoechi 1995, 26, 344–348. [Google Scholar] Shin, H.-K.; Do, J.-C.; Son, J.-K.; Lee, C.-S.; Lee, C.-H.; Cheong, C.-J. Quinoline Alkaloids from the Fruits of Evodia officinalis. Planta Medica 1998, 64, 764–765. [Google Scholar] Jin, H.-Z.; Du, J.-L.; Zhang, W.-D.; Chen, H.-S.; Lee, J.-H.; Lee, J.-J. A Novel Alkaloid from the Fruits of Evodia officinalis. J. Asian Nat. Prod. Res. 2007, 9, 685–688. [Google Scholar]
- Pachter, I. J.; Raffauf, F.; Ullyot, G. E.; Ribeiro, O. The Alkaloids of Hortia arborea Eng1. J. Am. Chem. Soc. 1960, 5187–5193. [Google Scholar] Correa, D. de B.; Gottlieb, O. R.; Pimenta de Padua, A. Chemistry of Brazilian Rutaceae. I. Dihydrocinnamic Acids from Hortia badinii. Phytochemistry 1975, 14, 2059–2060. [Google Scholar] Correa, D. de B.; Gottlieb, O. R.; De Padua, A. P.; Da Rocha, A. I. The Chemistry of Brazilian Rutaceae. II. Constituents of Hortia longifolia. Rev. Latinoam. Quim. 1976, 7, 43, [Chem. Abst. 1976, 84, 161790]. [Google Scholar]
- Jacobs, H.; Ramadayal, F.; McLean, S.; Perpick-Dumont, M.; Puzzuoli, F.; Reynolds, W. F. Constituents of Hortia regia: 6,7-Dimethoxycoumarin, Rutaecarpine, Skimmianine, and (+) -Methyl (E,E)-10,11-Dihydroxy-3,7,11-trimethyl-2,6-dodecadienoate. J. Nat. Prod. 1987, 50, 507–509. [Google Scholar] [CrossRef]
- Cuca, S. L. E.; Martinez V., J. C.; Delle Monache, F. Alkaloids Present in Hortia colombiana. Revista Colomb. Quim. 1998, 27, 23–29, [Chem. Abst. 1998, 129, 313387]. [Google Scholar]
- Chatterjee, A.; Mitra, J. Chemistry of Rhetine and Synthesis of Rhetsine. The Alkaloids of Zanthoxylum rhetsa. Sci. Culture 1960, 25, 493–494, [Chem. Abst. 1960, 54, 129271]. [Google Scholar]
- Corrie, J. E. T.; Green, G. H.; Ritchie, E.; Taylor, W. C. Chemical Constituents of Australian Zanthoxylum species. V. Constituents of Z. [Zanthoxylum] pluviatile; the Structures of Two New Lignans. Aust. J. Chem. 1970, 23, 133–145. [Google Scholar] [CrossRef]
- Sheen, W.-S.; Tsai, I.-L.; Teng, C.-M.; Ko, F.-N.; Chen, I.-S. Indolopyridoquinazoline Alkaloids with Antiplatelet Aggregation activity from Zanthoxylum integrifoliolum. Planta Medica 1996, 62, 175–176. [Google Scholar] [CrossRef]
- Chen, J.-J.; Fang, H.-Y.; Duh, C.-Y.; Chen, I.-S. New Indolopyridoquinazoline, Benzo[c]phenanthridines and Cytotoxic Constituents from Zanthoxylum integrifoliolum. Planta Medica 2005, 71, 470–475. [Google Scholar] [CrossRef]
- Chen, I.-S.; Chen, T.-L.; Chang, Y.-L.; Teng, C.-M.; Lin, W.-Y. Chemical Constituents and Biological Activities of the Fruit of Zanthoxylum integrifoliolum. J. Nat. Prod. 1999, 62, 833–837. [Google Scholar] [CrossRef]
- Ishii, H.; Chen, I.-S.; Akaike, M.; Ishikawa, T.; Lu, S. T. Studies on the Chemical Constituents of Rutaceous Plants. XLIV. The Chemical Constituents of Xanthoxylum integrifoliolum (Merr.) Merr. (Fagara integrifoliola Merr.). 1. The Chemical Constituents of the Root Wood. J. Pharm. Soc., Japan 1982, 102, 182–195. [Google Scholar]
- Mukhlesur Rahman, M.; Anwarul Islam, M.; Khondkar, P.; Gray, A. I. Alkaloids and Lignans from Zanthoxylum budrunga (Rutaceae). Biochem. System. Ecol. 2004, 33, 91–96. [Google Scholar] Banerjee, H.; Pal, S.; Adityachaudhury, N. Occurrence of Rutaecarpine in Zanthoxylum budrunga. Planta Med. 1989, 55, 403. [Google Scholar]
- Chen, J.-J.; Huang, H.-Y.; Duh, C.-Y.; Chen, I.-S. Cytotoxic Constituents from the Stem Bark of Zanthoxylum pistaciiflorum. J. Chin. Chem. Soc. 2004, 51, 659–663. [Google Scholar]
- Baetas, A. C. S.; Arruda, M. S. P.; Muller, A. H.; Arruda, A. C. Coumarins and Alkaloids from the Stems of Metrodorea flavida. J. Brazil. Chem. Soc. 1999, 10, 181–183. [Google Scholar] [CrossRef]
- Wattanapiromsakul, C.; Forster, P. I.; Waterman, P. G. Alkaloids and Limonoids from Bouchardatia neurococca: Systematic Significance. Phytochemistry 2003, 64, 609–615. [Google Scholar] [CrossRef]
- Ikuba, A.; Nakamura, T.; Urabe, H. Indolopyridoquinazoline, Furoquinoline and Canthinone Type Alkaloids from Phellodendron amurense Callus Tissues. Phytochemistry 1998, 48, 285–291. [Google Scholar] [CrossRef]
- Ikuba, A. Production of Indolopyridoquinazoline, Furoquinoline and Canthinone-type from Phellodendron amurense Callus Tissues and a Comparative Study of the Alkaloids between Callus and Plant from Chemotaxonomic View Point. Rec. Res. Develop. Phytochem. 2001, 5, 245–253. [Google Scholar]
- Ikuba, A.; Urabe, H.; Nakamura, T. A New Indolopyridoquinazoline-type Alkaloid from Phellodendron amurense Callus Tissues. J. Nat. Prod. 1998, 61, 1012–1014. [Google Scholar] [CrossRef]
- Chiu, C.-Y.; Li, C.-Y.; Chiu, C.-C.; Niwa, M.; Kitanaka, S.; Damu, A. G.; Lee, E-J.; Wu, T.-S. Constituents of Leaves of Phellodendron japonicum Maxim. and Their Antioxidant Activity. Chem. Pharm. Bull. 2005, 53, 1118–1121. [Google Scholar] [CrossRef]
- Ribeiro, T. A. N.; Ndiaye, E. A. da S.; Velozo, E. da S.; Vieira, P. C.; Ellena, J.; de Sousa Jr., P. T. Limonoids from Spiranthera odoratissima St. Hil. J. Brazil. Chem. Soc. 2005, 16, 1347–1352. [Google Scholar] [CrossRef]
- Komala, I.; Rahmani, M.; Lian, G. E. C. L.; Bebe, H.; Ismail, M.; Sukari, M. A.; Rahmat, A. Chemical Constituents of Tetradium sambucinum (Bl.) Hartley. Malaysian J. Sci. 2006, 25, 81–86. [Google Scholar]
- Ng, K. M.; But, P. P.-H.; Gray, A. I.; Hartley, T. G.; Kong, Y.-C.; Waterman, P. G. The Biochemical Systematics of Tetradium, Euodia and Melicope and Their Significance in the Rutaceae. Biochem. System. Ecol. 1987, 15, 587–593. [Google Scholar] [CrossRef]
- Ng, K. M.; But, Gray, A. I.; Waterman, P. G. Limonoids, Alkaloids, and a Coumarin from the Root and Stem Barks of Tetradium glabrifolium. J. Nat. Prod. 1987, 50, 1160–1163. [Google Scholar] [CrossRef]
- Bui, K. A.; Tran, V. S.; Nguyen, M. C.; Duong, A. T. Three Indolopyridoquinazoline Alkaloids from Tetradium trichotomum Lour. Growing in Vietnam. Tap Chi Hoa Hoc 2002, 40, 72–75, [Chem. Abst. 138: 103670]. [Google Scholar] Bui, K. A.; Duong, A. T.; Tran, V. S.; Nguyen, M. C. Limonoid Compounds from Tetradium trichotomum (Rutaceae). Tap Chi Hoa Hoc 2003, 41(Spec.), 51–54, [Chem. Abst 2004, 140, 142600]. [Google Scholar]
- Tong, R. Chemical Constituents of Huajiao (Fagara rhetza). Chin. Tradit. Herb Drugs (Zhongcaoyao) 1991, 22, 249–250, [Chem. Abst. 1995, 115, 166449]. [Google Scholar] Shibuya, H.; Takeda, Y.; Zhang, R. S.; Tong, R. X.; Kitagawa, I. Indonesian Medicinal Plants. III. On the Constituents of the Bark of Fagara rhetza (Rutaceae). (1): Alkaloids, Phenylpropanoids, and Acid Amide. Chem. Pharm. Bull. 1992, 40, 2325–2330. [Google Scholar]
- Guan, Z.; Su, J.-y.; Zeng, L.-m.; Li, H. Studies on Non-Taxoid Constituents from Taxus chinensis (Pilger) Rehd. Redai Yaredai Zhiwu Xuebao 2000, 8, 182–184, [Chem. Abst. 2001, 134, 219695]. [Google Scholar]
- Zhu, W.-M.; He, H.-P.; Fan, L.-M.; Shen, Y.-M.; Zhou, J.; Hao, X.-J. Components of Stem Barks of Winchia calophylla A. DC. (Apocynaceae) and Their Bronchodilator Activities. J. Integrative Plant Biol. 2005, 47, 892–896. [Google Scholar] [CrossRef]
- Waterman, P. G. Alkaloids of the Rutaceae: Distribution and Systematic Significanc. Biochem. System. Ecol. 1975, 3, 149–180, and references therein. [Google Scholar] [CrossRef]
- Canonica, L.; Danieli, B.; Manitto, P.; Russo, G.; Ferrari, G. New Quinazolinocarboline from Euxylphora paraënsis. Tetrahedron Lett. 1968, 9, 4865–4866. [Google Scholar] Danieli, B.; Manitto, P.; Ronchetti, F.; Russo, G.; Ferrari, G. New Indolopyridoquinazoline Alkaloids from Euxylphora paraënsis. Phytochemistry 1972, 11, 1833–1836. [Google Scholar] Danieli, B.; Palmisano, G.; Russo, G.; Ferrari, G. Minor Indolopyridoquinazoline Alkaloids from Euxylphora paraënsis. Phytochemistry 1973, 12, 2521–2525. [Google Scholar] Danieli, B.; Farachi, C.; Palmisano, G. A New Indolopyridoquinazoline in the Bark of Euxylphora paraënsis. Phytochemistry 1976, 15, 1095–1096. [Google Scholar]
- Ayafor, J. F.; Sondengam, B. L.; Ngadjui, B. T. Quinoline and Indolopyridoquinazoline Alkaloids from Vepris louisii. Phytochemistry 1982, 21, 2733–2736. [Google Scholar] [CrossRef]
- Li, X.-C.; Dunbar, D. C.; ElSohly, H. N.; Walker, L. A.; Clark, A. M. Indolopyridoquinazoline Alkaloid from Leptothyrsa sprucei. Phytochemistry 2001, 58, 627–629. [Google Scholar] [CrossRef]
- Christopher, E.; Bedir, E.; Dunbar, C.; Khan, I. A.; Okunji, C. O.; Schuster, B. M.; Iwu, M. M. Indoloquinazoline Alkaloids from Araliopsis tabouensis. Helv. Chim Acta 2003, 86, 2914–2918. [Google Scholar] [CrossRef]
- Danieli, B.; Palmisano, G.; Rainoldi, G.; Russo, G. 1-Hydroxyrutaecarpine from Euxylophora paraënsis. Phytochemistry 1974, 13, 1603–1606. [Google Scholar] [CrossRef]
- Wu, T.-S.; Yeh, J.-H.; Wu, P.-L.; Chen, K.-T.; Lin, L.-C.; Chen, C.-F. 7-Hydroxyrutaecarpine from Tetradium glabrifolium and Tetradium ruticarpum. Heterocycles 1995, 41, 1071–1076. [Google Scholar] [CrossRef]
- Chen, C.-F.; Chiou, W.-F.; Chou, C.-J.; Liao, J.-F. ; Lin, L.-C. ; Wang, G.-J. ; Ueng, Y.-F. Pharmacological Effects of Evodia rutaecarpa and Its Bioactive Components. Chin. Pharm. J. (Taipei) 2002, 54, 419–435. [Google Scholar]
- Xu, M.-L.; Moon, D.-C.; Lee, J.-S.; Woo, M.-H.; Lee, E. S.; Jahng, Y.; Chang, H.-W.; Lee, S. H.; Son, J.-K. Cytotoxicity and DNA Topoisomerase Inhibitory Activity of Constituents Isolated from the Fruits of Evodia officinalis. Arch. Pharm. Res. 2006, 29, 541–547. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Tian, J.-K. Two New Indolopyridoquinazoline Alkaloidal Glycosides from Ranunculus ternatus. Chem. Pharm. Bull. 2007, 55, 1267–1269. [Google Scholar] [CrossRef]
- Asahina, Y.; Irie, T. ; Ohta, T. Synthesis of Rutaecarpine. II. J. Chem. Soc., Jpn. 1927, No. 543, 51–52. [Google Scholar]
- Asahina, Y.; Manske, R. H. F.; Robinson, R. A Synthesis of Rutaecarpine. J. Chem. Soc. 1927, 1708–1710. [Google Scholar] [CrossRef]
- Asahina, Y.; Ohta, T. Synthesis of Rutecarpine. III. J. Chem. Soc. 1928, 48, 313–317. [Google Scholar] Terzyan, A. C.; Safrazbekyan, R. R.; Khazhakyan, L. V.; Tatevosyan, G. T. Reduction Products of Rutecarpine and 10-Methoxyrutaecarpine. Izv. Akad. Nauk Arm. SSR, Khim. Nauki 1961, 14, 393–399, [Chem. Abst. 1962, 57, 83091]. [Google Scholar] Atta-ur-Rahman; Ghazala, M. Reactions of Harmaline and Its Derivatives. VI. The Partial Syntheses of 11-Methoxyrutaecarpine and 11-Methoxynauclefine. Synthesis 1980, 372–374. [Google Scholar]
- Tang, Y.; Feng, X.; Huang, L. Studies on the Chemical Constituents of Evodia rutaecarpa [Juss] Benth. Acta Pharmaceut. Sin. (Yaoxue Xuebao) 1996, 31, 151–155, [Chem. Abst. 1996, 125, 308784). [Google Scholar] Tang, Y.; Feng, X.; Huang, L. Studies on Chemical Constituents of Evodia rutaecarpa (Juss) Benth. J. Chin. Pharm. Sci. 1997, 6, 65–69. [Google Scholar]
- Petersen, S.; Tietze, E. The Reaction of Cyclic Lactim Ethers with Amino Carboxylic Acids. Liebigs Ann. Chem. 1959, 623, 166–176. [Google Scholar] [CrossRef]
- Hamid, A.; Elomrib, A.; Daïch, A. Expedious and Practical Synthesis of the Bioactive Alkaloids Rutaecarpine, Euxylophoricine A, Deoxyvasicinone and Their Heterocyclic Homologues. Tetrahedron Lett. 2006, 47, 1777–1781. [Google Scholar] [CrossRef]
- Benovsky, P.; Stille, J. R. Aza-Annulation as a Versatile Approach to the Synthesis of Non-benzodiazepene Compounds for the Treatment of Sleep Disorders. Tetrahedron Lett. 1997, 38, 8475–8478. [Google Scholar] Gittos, M. W.; Robinson, M. R.; Verge, J. P.; Davies, R. V.; Iddon, B.; Suschitzky, H. Intramolecular Cyclisation of Arylalkyl Isothiocyanates. Part I. Synthesis of 1-Substituted 3,4-Dihydroisoquinolines. J. Chem. Soc., Perkin Trans. 1 1976, 33–38. [Google Scholar]
- Eguchi, S.; Takeuchi, H.; Matsushita, Y. Synthesis of Novel Carbo- and Heteropolycycles. 20. Short-Step Synthesis of Rutecarpine and Tryptanthrin via Intramolecular Aza-Wittig Reaction. Heterocycles 1992, 33, 153–156. [Google Scholar] [CrossRef]
- Lee, E. S.; Park, J. G.; Jahng, Y. A Facile Synthesis of Simple Alkaloids – Synthesis of 2,3-Polymethylene-4(3H)-quinazolinones and Related Alkaloids. Tetrahedron Lett. 2003, 44, 1883–1886. [Google Scholar] Jahng, K. C.; Kim, S. I.; Kim, D. H.; Seo, C. S.; Son, J.-K.; Lee, S. H.; Lee, E. S.; Jahng, Y. One-Pot Synthesis of Simple Alkaloids: 2,3-Polymethylene-4(3H)-quinazolinones, Luotonin A, Tryptanthrin, and Rutaecarpine. Chem. Pharm. Bull. (accepted for publication).
- Schöpf, C. Die Syntheses von Naturstoffen, insbesondere von Alkaloiden, unter physiologischen Bedingungen und Bedeutung für die Frage der Entstehung einiger pflanzlicher Naturstoffe in der Zelle. Angew. Chem. 1937, 50, 779–790. [Google Scholar] [CrossRef]
- Schöpf, C.; Steuer, H. Synthesis and Transformations of Natural Products under Physiological Conditions X. Biogenesis of Rutaecarpine and Evodiamine. Synthesis of Rutaecarpine under Physiological Conditions. Liebigs Ann. Chem. 1947, 558, 124–136. [Google Scholar] [CrossRef]
- Kametani, T.; Loc, C. V.; Higa, T.; Koizumi, M.; Ihara, M.; Fukumoto, K. Iminoketene Cycloaddition. 2. Total Syntheses of Carboline, Glycosminine, and Rutaecarpine by Condensation of Iminiketene with Amides. J. Am. Chem. Soc 1977, 99, 2306–2309. [Google Scholar] Kametani, T.; Ohsawa, T.; Ihara, M.; Fukumoto, K. Studies on the Syntheses of Heterocyclic Compounds. DCCLV. Iminoketene Cycloaddition. 4. Alternative Syntheses of 5,6,7,8-Tetrahydro-2,3-dimethoxy-8-oxoisoquinolo[1,2-b]quinazoline and Rutaecarpine. Chem. Pharm. Bull. 1978, 26, 1922–1926. [Google Scholar]
- Terzyan, A. C.; Safrazbekyan, R. R.; Khazhakyan, L. V.; Tatevosyan, G. T. Reduction Products of Rutecarpine and 10-Methoxyrutaecarpine. Izv. Akad. Nauk Arm. SSR, Khim. Nauki 1961, 14, 393–399, [Chem. Abst. 1962, 57, 83091]. [Google Scholar] Horvath-Dora, K.; Clauder, O. Alkaloids Containing the Indolo[2,3-c]quinazolino[3,2-a]pyridine Skeleton. III. 3,14-Dihydrorutecarpine. Acta Chim. Acad. Sci. Hung. 1975, 84, 93–97, [Chem. Abst. 1975, 82, 171273). [Google Scholar]
- Bergman, J.; Bergman, S. Studies of Rutaecarpine and Related Indole Alkaloids. Heterocycles 1981, 16, 347–350. [Google Scholar] [CrossRef]
- Waterman, P. Chemosystematics in the Rutaceae. Part 7: Alkaloids and Coumarins from Zanthoxylum flavum: Dihydrorutecarpine, A Novel β-Indoloquinazoline Alkaloid. Phytochemistry 1976, 15, 578–579. [Google Scholar] [CrossRef]
- Kamikado, T.; Murakoshi, S.; Tamura, S. Structure Elucidation and Synthesis of Alkaloids Isolated from Fruits of Evodia rutaecarpa. Agric. Biol. Chem. 1978, 42, 1515–1519. [Google Scholar] [CrossRef]
- Yang, L.-M.; Chen, C.-F.; Lee, K.-H. Synthesis of Rutaecarpine and Cytotoxic Analogs. Bioorg. Med. Chem. Lett. 1995, 5, 465–468. [Google Scholar] Baruah, B.; Dasu, K.; Vaitilingam, B.; Mamnoor, P.; Venkata, P. P.; Rajagopal, S.; Yeleswarapu, K. R. Synthesis and Cytotoxic Activity of Novel Quinazolino-β-carboline-5-one Derivatives. Bioorg. Med. Chem. 2004, 12, 1991–1994. [Google Scholar]
- Kaneko, C.; Chiba, T.; Kasai, K.; Miwa, C. A Short Synthesis of Rutecarpine and/or Vasicolinone from 2-Chloro-3-(indol-3-yl)ethylquinazolin-4(3H)-one: Evidence for the Participation of the Spiro Intermediate. Heterocycles 1985, 23, 1385–1390. [Google Scholar] [CrossRef]
- Mohanta, P. K.; Kim, K. A Short Synthesis of Quinazolinocarboline Alkaloids Rutaecarpine, Hortiacine, Euxylophoricine A and Euxylophoricine D from Methyl N-(4-chloro-5H-1,2,3-dithiazol-5-ylidene)anthranilates. Tetrahedron Lett. 2002, 43, 3993–3996. [Google Scholar] [CrossRef]
- Harayama, T.; Hori, A.; Serban, G. Concise Synthesis of Quinazoline Alkaloids, Luotonins A and B, and Rutaecarpine. Tetrahedron 2004, 60, 10645–10649. [Google Scholar] [CrossRef]
- Bowman, W. R.; Elsegood, M. R. J.; Stein, T.; Weaver, G. W. Radical Reactions with 3H-Quinazolinones: Synthesis of Deoxyvasicinone, Mackinazolinone, Luotonin A, Rutaecarpine, and Tryptanthrin. Org. Biomol. Chem. 2007, 5, 103–110. [Google Scholar] [CrossRef]
- Mori, M.; Kobayashi, H.; Kimura, Ban, Y. One Pot Synthesis of Quinazolinone Derivatives by Use of Palladium Catalyzed Carbonylation. Heterocycles 1985, 23, 2803–2806. [Google Scholar] [CrossRef]
- Kametani, T.; Higa, T.; Fukumoto, K.; Koizumi, M. A One-Step Synthesis of Evodiamine and Rutaecarpine. Heterocycles 1976, 4, 23–28. [Google Scholar] Kametani, T.; Higa, T.; Loc, C. V.; Ihara, M.; Koizumi, M.; Fukumoto, K. J. Am. Chem. Soc. 1976, 98, 6186–6188.
- Möhrle, H.; Kamper, C.; Schmid, R. Eine neue Synthese von Rutaecarin. Arch. Pharm. 1980, 313, 990–995. [Google Scholar] [CrossRef]
- Späth, E.; Platzer, N.; Peganine, VIII. Derivatives of Peganine and its Ring Homologs. Ber. 1935, 68, 2221–2226. [Google Scholar] [CrossRef]
- Johns, S. R.; Lamberton, J. A. Alkaloids of Mackinlaya Species (Family Araliaceae). Chem. Comm. 1965, 267. [Google Scholar]
- Kökösi, J.; Hermecz, I.; Szasz, G.; Meszaros, Z. Nitrogen Bridged Compounds. Part 16. Facile Total Synthesis of 7,8-Dihydroindolo[2',3':3,4]pyrido[2,1-b]quinazolin-5(13H)-one (Rutaecarpine). Tetrahedron Lett. 1981, 22, 4861–4862. [Google Scholar] Kökösi, J.; Hermecz, I.; Podanyi, B.; Szasz, G.; Meszaros, Z. Nitrogen Bridged Compounds. Part 55. Synthesis of Substituted 7,8-Dihydro-5H,13H-indolo[2',3':3,4]pyrido[2,1-b]quinazolin-5-ones. J. Heterocycl. Chem. 1985, 22, 1373–1375. [Google Scholar] Mhaske, S. B.; Argade, N. P. Facile Zeolite Induced Fischer-Indole Synthesis: A New Approach to Bioactive Natural Product Rutaecarpine. Tetrahedron 2004, 60, 3417–3420. [Google Scholar]
- Lee, S. H.; Kim, S. I.; Park, J. G.; Lee, E. -S.; Jahng, Y. A Simple Synthesis of Rutaecarpine. Heterocycles 2001, 55, 1555–1560. [Google Scholar] [CrossRef]
- Chavan, S. P.; Sivappa, R. A Facile Total Synthesis of Rutaecarpine. Tetrahedron Lett. 2004, 45, 997–999. [Google Scholar] [CrossRef]
- Kamal, A.; Shankaraiah, N.; Devaiah, V.; Reddy, K. L. Solid-Phase Synthesis of Fused [2,1-b]quinazolinone Alkaloids. Tetrahedron Lett. 2006, 47, 9025–9028. [Google Scholar] Gil, C.; Braese, S. Efficient Solid-Phase Synthesis of Highly Functionalized 1,4-Benzodiazepin-5-one Derivatives and Related Compounds by Intramolecular Aza-Wittig Reactions. Chemistry-Eur. J. 2005, 11, 2680–2688. [Google Scholar] Liu, J.-F.; Ye, P.; Sprague, K.; Sargent, K.; Yohannes, D.; Baldino, C. M.; Wilson, C. J.; Ng, S.-C. Novel One-Pot Total Syntheses of Deoxyvasicinone, Mackinazolinone, Isaindigotone, and Their Derivatives Promoted by Microwave Irradiation. Org. Lett. 2005, 7, 3363–3366. [Google Scholar] Yadav, J. S.; Reddy, B. V. S. Microwave-Assisted Rapid Synthesis of the Cytotoxic Alkaloid Luotonin A. Tetrahedron Lett. 2002, 43, 1905–1907. [Google Scholar] Nishiyama, Y.; Hirose, M.; Kitagaito, W.; Sonoda, N. Synthesis of 3,4-Dihydroquinazolin-4-one: Selenium-Catalyzed Reductive N-Heterocyclization of N-(2-Nitrobenzoyl)amides with Carbon Monoxide. Tetrahedron Lett. 2002, 43, 1855–1858. [Google Scholar] Mhsaske, S. B.; Argade, N. P. Chemoenzymatic Synthesis of Pyrrolo[2,1-b]quinazolinones: Lipase-Catalyzed Resolution of Vasicinone. J. Org. Chem. 2001, 66, 9038–9040. [Google Scholar] Dunn, A. D.; Kinnear, K. I. New Reactions of Deoxyvasicinone. Part 4. J. Heterocycl. Chem. 1986, 23, 53–57. [Google Scholar]
- Kökösi, J.; G. Szasz, G.; Hermecz, I. An Alternative Synthesis of Rutaecarpine and Vasicolinone Alkaloids. Tetrahedron Lett. 1992, 33, 2995–2998. [Google Scholar] [CrossRef]
- Yang, L.-M.; Lin, S.-J.; Lin, L.-C.; Kuo, Y.-H. Antitumor Agents. 2. Synthesis and Cytotoxic Evaluation of 10-Bromorutaecarpine. Chin. Pharm. J. (Taipei) 1999, 51, 219–225. [Google Scholar]
- Jahng, Y.; Kim, S. I.; Lee, E.-S. Synthesis and Cytotoxicities of Rutaecarpine Analogues. In Abst. Papers 227th ACS National Meeting, Anaheim, CA, United States, March 28-April 1, 2004. MEDI-146.
- Ogasawara, M.; Matsubara, T.; Suzuki, H. Screening of Natural Compounds for Inhibitory Activity on Colon Cancer Cell Migration. Biol. Pharm. Bull. 2001, 24, 720–723. [Google Scholar] [CrossRef]
- Moon, T. C.; Murakami, M.; Kudo, I.; Son, K. H.; Kim, H. P.; Kang, S. S.; Chang, H. W. A New Class of COX-2 Inhibitor, Rutaecarpine from Evodia rutaecarpa. Inflamm. Res. 1999, 48, 621–625. [Google Scholar] [CrossRef]
- Lee, E. S.; Kim, S. I.; Lee, S. H.; Jeong, T. C.; Moon, T. C.; Chang, H. W.; Jahng, Y. Synthesis and COX Inhibitory Activities of Rutaecarpine Derivatives. Bull. Korean Chem. Soc. 2005, 26, 1975–1980. [Google Scholar] [CrossRef]
- Lee, S. K.; Kim, N. H.; Lee, J.; Kim, D. H.; Lee, E. S.; Choi, H. G.; Chang, H. W.; Jahng, Y.; Jeong, T. C. Induction of Cytochrome P450s by Rutaecarpine and Metabolism of Rutaecarpine by Cytochrome P450s. Planta Medica 2004, 70, 753–757. [Google Scholar] Lee, S. K.; Lee, J.; Lee, E. S.; Jahng, Y.; Kim, D. H.; Jeong, T. C. Characterization of in vitro Metabolites of Rutaecarpine in Rat Liver Microsomes using Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 1073–1080. [Google Scholar]
- Ueng, Y. F.; Yu, H. J.; Lee, C. H.; Peng, C.; Jan, W. C.; Ho, L. K.; Chen, C. F.; Don, M. J. Identification of the Microsomal Oxidation Metabolites of Rutaecarpine, A Main Active Alkaloid of the Medicinal herb. J. Chromatogr. A 2005, 1076, 103–109. [Google Scholar] [CrossRef]
- Lee, S. K.; Lee, J. H.; Yoo, H. H.; Kim, D. H.; Jahng, Y.; Jeong, T. C. Characterization of Human Liver Cytochrome P450 Enzymes Involved in the Metabolism of Rutaecarpine. J. Pharm. Biomed. Anal. 2006, 41, 304–309. [Google Scholar] [CrossRef]
- Ueng, Y. F.; Don, M. J.; Jan, W. C.; Wang, L.-K.; Chen, C. F. Oxidative Metabolism of the Alkaloid Rutaecarpine by Human Cytochrome P450. Drug. Metabol. Dispos. 2006, 34, 821–827. [Google Scholar] [CrossRef]
- Lee, S. K.; Lee, D. W.; Jeon, T. W.; Jin, C. H.; Kim, G. H.; Jun, I. H.; Lee, D. J.; Kim, S.-I.; Kim, D. H.; Jahng, Y.; Jeong, T. C. Characterization of the Phase II Metabolites of Rutaecarpine in Rat by Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. Xenobiotica 2005, 35, 1135–1145. [Google Scholar] [CrossRef]
- Rendic, S.; Dicarlo, F. J. Human Cytochrome P450 Enzymes: A Status Report Summarizing Their Reactions, Substrates, Inducers and Inhibitors. Drug Metabol. Rev. 1997, 29, 413–580. [Google Scholar] [CrossRef]
© 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Lee, S.H.; Son, J.-K.; Jeong, B.S.; Jeong, T.-C.; Chang, H.W.; Lee, E.-S.; Jahng, Y. Progress in the Studies on Rutaecarpine. Molecules 2008, 13, 272-300. https://doi.org/10.3390/molecules13020272
Lee SH, Son J-K, Jeong BS, Jeong T-C, Chang HW, Lee E-S, Jahng Y. Progress in the Studies on Rutaecarpine. Molecules. 2008; 13(2):272-300. https://doi.org/10.3390/molecules13020272
Chicago/Turabian StyleLee, Seung Ho, Jong-Keun Son, Byeong Seon Jeong, Tae-Cheon Jeong, Hyeon Wook Chang, Eung-Seok Lee, and Yurngdong Jahng. 2008. "Progress in the Studies on Rutaecarpine" Molecules 13, no. 2: 272-300. https://doi.org/10.3390/molecules13020272
APA StyleLee, S. H., Son, J. -K., Jeong, B. S., Jeong, T. -C., Chang, H. W., Lee, E. -S., & Jahng, Y. (2008). Progress in the Studies on Rutaecarpine. Molecules, 13(2), 272-300. https://doi.org/10.3390/molecules13020272