Antioxidant Effects of Some Drugs on Ethanol-induced Ulcers
Abstract
:Introduction
Results and Discussion
Enzymes | OO group | AO group | AB1 group | AB2 group | AB3 group | AH group | AA group |
---|---|---|---|---|---|---|---|
GSH | 1.55 ± 0.07 | 0.91 ± 0.08 c | 0.87 ± 0.03 c | 0.77 ± 0.05 c, d | 0.90 ± 0.04 c | 0.78± 0.03 c,e | 0.82 ± 0.05 c |
GSHPx | 0.92 ± 0.10 | 0.91 ± 0.09 | 0.90 ± 0.07 | 0.89± 0.06 | 1.01± 0.13 | 1.06 ± 0.09 | 0.99 ± 0.11 |
GSHR | 1.21 ± 0.04 | 1.42 ± 0.14 a | 0.99 ± 0.04 c,f | 0.80± 0.02 c,f | 1.17 ± 0.11 d | 1.19 ± 0.05 e | 1.08 ± 0.08 c, e |
Px | 2.10 ± 0.07 | 2.93 ± 0.36 b | 2.46 ± 0.21 a | 2.48 ± 0.13 b | 3.40 ± 0.28 c | 3.11 ± 0.22 c | 3.26 ± 0.33 b |
CAT | 2.11 ± 0.19 | 0.57 ± 0.14 c | 1.88 ± 0.17 f | 0.90 ± 0.18 c, d | 1.25 ± 0.12 c,f | 0.52 ± 0.12 c | 2.47 ± 0.28 f |
XOD | 3.25 ± 0.12 | 1.63 ± 0.21 c | 4.12 ± 0.16 c, f | 4.55 ± 0.20 b,f | 3.66 ± 0.13 a,f | 5.11± 0.14 c, f | 4.74 ± 0.36 b, f |
LPx | 0.23 ± 0.04 | 0.35 ± 0.09 c | 0.41± 0.02 c | 0.11± 0.01 b,e | 0.33 ± 0.02 c | 0.33 ± 0.03 b | 0.30 ± 0.03 a |
Ulcers index | 16.20 ± 8.75 | 8.92 ± 4.79d | 9.53 ± 4.22d | 12.00 ± 5.92 | 4.50 ± 1.50d | 0.00 ± 0.00f | |
Hemorrhages | stomach without change | pronounced submucosal hemorrhages | hemorrhages of lower intensity | hemorrhages similar to the control OO group | pronounced submucosal hemorrhages | hemorrhages present | significantly smaller change compared to the control, hemorrhages practically absent. |
GSH | 00 | A0 | AB1 | AB2 | AB3 | AH | GSHPx | 00 | A0 | AB1 | AB2 | AB3 | AH |
A0 | 3.61 + | A0 | 0.01 - | ||||||||||
AB1 | 3.24 + | 0.37 - | AB1 | 0.01 - | 0.01 - | ||||||||
AB2 | 2.18 + | 1.44 + | 1.07 + | AB2 | 0.02 - | 0.01 - | 0.01 - | ||||||
AB3 | 4.36 + | 0.75 + | 1.12 + | 2.18 + | AB3 | 0.09 + | 0.10 + | 0.11 + | 0.11 + | ||||
AH | 2.29 + | 1.32 + | 0.95 + | 0.12 - | 2.06 + | AH | 0.14 + | 0.14 + | 0.15 + | 0.16 + | 0.04 - | ||
AA | 2.68 + | 0.93 + | 0.56 + | 0.51 + | 1.68 + | 0.39 - | AA | 0.08 + | 0.09 + | 0.09 + | 0.10 + | 0.02 - | 0.06 - |
GSHR | 00 | A0 | AB1 | AB2 | AB3 | AH | Px | 00 | A0 | AB1 | AB2 | AB3 | AH |
A0 | 12.07 + | A0 | 0.91 + | ||||||||||
AB1 | 7.78 + | 4.30 + | AB1 | 0.46 + | 0.45 + | ||||||||
AB2 | 5.87 + | 6.21 + | 1.91 + | AB2 | 0.33 + | 0.58 + | 0.13 - | ||||||
AB3 | 13.58 + | 1.51 + | 5.81 + | 7.72 + | AB3 | 0.50 + | 1.41 + | 0.96 + | 0.83 + | ||||
AH | 9.63 + | 2.44 + | 1.86 + | 3.77 + | 3.95 + | AH | 1.41 + | 0.50 + | 0.95 + | 1.09 + | 1.91 + | ||
AA | 8.67 + | 3.40 + | 0.89 + | 2.81 + | 4.91 + | 0.96 + | AA | 2.98 + | 2.07 + | 2.52 + | 2.65 + | 3.48 + | 1.57 + |
CAT | 00 | A0 | AB1 | AB2 | AB3 | AH | XOD | 00 | A0 | AB1 | AB2 | AB3 | AH |
A0 | 1.53 + | A0 | 1.82 + | ||||||||||
AB1 | 0.23 + | 1.30 + | AB1 | 0.67 + | 2.49 + | ||||||||
AB2 | 1.36 + | 0.17 + | 1.13 + | AB2 | 0.90 + | 0.92 + | 1.57 + | ||||||
AB3 | 0.92 + | 0.61 + | 0.69 + | 0.44 + | AB3 | 0.20 + | 2.03 + | 0.47 + | 1.11 + | ||||
AH | 1.59 + | 0.06 - | 1.36 + | 0.23 + | 0.67 + | AH | 1.65 + | 3.48 + | 0.98 + | 2.56 + | 1.45 + | ||
AA | 0.37 + | 1.90 + | 0.60 + | 1.73 + | 1.28 + | 1.95 + | AA | 1.29 + | 3.11 + | 0.62 + | 2.19 + | 1.09 + | 0.36 + |
LPx | 00 | A0 | AB1 | AB2 | AB3 | AH | |||||||
A0 | 0.12 + | ||||||||||||
AB1 | 0.17 + | 0.06 + | |||||||||||
AB2 | 0.13 + | 0.24 + | 0.30 + | ||||||||||
AB3 | 0.01 - | 0.12 + | 0.18 + | 0.12 + | |||||||||
AH | 0.09 + | 0.02 - | 0.08 + | 0.22 + | 0.10 + | ||||||||
AA | 0.07 + | 0.04 + | 0.10 + | 0.20 + | 0.08 + | 0.02 - |
Experimental
General
Animal treatment
Measurement of macroscopic changes in stomach epithelia following alcohol-induced stress
Acknowledgements
References and Notes
- Niki, E.; Yoshida Y.; Saito Y.; Noguchi N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 2005, 338, 668–676. [Google Scholar] [CrossRef]
- Hollander, D.; Tarnawski, A.; Krause, W. J.; Gergely, H. Protective effect of sucralfate against alcohol induced gastric mucosal injury in the rat. Macroscopic, histologic, ultrastructural, and functional time sequence analysis. Gastroenterology 1985, 88, 366–374. [Google Scholar] [CrossRef]
- Das, D.; Banerjee, R.K. Effect of stress on the antioxidant enzymes and gastric ulceration. Mol. Cell. Biochem. 1993, 25, 115–125. [Google Scholar]
- Das, D.; Bandyopadhyay, D.; Bhattacharjee, M.; Banerjee, R.K. Hydroxyl radical is the major causative factor in stress-induced gastric ulceration. Free Radical. Biol. Med. 1997, 23, 8–18. [Google Scholar] [CrossRef]
- Das, D.; Bandyopadhyay, D.; Banerjee, R.K. Oxidative Inactivation of Gastric Peroxidase by Site-Specific Generation of Hydroxyl Radical and Its Role in Stress-Induced Gastric Ulceration. Free Radical. Biol. Med. 1998, 24, 460–469. [Google Scholar] [CrossRef]
- Bakar, O.; Demircay, Z.; Yuksel, M.; Haklar, G.; Sanisoglu, Y. The Effect of Azithromycin on Reactive Oxygen Species in Rosacea. Clin. Exper. Derm. 2007, 32, 197–200. [Google Scholar] [CrossRef]
- Parnham, M. J.; Čulić, O.; Eraković, V.; Munić, V.; Popović-Grle, S.; Barišić, K.; Bosnar, M.; Brajša, K.; Čepelak, I.; Čužić, S.; Glojnarić, I.; Manojlović, Z.; Novak-Mirčetić, R.; Oresković, K.; Pavičić-Beljak, V.; Radošević, S.; Sučić, M. Modulation of neutrophil and inflammation markers in chronic obstructive pulmonary disease by short-term azithromycin treatment. Eur. J. Pharm. 2005, 517, 132–143. [Google Scholar] [CrossRef]
- Culic, O.; Erakovic, V.; Cepelak, I.; Barisic, K.; Brajsa, K.; Ferencic, Z.; Galovic, R.; Glojnaric, I.; Manojlovic, Z.; Munic, V.; Novak-Mircetic, R.; Pavicic-Beljak, V.; Sucic, M.; Veljaca, V.; Zanic-Grubisic, T.; Parnham, M.J. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur. J. Pharmacol. 2002, 450, 277–289. [Google Scholar] [CrossRef]
- Tsai, W.C.; Rodriguez, M.L.; Young, K.S.; Deng, J.C.; Thannickal, V.J.; Tateda, K.; Hershenson, M.B.; Standiford, T.J. Azithromycin Blocks Neutrophil Recruitment in Pseudomonas Endobronchial Infection. Am. J. Respir. Crit. Care Med. 2004, 170, 1331–1339. [Google Scholar] [CrossRef]
- Sitland-Marken, P.A.; Wells, B.G.; Froemming, J.H.; Chu, C.C.; Brown, C.S. Psychiatric applications of bromocriptine therapy. J. Clin. Psychiatry 1990, 51, 68–82. [Google Scholar]
- Muralkrishnan, D.; Mohanakumar, K.P. Neuroprotection by Bromocriptine Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice. FASEB J. 1998, 12, 905–912. [Google Scholar]
- Yoshikawa, T.; Minamiyama, Y.; Naito, Y.; Kondo, M. Antioxidant Properties of Bromocriptine, a Dopamine Agonist. J. Neurochem. 1994, 62, 1034–1038. [Google Scholar]
- Post, A.; Holsboer, F.; Behl, C. Induction of NF-kB Activity during Haloperidol-Induced Oxidative Toxicity in Clonal Hippocampal Cells: Suppression of NF-kB and Neuroprotection by Antioxidants. J. Neurosci. 1998, 18, 8236–8246. [Google Scholar]
- Naidu, P.S.; Singh, A.; Kulkarni, S.K. Quercetin, a Bioflavonoid, Attenuates Haloperidol-Induced Orofacial Dyskinesia. Neuropharmacology 2003, 44, 1100–1106. [Google Scholar] [CrossRef]
- Yao, J.K.; Reddy, R.; McElhinny, L.G.; van Kammen, D.P. Effects of Haloperidol on Antioxidant Defense System Enzymes in Schizophrenia. J. Phys. Res. 1998, 32, 385–391. [Google Scholar]
- Sikiric, P.; Mikus, D.; Seiwerth, S.; Grabarevic, Z.; Rucman, R.; Petek, M.; et al. Pentadecapeptide BPC 157, Cimetidine, Ranitidine, Bromocriptine, and Atropine Effect in Cysteamine Lesions in Totally Gastrectromized Rats (A Model for Cytoprotective Studies). Dig. Dis. Sci. 1997, 42, 1029–1037. [Google Scholar] [CrossRef]
- Samini, M.; Moezi, L.; Jabarizadeh, N.; Tavakolifar, B.; Shafaroodi, H.; Dehpour, A.R. Evidences for involvement of nitric oxide in the gastroprotective effect of bromocriptine and cyclosporin A on water immersion stress-induced gastric lesions. Pharmacol. Res. 2002, 46, 519–523. [Google Scholar] [CrossRef]
- Degen, S.B.; Geven, E.J.W.; Sluyter, F.; Hof, M.W.P.; Van der Elst, M.C.J.; Cools, A.R. Apomorphine-susceptible and apomorphine-unsusceptible Wistar rats differ in their recovery from stress-induced ulcers. Life Sci. 2003, 72, 1117–1124. [Google Scholar] [CrossRef]
- Lieber, C.S; Leo, M.A. Metabolism of ethanol and some associated adverse effects on the liver and the stomach. Recent Dev. Alcohol 1998, 14, 7–40. [Google Scholar]
- La Casa, C.; Villegas, I.; Alarcón de la Lastra, C.; Motilva, V.; Martín Calero, M.J. Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J. Ethnopharm. 2000, 71, 45–53. [Google Scholar] [CrossRef]
- Huh, K.; Kwon, T.H.; Shin, U.S.; Kim, W.B.; Ahn, B.O.; Oh, T.Y.; Kim J-A. Inhibitory effects of DA-9601 on ethanol-induced gastrohemorrhagic lesions and gastric xanthine oxidase activity in rats. J. Ethnopharmacol. 2003, 88, 269–273. [Google Scholar] [CrossRef]
- Popovic, M.; Janicijevic-Hudomal, S.; Kaurinovic, B.; Rasic, J.; Trivic, S. Effects of Various Drugs on Alcohol-induced Oxidative Stress in the Liver. Molecules 2008, 13, 2249–2259. [Google Scholar] [CrossRef]
- Naidu, P.S.; Singh, A.; Kulkarni, S.K. Effect of Withania somnifera root extract on haloperidol-induced orofacial dyskinesia: possible mechanisms of action. J. Med. Food 2003, 6, 107–114. [Google Scholar] [CrossRef]
- Arafa, H.M.M.; Sayed-Ahmed, M.M. Protective role of carnitine esters against alcohol-induced gastric lesions in rats. Pharmacol. Res. 2003, 48, 285–290. [Google Scholar] [CrossRef]
- Buege, A.J.; Aust, D.S. Methods in Enzymology; Fleischer, S., Parker, L., Eds.; Academic Press: New York, U.S.A, 1988; p. 306. [Google Scholar]
- Simon, L.M.; Fatrai, Z.; Jonas, D.E.; Matkovics, B. Study of Metabolism Enzymes during the Development of Phaseolus vulgaris. Biochem. Physiol. Plant 1974, 166, 389–393. [Google Scholar]
- Beers, R.F.J.; Sizer, J.W. Spectrophotometric Method for Measuring of Breakdown of Hydrogen Peroxide by Catalase. J. Biol. Chem. 1950, 195, 133–140. [Google Scholar]
- Chin, P.T.Y.; Stults, F.H.; Tappel, A.L. Purification of Rat Lung Soluble Glutathione Peroxidase. Biochem. Biophys. Acta 1976, 445, 558–660. [Google Scholar]
- Bergmayer U.H. Methoden Der Enzymatischen Analyse.; Verlag Chemie: Weinhem, 1970. [Google Scholar]
- Glatzle, D.; Vuillenmir, K. Glutathione Reductase Test with Whole Blood a Convenient Procedure for the Assessment of the Riboflavin Status in Human. Experimentia 1974, 30, 565–638. [Google Scholar]
- Kapetanović, I.M.; Mieyal, I.I. Inhibition of Acetaminophen Induced Hepatotoxicity by Phenacetin and Its Alkoxy Analogs. J. Pharmacol. Exp. Ther. 1979, 209, 25–30. [Google Scholar]
- Gornall, H.G.; Nardwall, C.L. Estimation of Total Protein in Tissue Homogenate. J. Biol.Chem. 1949, 177, 751–756. [Google Scholar]
- Sample Availability: Samples are not available.
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Popovic, M.; Janicijevic-Hudomal, S.; Kaurinovic, B.; Rasic, J.; Trivic, S. Antioxidant Effects of Some Drugs on Ethanol-induced Ulcers. Molecules 2009, 14, 816-826. https://doi.org/10.3390/molecules14020816
Popovic M, Janicijevic-Hudomal S, Kaurinovic B, Rasic J, Trivic S. Antioxidant Effects of Some Drugs on Ethanol-induced Ulcers. Molecules. 2009; 14(2):816-826. https://doi.org/10.3390/molecules14020816
Chicago/Turabian StylePopovic, Mira, Snezana Janicijevic-Hudomal, Biljana Kaurinovic, Julijana Rasic, and Svetlana Trivic. 2009. "Antioxidant Effects of Some Drugs on Ethanol-induced Ulcers" Molecules 14, no. 2: 816-826. https://doi.org/10.3390/molecules14020816
APA StylePopovic, M., Janicijevic-Hudomal, S., Kaurinovic, B., Rasic, J., & Trivic, S. (2009). Antioxidant Effects of Some Drugs on Ethanol-induced Ulcers. Molecules, 14(2), 816-826. https://doi.org/10.3390/molecules14020816