Headspace, Volatile and Semi-Volatile Organic Compounds Diversity and Radical Scavenging Activity of Ultrasonic Solvent Extracts from Amorpha fruticosa Honey Samples
Abstract
:Introduction
Results and Discussion
Diversity of volatiles isolated by headspace solid-phase microextraction (HS-SPME)
No. | Compound | RI | Area percentage (%) | |||
---|---|---|---|---|---|---|
Min. | Max. | Av. | SD. | |||
1. | Methyl sulfide | ‹ 900 | 0.0 | 0.3 | 0.13 | 0.15 |
2. | Dimethyl disulfide | ‹ 900 | 0.0 | 0.2 | 0.10 | 0.10 |
3. | Octanea | ‹ 900 | 0.9 | 1.6 | 1.33 | 0.38 |
4. | Furfurala | ‹ 900 | 0.5 | 1.4 | 0.97 | 0.45 |
5. | Nonanea | 900 | 0.0 | 0.5 | 0.27 | 0.25 |
6. | 1-(2-Furanyl)- ethanone | 914 | 0.0 | 0.2 | 0.10 | 0.10 |
7. | Benzaldehydea | 965 | 1.3 | 4.9 | 2.97 | 1.81 |
8. | 2,4-Dimethyl-3,6-dihydro-2H-pyran | 969 | 1.0 | 1.6 | 1.20 | 0.35 |
9. | Hexanoic acida | 974 | 0.4 | 0.7 | 0.50 | 0.17 |
10. | Benzyl alcohola | 1037 | 1.1 | 1.3 | 1.20 | 0.10 |
11. | Phenylacetaldehydea | 1048 | 1.7 | 2.2 | 2.00 | 0.26 |
12. | trans-Linalool oxide (furan type) | 1076 | 10.8 | 16.9 | 14.23 | 3.12 |
13. | cis-Linalool oxide (furan type) | 1091 | 1.3 | 3.2 | 2.37 | 0.97 |
14. | Linaloola | 1101 | 1.0 | 2.1 | 1.53 | 0.55 |
15. | Hotrienol | 1106 | 4.3 | 5.3 | 4.80 | 0.50 |
16. | 2-Phenylethanola | 1116 | 38.3 | 58.4 | 47.30 | 10.21 |
17. | Isophoronea | 1124 | 0.1 | 1.2 | 0.67 | 0.61 |
18. | Phenylacetonitrile | 1142 | 0.8 | 1.0 | 0.90 | 0.10 |
19. | 4-Ketoisophorone | 1147 | 0.0 | 0.4 | 0.17 | 0.21 |
20. | Lilac aldehyde** | 1154 | 0.3 | 1.1 | 0.73 | 0.40 |
21. | Pinocarvone | 1166 | 0.1 | 0.9 | 0.57 | 0.42 |
22. | Nonan-1-ola | 1175 | 1.0 | 2.8 | 1.77 | 0.93 |
23. | Nonanoic acida | 1273 | 0.7 | 2.1 | 1.43 | 0.70 |
24. | 4-Vinyl-2-methoxy-phenol | 1314 | 0.0 | 0.6 | 0.30 | 0.30 |
25. | (E)-β-Damascenone | 1385 | 0.7 | 1.5 | 1.07 | 0.40 |
Total identified | 89.7-92.9% |
Diversity of volatiles isolated by ultrasonic solvent extraction (USE)
No. | Compound | RI | Area percentage (%) | |||
---|---|---|---|---|---|---|
Min. | Max. | Av. | SD. | |||
1. | 4-Methyloctane* | ‹ 900 | 0.1 | 0.2 | 0.13 | 0.06 |
2. | Ethylbenzene | ‹ 900 | 0.3 | 0.4 | 0.33 | 0.06 |
3. | 1,4-Dimethylbenzene (p-Xylene) | ‹ 900 | 1.3 | 2.0 | 1.60 | 0.36 |
4. | Ethenylbenzene | ‹ 900 | 0.0 | 0.2 | 0.10 | 0.10 |
5. | 1,3-Dimethylbenzene (m-Xylene) | ‹ 900 | 0.2 | 0.5 | 0.33 | 0.15 |
6. | Methoxybenzenea (Anisol) | 920 | 0.3 | 0.5 | 0.37 | 0.11 |
7. | Benzaldehydea | 965 | 0.0 | 0.1 | 0.07 | 0.06 |
8. | 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 980 | 0.4 | 0.6 | 0.50 | 0.10 |
9. | 2-Ethylfuran | 982 | 0.7 | 2.3 | 1.57 | 0.70 |
10. | Benzyl alcohola | 1037 | 0.5 | 1.3 | 0.80 | 0.44 |
11. | Phenylacetaldehydea | 1048 | 0.0 | 0.1 | 0.07 | 0.06 |
12. | trans-Linalool oxide (furan type) | 1076 | 0.3 | 0.7 | 0.53 | 0.21 |
13. | 4,5-Dimethyl-2-formylfuran | 1078 | 0.2 | 0.9 | 0.47 | 0.38 |
14. | 1-(2-Furanyl)-2-hydroxyethanone | 1084 | 0.4 | 1.0 | 0.63 | 0.32 |
15. | cis-Linalool oxide (furan type) | 1091 | 0.0 | 0.1 | 0.06 | 0.05 |
16. | Nonanala | 1105 | 0.0 | 0.2 | 0.10 | 0.10 |
17. | 2-Phenylethanola | 1116 | 10.5 | 16.8 | 13.47 | 3.17 |
18. | Benzoic acida | 1162 | 0.5 | 1.1 | 0.73 | 0.32 |
19. | 4-Methylbenzyl alcohola | 1171 | 0.0 | 0.2 | 0.10 | 0.10 |
20. | 3,7-Dimethylocta-1,5-dien-3,7-diol | 1191 | 0.0 | 0.4 | 0.20 | 0.20 |
21. | 4-Vinylphenola | 1221 | 0.2 | 0.3 | 0.27 | 0.06 |
22. | 5-Hydroxymethylfurfurala | 1230 | 3.5 | 9.1 | 6.53 | 2.83 |
23. | Phenylacetic acida | 1269 | 0.8 | 2.1 | 1.33 | 0.68 |
24. | 1,4-di-tert-Butylbenzene | 1257 | 0.0 | 0.4 | 0.20 | 0.20 |
25. | Nonanoic acida | 1273 | 0.0 | 0.1 | 0.06 | 0.05 |
26. | Benzene-1,4-diol | 1278 | 0.0 | 0.4 | 0.20 | 0.20 |
27. | 1-Phenylethan-1,2-diol | 1304 | 0.2 | 0.7 | 0.50 | 0.26 |
28. | 4-Vinyl-2-methoxyphenol | 1314 | 0.0 | 0.6 | 0.37 | 0.32 |
29. | 1-Hydroxylinalool | 1365 | 0.0 | 1.8 | 1.03 | 0.93 |
30. | Butoxyethoxyethyl acetate | 1371 | 0.0 | 0.2 | 0.07 | 0.11 |
31. | 2-Phenylacetamide | 1393 | 3.2 | 7.4 | 5.50 | 2.13 |
32. | 4-Hydroxy-3-methoxybenzaldehydea (Vanilline) | 1397 | 0.0 | 0.2 | 0.10 | 0.10 |
33. | 4-Hydroxybenzyl alcohola | 1426 | 0.8 | 2.0 | 1.40 | 0.60 |
34. | 4-Methoxybenzaldehydea | 1445 | 0.2 | 0.4 | 0.30 | 0.10 |
35. | Dodecan-1-ola | 1479 | 0.0 | 1.3 | 0.53 | 0.68 |
36. | Pentadecanea | 1500 | 0.1 | 0.8 | 0.40 | 0.36 |
37. | 4-Methyl-2,6-bis(1,1-dimethylethyl)-phenol | 1514 | 2.9 | 4.2 | 3.60 | 0.66 |
38. | 4-Hydroxybenzoic acida | 1522 | 0.9 | 2.3 | 1.47 | 0.73 |
(p-Salicylic acid) | ||||||
39. | 4-Hydroxyphenylacetic acida | 1563 | 0.2 | 0.7 | 0.47 | 0.25 |
40. | 4-Hydroxy-3-methoxybenzoic acida (Vanillic acid) | 1566 | 0.2 | 0.6 | 0.43 | 0.21 |
41. | 4-Hydroxy-3,5-dimethoxy-benzaldehyde (Syringyl aldehyde) | 1661 | 0.0 | 1.7 | 0.73 | 0.87 |
42. | Tetradecan-1-ola | 1678 | 0.0 | 0.4 | 0.13 | 0.23 |
43. | Methyl 3,5-dimethoxy-4-hydroxybenzoatea (Methyl syringate) | 1774 | 5.8 | 8.2 | 7.40 | 1.39 |
44. | 3-(4-Hydroxyphenyl)-prop-2-enoic acid (4-Hydroxycinnamic acid) | 1789 | 0.0 | 0.6 | 0.20 | 0.35 |
45. | 4-Hydroxy-3,5,6-trimethyl-4-(3-oxo-1-butenyl)-cyclohex-2-en-1-one | 1790 | 1.4 | 7.5 | 3.17 | 3.77 |
46. | 3,5-Dimethoxy-4-hydroxybenzoic acid (Syringic acid) | 1817 | 0.0 | 0.6 | 0.23 | 0.32 |
47. | 3-(4-Hydroxy-3-methoxyphenyl)- prop-2-enoic acida (Ferulic acid) | 1867 | 0.6 | 1.2 | 0.83 | 0.32 |
48. | Diisobutyl phthalate | 1869 | 0.6 | 1.0 | 0.77 | 0.21 |
49. | Hexadecan-1-ola | 1882 | 2.5 | 8.2 | 5.23 | 2.86 |
50. | 2,5-Dimethoxy-4-ethylbenzaldehyde | 1890 | 0.0 | 0.4 | 0.13 | 0.23 |
51. | 3-Hydroxy-4-methoxycinnamic acid (Isoferulic acid) | 1869 | 0.0 | 0.6 | 0.27 | 0.31 |
52. | Hexadecanoic acida | 1963 | 1.4 | 1.9 | 1.70 | 0.26 |
53. | (Z)-Octedec-9-en-1-ola | 2060 | 5.2 | 16.8 | 11.87 | 5.99 |
54. | Octadecan-1-ola | 2084 | 1.4 | 2.6 | 2.00 | 0.60 |
55. | Heneicosanea | 2100 | 0.0 | 3.9 | 1.97 | 1.95 |
56. | (Z)-Octadec-9-enoic acida | 2147 | 0.0 | 2.5 | 1.50 | 1.33 |
57. | Tetracosanea | 2400 | 1.0 | 2.0 | 1.67 | 0.58 |
Total identified | 90.7-96.3% |
Free radical scavenging ability of ultrasonic solvent extracts compared to the honey samples
Experimental
Honey samples
Headspace solid-phase microextraction (HS-SPME)
Ultrasonic solvent extraction (USE)
Gas chromatography and mass spectrometry (GC, GC-MS)
Data analysis and data evaluation
Free radical scavenging activity (DPPH assay)
Conclusions
Acknowledgements
- Sample Availability: Contact the authors.
References
- Bertelli, D.; Papotti, G.; Lolli, M.; Sabatini, A.G.; Plessi, M. Development of an HS-SPME-GC method to determine the methyl anthranilate in Citrus honeys. Food Chem. 2008, 108, 297–303. [Google Scholar] [CrossRef]
- de la Fuente, E.; Valencia-Barrera, R.M.; Martïnez-Castro, I.; Sanz, J. Occurrence of 2-hydroxy-5-methyl-3-hexanone and 3-hydroxy-5-methyl-2-hexanone as indicators of botanic origin in eucalyptus honeys. Food Chem. 2007, 103, 1176–1180. [Google Scholar] [CrossRef]
- Guyot, C.; Bouseta, A.; Scheirman, V.; Collin, S. Floral origin markers of chestnut and lime tree honeys. J. Agric. Food Chem. 1998, 46, 625–633. [Google Scholar] [CrossRef]
- Castro-Vázquez; Díaz-Maroto, M.C.; González-Viñas, M.A.; Pérez-Coello, M.S. Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chem. 2009, 112, 1022–1030. [Google Scholar] [CrossRef]
- Guyot, C.; Scheirman, V.; Collin, S. Floral origin markers of heather honeys: Calluna vulgaris and Erica arborea. Food Chem. 1999, 64, 3–11. [Google Scholar] [CrossRef]
- Soria, A.C.; Martïnez-Castro, I.; Sanz, J. Analysis of volatile composition of honey by solid phase microextraction and gas chromatography-mass spectrometry. J. Sep. Sci. 2003, 26, 793–801. [Google Scholar] [CrossRef]
- Blank, I.; Fischer, K.H.; Grosch, W. Intensive neutral odourants of linden honey Differences from honeys of other botanical origin. Z. Lebensm.-Unters.-Forsch. 1989, 189, 426–433. [Google Scholar] [CrossRef]
- De Maria, C.A.B.; Moreira, R.F.A. Volatile compounds in floral honeys. Quim. Nova 2003, 26, 90–96. [Google Scholar]
- Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Evaluation of four isolation techniques for honey aroma compounds. J. Sci. Food Agric. 2005, 85, 91–97. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.-H.; Engeseth, N.J. Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef]
- Frankel, S.; Robinson, G.E.; Berenbaum, M.R. Antioxidant capacity and correlated characteristics of 14 unifloral honeys. J. Apic. Res. 1998, 37, 27–31. [Google Scholar]
- Schramm, D.D.; Karim, M.; Schrader, H.R.; Holt, R.R.; Cardetti, M.; Keen, C.L. Honey with high levels of antioxidants can provide protection to healthy human subjects. J. Agric. Food Chem. 2003, 51, 1732–1735. [Google Scholar] [CrossRef]
- Aljadi, A.M.; Kamaruddin, M.Y. Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chem. 2004, 85, 513–518. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z. Screening of volatile composition of Lavandula hybrida Reverchon II honey using headspace solid-phase microextraction and ultrasonic solvent extraction. Chem. Biodivers. 2009, 6, 421–430. [Google Scholar] [CrossRef]
- Jerković, I.; Tuberoso, C.I.G.; Marijanović, Z.; Jelić, M.; Kasum, A. Headspace, volatile and semi-volatile patterns of Paliurus spina-christi unifloral honey as markers of botanical origin. Food Chem. 2009, 112, 239–245. [Google Scholar] [CrossRef]
- Bogdanov, S.; Martin, P.; Lullmann, C.; Borneck, R.; Flamini, C.; Morlot, M.; Lheritier, J.; Vorwohl, G.; Russmann, H.; Persano, L.; Sabatini, A.G.; Marcazzan, G.L.; Marioleas, P.; Tsigouri, A.; Kerkvliet, J.; Ortiz, A.; Ivanov, T. Harmonised methods of the European Honey Commission. Apidologie 1997, 28, 1–59. [Google Scholar]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 59, 39–153. [Google Scholar]
- Matos, L.M.C.; Moreira, R.F.A.; Trugo, L.C.; De Maria, C.A.B. Aroma compounds in morrão de candeia (Croton sp.) And assa-peixe (Vernonia sp.) honeys. Ital. J. Food Sci. 2002, 14, 267–278. [Google Scholar]
- Moreira, R.F.A.; Trugo, L.C.; Pietroluongo, M.; De Maria, C.A.B. Flavor composition of cashew (Anacardium occidentale) and marmeleiro (Croton species) honeys. J. Agric. Food Chem. 2002, 50, 7616–7621. [Google Scholar] [CrossRef]
- Kreck, M.; Püschel, S.; Wüst, M.; Mosandl, A. Biogenetic studies in Syringa vulgaris L.: Synthesis and bioconversion of deuterium-labeled precursors into lilac aldehydes and lilac alcohols. J. Agric. Food Chem. 2003, 51, 463–469. [Google Scholar] [CrossRef]
- Wüst, M.; Mosandl, A. Important chiral monoterpenoid ethers in flavours and essential oils - Enantioselective analysis and biogenesis. Eur. Food Res. Technol. 1999, 209, 3–11. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Daferera, D.; Tarantilis, P.A.; Polissiou, M.; Harizanis, P.C. Ultrasound-assisted extraction of volatile compounds from citrus flowers and citrus honey. Food Chem. 2003, 82, 575–582. [Google Scholar] [CrossRef]
- Serra Bonvehí, J.; Coll, F.V. Flavour index and aroma profiles of fresh and processed honeys. J. Sci. Food Agric. 2003, 83, 275–282. [Google Scholar] [CrossRef]
- Joerg, E.; Sontag, G. Multichannel coulometric detection coupled with liquid chromatography for determination of phenolic esters in honey. J. Chromatogr. A 1993, 635, 137–142. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Bifulco, E.; Jerković, I.; Caboni, P.; Cabras, P.; Floris, I. Methyl syringate: A chemical marker of asphodel (Asphodelus microcarpus salzm. et viv.) monofloral honey. J. Agric. Food Chem. 2009, 57, 3895–3900. [Google Scholar]
- El-Sayed, A.M. The pherobase: database of insect pheromones and semiochemicals. Available online: http://www.pherobase.com.
- Mastelić, J.; Jerković, I.; Blažević, I.; Poljak-Blaži, M.; Borović, S.; Ivančić-Baće, I.; Smrečki, V.; Žarković, N.; Brčić-Kostić, K.; Vikić-Topić, D.; Müller, N. Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J. Agric. Food Chem. 2008, 56, 3989–3996. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jerković, I.; Marijanović, Z.; Kezić, J.; Gugić, M. Headspace, Volatile and Semi-Volatile Organic Compounds Diversity and Radical Scavenging Activity of Ultrasonic Solvent Extracts from Amorpha fruticosa Honey Samples. Molecules 2009, 14, 2717-2728. https://doi.org/10.3390/molecules14082717
Jerković I, Marijanović Z, Kezić J, Gugić M. Headspace, Volatile and Semi-Volatile Organic Compounds Diversity and Radical Scavenging Activity of Ultrasonic Solvent Extracts from Amorpha fruticosa Honey Samples. Molecules. 2009; 14(8):2717-2728. https://doi.org/10.3390/molecules14082717
Chicago/Turabian StyleJerković, Igor, Zvonimir Marijanović, Janja Kezić, and Mirko Gugić. 2009. "Headspace, Volatile and Semi-Volatile Organic Compounds Diversity and Radical Scavenging Activity of Ultrasonic Solvent Extracts from Amorpha fruticosa Honey Samples" Molecules 14, no. 8: 2717-2728. https://doi.org/10.3390/molecules14082717
APA StyleJerković, I., Marijanović, Z., Kezić, J., & Gugić, M. (2009). Headspace, Volatile and Semi-Volatile Organic Compounds Diversity and Radical Scavenging Activity of Ultrasonic Solvent Extracts from Amorpha fruticosa Honey Samples. Molecules, 14(8), 2717-2728. https://doi.org/10.3390/molecules14082717