Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products
Abstract
:1. Introduction
2. Recently-Published Crude Extracts with Antiplasmodial Activity
Family | Species | Extract (part) | Antiplasmodial Activity (IC50, μg/mL) | Strain | Ref. | |
---|---|---|---|---|---|---|
Amaranthaceae | Amaranthus spinosus | Water (stem bark) | 789.36 ± 7.19 ¥ | (N.S.) ≠ S | [44] | |
Annonaceae | Uvariopsis congolana | MeOH* (stem) | 4.47 ± 0.45 | W2 R | [45] | |
MeOH* (leaves) | 4.57 ± 0.76 | W2 R | ||||
Polyalthia oliveri | MeOH* (stem bark) | 4.30 ± 0.31 | W2 R | |||
Enantia chlorantha | MeOH* (stem) | 4.79 ± 1.09 | W2 R | |||
MeOH* (stem bark) | 2.06 ± 0.01 | W2 R | ||||
Aphloiaceae | Aphloia theiforms | MeOH (bark) | 13.3 ± 0.8 | 3D7 S | [46] | |
11.0 ± 3.1 | W2 R | |||||
CH2Cl2 (bark) | 16.1 ± 2.7 | 3D7 S | ||||
18.2 ± 2.7 | W2 R | |||||
CH2Cl2 (leaves) | 21.0 ± 1.6 | 3D7S | ||||
22.7 ± 2.9 | W2 R | |||||
Apiaceae | Ferula oopoda | MeOH (roots) | 26.6 | K1 R | [47] | |
24.9 | 3D7 S | |||||
Astrodaucus orientalis | MeOH (aerial parts) | 46.1 | K1 R | |||
42.6 | 3D7 S | |||||
Apocynaceae | Picralima nitida | EtOH (seeds) [115 mg/Kg] | 73.0%** | (N.S.) ≠ S | [48] | |
Asclepiadaceae | Caralluma tuberculata | Pet. Ether (aerial parts) | 7.94 | K1 R | [49] | |
Asteraceae | Vernonia amygdalina | EtOH (leaves) | 9.7 ± 2.6 | (N.S.) S | [50] | |
Pet. Ether (leaves) | 2.5 ± 0.7 | (N.S.) S | ||||
Isoamyl alcohol (leaves) | 2.7 ± 0.6 | (N.S.) S | ||||
Psiadia arguta | CH2Cl2 (leaves) | 10.1 ± 2.2 | 3D7 S | [46] | ||
8.4 ± 1.1 | W2 R | |||||
MeOH (leaves) | 22.4 ± 2.2 | 3D7 S | ||||
26.1 ± 6.5 | W2 R | |||||
Centaurea bruguieriana | MeOH (aerial parts) | 36.9 | 3D7 S | [47] | ||
Centaurea golestanica | MeOH (aerial parts) | 35.6 | K1 R | |||
31.6 | 3D7 S | |||||
Boraginaceae | Heliotropium zeylanicum | MeOH (aerial parts) | 8.41 | K1 R | [49] | |
Buxaceae | Buxus hyrcana | MeOH (aerial parts) | 4.7 | K1 R | [47] | |
7.7 | 3D7 S | |||||
Caesalpiniaceae | Cassia occidentalis | EtOH (leaves) | 2.8 ± 0.5 | (N.S.) S | [50] | |
Pet. Ether (leaves) | 1.5 ± 0.7 | (N.S.) S | ||||
Isoamyl alcohol (leaves) | 18.6 ± 3.6 | (N.S.) S | ||||
CHCl3 [pH 2-3] (leaves) | 2.9 ± 0.3 | (N.S.) S | ||||
Capparaceae | Boscia angustifolia | CH2Cl2 (leaves) | 107.9 | 3D7 S | [51] | |
MeOH (leaves) | 37.6 | 3D7 S | ||||
Caryophyllaceae | Minuartia lineata | MeOH (aerial parts) | 44.0 | 3D7 S | [47] | |
Clusiaceae | Croton zambesicus | EtOH (roots) [81 mg/Kg] | 86.18% ** | ANKA ≠ | [52] | |
n-hexane (root) [57 mg/Kg] | 57.88% ** | ANKA ≠ | ||||
CHCl 3 (root) [57 mg/Kg] | 75.39% ** | ANKA ≠ | ||||
AcOEt (root) [57 mg/Kg] | 76.89% ** | ANKA ≠ | ||||
MeOH (root) [57 mg/Kg] | 77.27% ** | ANKA ≠ | ||||
Garcinia kola | EtOH (stem bark) | 2.9 ± 0.7 | (N.S.) S | [50] | ||
Pet. Ether (stem bark) | 1.6 ± 0.2 | (N.S.) S | ||||
Isoamyl alc. (stem bark) | 41.7 ± 3.2 | (N.S.) S | ||||
CHCl3 [pH 2-3] (stem bark) | 27.1 ± 2.7 | (N.S.) S | ||||
Symphonia globulifera | MeOH (leaves) | 4.1±0.5 | K1 R | [53] | ||
Combretaceae | Terminalia bentzoe L. | MeOH (fresh leaves) | 12.8 ± 2.9 | 3D7 S | [46] | |
12.8 ± 3.5 | W2 R | |||||
CH2Cl2 (leaves) | 42.7 ± 3.2 | 3D7 S | ||||
21.0 ± 2.1 | W2 R | |||||
Cucurbitaceae | Momordica foetida | Water (shoots) | 40.7 ± 11.20 | D10 S | [54] | |
50.8 ± 3.00 | K1 R | |||||
AcOEt (shoots) | 30.0 ± 1.70 | D10 S | ||||
29.30 ± 1.47 | K1 R | |||||
MeOH (shoots) | 75.4 ± 17.50 | D10 S | ||||
68.80 ± 5.40 | K1 R | |||||
Dilleniaceae | Tefracera pogge | EtOH (leaves) | 36.9± 4.2 | (N.S.) S | [50] | |
Pet. Ether (leaves) | 1.7 ± 0.4 | (N.S.) S | ||||
Isoamyl alcohol (leaves) | 21.8 ± 5.2 | (N.S.) S | ||||
Euphorbiaceae | Euphorbia hirta | EtOH (whole plant) | 2.4 ± 0.2 | (N.S.) S | ||
Pet. Ether (whole plant) | 1.2 ± 0.3 | (N.S.) S | ||||
Isoamyl alc. (whole plant) | 2.6 ± 1.2 | (N.S.) S | ||||
Neoboutonia. glabracens | MeOH (leaves) | 5.50 ± 0.20 | W2 R | [45] | ||
Croton zambesicus | MeOH (stem bark) | 5.69 ± 0.06 | W2 R | |||
Phyllantus niruri | EtOH (whole plant) | 2.5± 0.1 | (N.S.) S | [50] | ||
Pet. Ether (whole plant) | 1.3 ± 0.3 | (N.S.) S | ||||
Isoamyl alc. (whole plant) | 2.3 ± 0.5 | (N.S.) S | ||||
Fabaceae | Glycyrrhiza glabra | MeOH (aerial parts) | 17.5 | K1 R | [47] | |
Erythrina fusca | EtOAc (stem bark) | 7.5 | K1 R | [55] | ||
Stylosanthes erecta | CH2Cl2 (aerial parts) | 21.9 | 3D7 S | [51] | ||
MeOH (aerial parts) | 23.3 | 3D7 S | ||||
Tetrapleura tetraptera | EtOH (fruits) [900 mg/Kg] | 76.37%** | (N.S.) ≠ S | [56] | ||
Geraniaceae | Erodium oxyrrhnchum | MeOH (aerial parts) | 40.3 | K1 R | [47] | |
13.0 | 3D7 S | |||||
Hypericaceae | Harungana madagascariensis | EtOH (stem bark) | 0.052-0.517 | (N.S.) | [57] | |
MeOH (seeds) | 3.6 ± 0.3 | K1 R | [53] | |||
Lamiaceae | Otostegia persica | MeOH (fruits + leaves) | 31.1 | K1 R | [47] | |
Otostegia michauxii | MeOH (aerial parts) | 44.6 | K1 R | |||
Perovskia abrotanoides | MeOH (aerial parts) | 37.3 | K1 R | |||
Loganiaceae | Nuxia verticillata | CH2Cl2 (leaves) | 10.9 ± 1.8 | 3D7 S | [46] | |
8.8 ± 1.2 | W2 R | |||||
MeOH (leaves) | 32.7 ± 7.4 | 3D7 S | ||||
CH2Cl2 (bark) | 27.4 ± 6.6 | 3D7 S | ||||
MeOH (bark) | 36.9 ± 5.7 | 3D7 S | ||||
Buddleja salviifolia | CH2Cl2 (bark) | 49.9 ± 9.6 | 3D7 S | |||
CH2Cl2 (leaves) | 29.7 ± 12.6 | 3D7 S | ||||
18.6 ± 5.8 | W2 R | |||||
Strychnos angolensis | EtOAc (roots) | 17.0 ± 7.6 | FCA20 S | [58] | ||
Strychnos cocculoides | EtOAc (leaves) | 20.0 ± 11.9 | FCA20 S | |||
Strychnos gossweileri | EtOAc (roots) | 12.4 ± 4.1 | FCA20 S | |||
Strychnos henningsii | EtOAc (leaves) | 15.9 ± 3.0 | FCA20 S | |||
Strychnos johnsonii | EtOAc (stem) | 16.4 ± 1.8 | FCA20 S | |||
Strychnos mellodora | EtOAc (leaves) | 13.4 | FCA20 S | |||
MeOH (leaves) | 29.5 | FCA20 S | ||||
EtOAc (stem) | 14.5 ± 1.5 | FCA20 S | ||||
EtOAc (roots) | 11.2 ± 3.6 | FCA20 S | ||||
MeOH (roots) | 25.4 ± 11.0 | FCA20 S | ||||
Strychnos scheffleri | EtOAc (leaves) | 21.2 | FCA20 S | |||
Strychnos variabilis | EtOAc (roots) | 2.5 ± 0.2 | FCA20 S | |||
MeOH (roots) | 2.3 ± 0.5 | FCA20 S | ||||
Meliaceae | Trichilia emetica | CH2Cl2 (leaves) | 11.9 | 3D7 S | [51] | |
MeOH (leaves) | 47.6 | 3D7 S | ||||
Mimosaceae | Cylicodiscus gabunensis | EtOH (stem bark) [60 mg/Kg] | 83.3% ¥ | (N.S.) ≠ S | [59] | |
Albizia zygia | MeOH (stem bark) | 1.0 ± 0.1 | K1 R | [53] | ||
Moraceae | Artocarpus communis | MeOH (leaves) | 4.00 ± 0.37 | W2 R | [45] | |
Nyctagynaceae | Boerhaavia erecta | Water (stem bark) | 564.95 ± 6.23 ¥ | (N.S.) ≠ S | [44] | |
Polygalaceae | Securidaca longipedunculata | CH2Cl2 (leaves) | 6.9 | 3D7 S | [51] | |
Rubiaceae | Vangueria infausta | CHCl3 [fr.] (root bark) | 3.8 ± 1.5 | D6 S | [60] | |
4.5 ± 2.3 | W2 R | |||||
Morinda morindoides | EtOH (leaves) | 94.2 ± 3.4 | (N.S.) S | [50] | ||
Pet. Ether (leaves) | 1.8 ± 0.2 | (N.S.) S | ||||
Isoamyl alcohol (leaves) | 15.3 ± 3.6 | (N.S.) S | ||||
CHCl3 [pH 2-3] (leaves) | 8.8 ± 2.5 | (N.S.) S | ||||
Sapindaceae | Cardiospermum halicacabum | AcOEt (shoots) | 28.60 ± 4.20 | D10 S | [54] | |
32.60 ± 2.60 | K1 R | |||||
MeOH (shoots) | 62.60 ± 9.40 | D10 S | ||||
79.00 ± 5.20 | K1 R | |||||
Solanaceae | Licium shawii | MeOH (aerial parts) | 7.75 | K1 R | [49] | |
Tamaricaceae | Tamarix aralensis | MeOH (aerial parts) | 43.8 | 3D7 S | [47] | |
Verbenaceae | Lantana camara | CH2Cl2 (leaves) | 8.7 ± 1.0 | 3D7 S | [46] | |
5.7 ± 1.6 | W2 R | |||||
Vitaceae | Cissus quadrangulari | CH2Cl2 (whole plant) | 23.9 | 3D7 S | [51] | |
MeOH (whole plant) | 52.8 | 3D7 S | ||||
Zingiberaceae | Siphonochilus aethiopicus | EtOAc (rhizomes) | 2.90 ± 0.28 | D10 S | [61] | |
1.4 | K1 R |
3. Antiplasmodial Non-Alkaloidal Natural Products
3.3. Miscellaneous compounds
4. Perspectives and Remarks on the Development of New Drugs and Phytomedicines for Malaria
5. Conclusions
Acknowledgements
References
- Greenwood, B.M.; Bojang, K.; Whitty, C.J.; Targett, G.A. Malaria. Lancet 2005, 365, 1487–1498. [Google Scholar] [CrossRef]
- Winter, R.W.; Kelly, J.X.; Smilkstein, M.J.; Dodean, R.; Bagby, G.C.; Rathbun, R.K.; Levin, J.I.; Hinrichs, D.; Riscoe, M.K. Evaluation and lead optimization of anti-malarial acridones. Exp. Parasitol. 2006, 114, 47–56. [Google Scholar] [CrossRef]
- Sachs, J.; Malaney, P. The economic and social burden of malaria. Nature 2002, 415, 680–685. [Google Scholar] [CrossRef]
- WHO. World Malaria Report. World Health Organization: Geneva, Switzerland, 2008. Available online: http://apps.who.int/malaria/wmr2008/.
- Fidock, D.A.; Rosenthal, P.J.; Croft, S.L.; Brun, R.; Nwaka, S. Antimalarial drug discovery: efficacy models for compound screening. Nat. Rev. Drug Discov. 2004, 3, 509–520. [Google Scholar] [CrossRef]
- Deprez-Poulain, R.; Melnyk, P. 1,4-Bis(3-aminopropyl)piperazine libraries: from the discovery of classical chloroquine-like antimalarials to the identification of new targets. Comb. Chem. High Throughput Screen. 2005, 8, 39–48. [Google Scholar] [CrossRef]
- Jones, M.K.; Good, M.F. Malaria parasites up close. Nat. Med. 2006, 12, 170–171. [Google Scholar] [CrossRef]
- Saxena, S.; Pant, N.; Jain, D.C.; Bhakuni, R.S. Antimalarial agents from plant sources. Curr. Sci. 2003, 85, 1314–1329. [Google Scholar]
- Viegas Júnior, C.; Bolzani, V.S.; Barreiro, E.J. Os produtos naturais e a química medicinal moderna. Quím. Nova 2006, 29, 326–337. [Google Scholar]
- Taylor, W.R.; White, N.J. Antimalarial drug toxicity: a review. Drug Saf. 2004, 27, 25–61. [Google Scholar] [CrossRef]
- Jambou, R.; Legrand, E.; Niang, M.; Khim, N.; Lim, P.; Volney, B.; Ekala, M.T.; Bouchier, C.; Esterre, P.; Fandeur, T.; Mercereau-Puijalon, O. Resistance of Plasmodium falciparum field isolates to in vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet 2005, 366, 1960–1963. [Google Scholar] [CrossRef]
- Wichmann, O.; Muhlen, M.; Grub, H.; Mockenhaupt, F.P.; Suttorp, N.; Jelinek, T. Malarone treatment failure not associated with previously described mutations in the cytochrome b gene. Malaria J. 2004, 3, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef]
- Ziegler, H.L.; Staerk, D.; Christensen, J.; Hviid, L.; Hagerstrand, H.; Jaroszewski, J.W. In vitro Plasmodium falciparum drug sensitivity assay: inhibition of parasite growth by incorporation of stomatocytogenic amphiphiles into the erythrocyte membrane. Antimicrob. Agents Chemother. 2002, 46, 1441–1446. [Google Scholar] [CrossRef]
- Kalauni, S.K.; Awale, S.; Tezuka, Y.; Banskota, A.H.; Linn, T.Z.; Asih, P.B.; Syafruddin, D.; Kadota, S. Antimalarial activity of cassane- and norcassane-type diterpenes from Caesalpinia crista and their structure-activity relationship. Biol. Pharm. Bull. 2006, 29, 1050–1052. [Google Scholar] [CrossRef]
- Portet, B.; Fabre, N.; Roumy, V.; Gornitzka, H.; Bourdy, G.; Chevalley, S.; Sauvain, M.; Valentin, A.; Moulis, C. Activity-guided isolation of antiplasmodial dihydrochalcones and flavanones from Piper hostmannianum var. berbicense. Phytochemistry 2007, 68, 1312–1320. [Google Scholar] [CrossRef]
- Frederich, M.; Tits, M.; Angenot, L. Potential antimalarial activity of indole alkaloids. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 11–19. [Google Scholar] [CrossRef]
- Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Antimalarials from nature. Bioorg. Med. Chem. 2009, 17, 3229–3256. [Google Scholar] [CrossRef]
- Oliveira, A.B.; Dolabela, M.F.; Braga, F.C.; Jácome, R.L.R.P.; Varotti, F.P.; Póvoa, M.M. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part I. Alkaloids. Ann. Braz. Acad. Sci. 2009, in press. [Google Scholar]
- Basco, L.; Mitaku, S.; Skaltsounis, A.L.; Ravelomanantsoa, N.; Tillequin, R.; Koch, M.; Le Bras, J. In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrob. Agents Chemother. 1994, 38, 1169–1171. [Google Scholar] [CrossRef]
- Dolabela, M.F.; Oliveira, S.G.; Nascimento, J.M.; Peres, J.M.; Wagner, H.; Póvoa, M.M.; Oliveira, A.B. In vitro antiplasmodial activity of extract and constituents from Esenbeckia febrifuga, a plant traditionally used to treat malaria in the Brazilian Amazon. Phytomedicine 2008, 15, 367–372. [Google Scholar] [CrossRef]
- Muriithi, M.W.; Abraham, W.R.; Addae-Kyereme, J.; Scowen, I.; Croft, S.L.; Gitu, P.M.; Kendrick, H.; Njagi, E.N.M.; Wright, C.W. Isolation and in vitro antiplasmodial activities of alkaloids from Teclea trichocarpa: in vivo antimalarial activity and X-ray crystal structure of normeliopicine. J. Nat. Prod. 2002, 65, 956–959. [Google Scholar] [CrossRef]
- Pillay, P.; Maharaj, V.J.; Smith, P.J. Investigation South African plants as a source of new antimalarial drugs. J. Ethnopharmacol. 2008, 119, 438–454. [Google Scholar] [CrossRef]
- Mariath, I.R.; Falcão, H.S.; Barbosa-Filho, J.M.; Sousa, L.C.F.; Tomaz, A.C.A.; Batista, L.M.; Diniz, M.F.M.F.; Athayde-Filho, P.F.; Tavares, J.F.; Silva, M.S.; Cunha, E.V.L. Plants of the American continent with antimalarial activity. Braz. J. Pharmacogn. 2009, 19, 158–192. [Google Scholar]
- Zirihi, G.N.; Mambu, L.; Guédé-Guina, F.; Bodo, B.; Grellier, P. In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J. Ethnopharmacol. 2005, 98, 281–285. [Google Scholar] [CrossRef]
- Koch, A.; Tamez, P.; Pezzuto, J.; Soejarto, D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J. Ethnopharmacol. 2005, 101, 95–99. [Google Scholar] [CrossRef]
- Mbatchi, S.F.; Mbatchi, B.; Banzouzi, J.T.; Bansimba, T.; Nsonde Ntandou, G.F.; Ouamba, J.M.; Berry, A.; Benoit-Vical, F. In vitro antiplasmodial activity of 18 plants used in Congo Brazzaville traditional medicine. J. Ethnopharmacol. 2006, 104, 168–174. [Google Scholar] [CrossRef]
- Menan, H.; Banzouzi, J.T.; Hocquette, A.; Pelissier, Y.; Blache, Y.; Kone, M.; Mallie, M.; Assi, L.A.; Valentin, A. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. J. Ethnopharmacol. 2006, 105, 131–136. [Google Scholar] [CrossRef]
- Kvist, L.P.; Christensen, S.B.; Rasmussen, H.B.; Mejia, K.; Gonzalez, A. Identification and evaluation of Peruvian plants used to treat malaria and leishmaniasis. J. Ethnopharmacol. 2006, 106, 390–402. [Google Scholar] [CrossRef]
- Hout, S.; Chea, A.; Bun, S.S.; Elias, R.; Gasquet, M.; Timon-David, P.; Balansard, G.; Azas, N. Screening of selected indigenous plants of Cambodia for antiplasmodial activity. J. Ethnopharmacol. 2006, 107, 12–18. [Google Scholar] [CrossRef]
- Nguyen-Pouplin, J.; Tran, H.; Phan, T.A.; Dolecek, C.; Farrar, J.; Tran, T.H.; Caron, P.; Bodo, B.; Grellier, P. Antimalarial and cytotoxic activities of ethnopharmacologically selected medicinal plants from South Vietnam. J. Ethnopharmacol. 2007, 109, 417–427. [Google Scholar] [CrossRef]
- de Mesquita, M.L.; Grellier, P.; Mambu, L.; de Paula, J.E.; Espindola, L.S. In vitro antiplasmodial activity of Brazilian Cerrado plants used as traditional remedies. J. Ethnopharmacol. 2007, 110, 165–170. [Google Scholar] [CrossRef]
- Muregi, F.W.; Ishih, A.; Miyase, T.; Suzuki, T.; Kino, H.; Amano, T.; Mkoji, G.M.; Terada, M. Antimalarial activity of methanolic extracts from plants used in Kenyan ethnomedicine and their interactions with chloroquine (CQ) against a CQ-tolerant rodent parasite, in mice. J. Ethnopharmacol. 2007, 111, 190–195. [Google Scholar] [CrossRef]
- Osorio, E.; Arango, G.J.; Jimenez, N.; Alzate, F.; Ruiz, G.; Gutierrez, D.; Paco, M.A.; Gimenez, A.; Robledo, S. Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. J. Ethnopharmacol. 2007, 111, 630–635. [Google Scholar] [CrossRef]
- Roumy, V.; Garcia-Pizango, G.; Gutierrez-Choquevilca, A.L.; Ruiz, L.; Jullian, V.; Winterton, P.; Fabre, N.; Moulis, C.; Valentin, A. Amazonian plants from Peru used by Quechua and Mestizo to treat malaria with evaluation of their activity. J. Ethnopharmacol. 2007, 112, 482–489. [Google Scholar] [CrossRef]
- Muthaura, C.N.; Rukunga, G.M.; Chhabra, S.C.; Omar, S.A.; Guantai, A.N.; Gathirwa, J.W.; Tolo, F.M.; Mwitari, P.G.; Keter, L.K.; Kirira, P.G.; Kimani, C.W.; Mungai, G.M.; Njagi, E.N. Antimalarial activity of some plants traditionally used in treatment of malaria in Kwale district of Kenya. J. Ethnopharmacol. 2007, 112, 545–551. [Google Scholar] [CrossRef]
- Soh, P.N.; Benoit-Vical, F. Are West African plants a source of future antimalarial drugs? J. Ethnopharmacol. 2007, 114, 130–140. [Google Scholar] [CrossRef]
- Mesia, G.K.; Tona, G.L.; Nanga, T.H.; Cimanga, R.K.; Apers, S.; Cos, P.; Maes, L.; Pieters, L.; Vlietinck, A.J. Antiprotozoal and cytotoxic screening of 45 plant extracts from Democratic Republic of Congo. J. Ethnopharmacol. 2008, 115, 409–415. [Google Scholar] [CrossRef]
- Benoit-Vical, F.; Soh, P.N.; Salery, M.; Harguem, L.; Poupat, C.; Nongonierma, R. Evaluation of Senegalese plants used in malaria treatment: focus on Chrozophora senegalensis. J. Ethnopharmacol. 2008, 116, 43–48. [Google Scholar] [CrossRef]
- Kaou, A.M.; Mahiou-Leddet, V.; Hutter, S.; Ainouddine, S.; Hassani, S.; Yahaya, I.; Azas, N.; Ollivier, E. Antimalarial activity of crude extracts from nine African medicinal plants. J. Ethnopharmacol. 2008, 116, 74–83. [Google Scholar] [CrossRef]
- Bero, J.; Ganfon, H.; Jonville, M.C.; Frederich, M.; Gbaguidi, F.; DeMol, P.; Moudachirou, M.; Quetin-Leclercq, J. In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. J. Ethnopharmacol. 2009, 122, 439–444. [Google Scholar] [CrossRef]
- Celine, V.; Adriana, P.; Eric, D.; Joaquina, A.C.; Yannick, E.; Augusto, L.F.; Rosario, R.; Dionicia, G.; Michel, S.; Denis, C.; Genevieve, B. Medicinal plants from the Yanesha (Peru): evaluation of the leishmanicidal and antimalarial activity of selected extracts. J. Ethnopharmacol. 2009, 123, 413–422. [Google Scholar] [CrossRef]
- Wright, C.W. Plant derived antimalarials agents: new leads and challenges. Phytochem. Rev. 2005, 4, 55–61. [Google Scholar] [CrossRef]
- Hilou, A.; Nacoulma, O.G.; Guiguemde, T.R. In vivo antimalarial activities of extracts from Amaranthus spinosus L. and Boerhaavia erecta L. in mice. J. Ethnopharmacol. 2006, 103, 236–240. [Google Scholar] [CrossRef]
- Boyom, F.F.; Kemgne, E.M.; Tepongning, R.; Mbacham, W.F.; Tsamo, E.; Zollo, P.H.A.; Gut, J.; Rosenthal, P.J. Antiplasmodial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. J. Ethnopharmacol. 2009, 123, 483–488. [Google Scholar] [CrossRef]
- Jonville, M.C.; Kodja, H.; Humeau, L.; Fournel, J.; De Mol, P.; Cao, M.; Angenot, L.; Frederich, M. Screening of medicinal plants from Reunion Island for antimalarial and cytotoxic activity. J. Ethnopharmacol. 2008, 120, 382–386. [Google Scholar] [CrossRef]
- Esmaeili, S.; Naghibi, F.; Mosaddegh, M.; Sahranavard, S.; Ghafari, S.; Abdullah, N.R. Screening of antiplasmodial properties among some traditionally used Iranian plants. J. Ethnopharmacol. 2009, 121, 400–404. [Google Scholar] [CrossRef]
- Okokon, J.E.; Antia, B.S.; Igboasoiyi, A.C.; Essien, E.E.; Mbagwu, H.O. Evaluation of antiplasmodial activity of ethanolic seed extract of Picralima nitida. J Ethnopharmacol. 2007, 111, 464–467. [Google Scholar] [CrossRef]
- Abdel-Sattar, E.; Harraz, F.M.; Al-Ansari, S.M.; El-Mekkawy, S.; Ichino, C.; Kiyohara, H.; Otoguro, K.; Omura, S.; Yamada, H. Antiplasmodial and antitrypanosomal activity of plants from the Kingdom of Saudi Arabia. Nat. Med. (Tokyo) 2009, 63, 232–239. [Google Scholar]
- Tona, L.; Cimanga, R.K.; Mesia, K.; Musuamba, C.T.; De Bruyne, T.; Apers, S.; Hernans, N.; Van Miert, S.; Pieters, L.; Totté, J.; Vlietinck, A.J. In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. J. Ethnopharmacol. 2004, 93, 27–32. [Google Scholar] [CrossRef]
- Bah, S.; Jager, A.K.; Adsersen, A.; Diallo, D.; Paulsen, B.S. Antiplasmodial and GABA(A)-benzodiazepine receptor binding activities of five plants used in traditional medicine in Mali, West Africa. J. Ethnopharmacol. 2007, 110, 451–457. [Google Scholar] [CrossRef]
- Okokon, J.E.; Nwafor, P.A. Antiplasmodial activity of root extract and fractions of Croton zambesicus. J. Ethnopharmacol. 2009, 121, 74–78. [Google Scholar] [CrossRef]
- Lenta, B.N.; Vonthron-Senecheau, C.; Soh, R.F.; Tantangmo, F.; Ngouela, S.; Kaiser, M.; Tsamo, E.; Anton, R.; Weniger, B. In vitro antiprotozoal activities and cytotoxicity of some selected Cameroonian medicinal plants. J. Ethnopharmacol. 2007, 111, 8–12. [Google Scholar] [CrossRef]
- Waako, P.J.; Gumede, B.; Smith, P.; Folb, P.I. The in vitro and in vivo antimalarial activity of Cardiospermum halicacabum L. and Momordica foetida Schumch. Et Thonn. J. Ethnopharmacol. 2005, 99, 137–143. [Google Scholar] [CrossRef]
- Khaomek, P.; Ichino, C.; Ishiyama, A.; Sekiguchi, H.; Namatame, M.; Ruangrungsi, N.; Saifah, E.; Kiyohara, H.; Otoguro, K.; Omura, S.; Yamada, H. In vitro antimalarial activity of prenylated flavonoids from Erythrina fusca. J. Nat. Med. 2008, 62, 217–220. [Google Scholar] [CrossRef]
- Okokon, J.E.; Udokpoh, A.E.; Antia, B.S. Antimalaria activity of ethanolic extract of Tetrapleura tetraptera fruit. J. Ethnopharmacol. 2007, 111, 537–540. [Google Scholar] [CrossRef]
- Iwalewa, E.O.; Omisore, N.O.; Adewunmi, C.O.; Gbolade, A.A.; Ademowo, O.G. Anti-protozoan activities of Harungana madagascariensis stem bark extract on trichomonads and malaria. J. Ethnopharmacol. 2008, 117, 507–511. [Google Scholar] [CrossRef]
- Phillipe, G.; Angenot, L.; De Mol, P.; Goffin, E.; Hayette, M.P.; Tits, M.; Frédérich, M. In vitro screening of some Strychnos species for antiplasmodial activity. J. Ethnopharmacol. 2005, 97, 535–539. [Google Scholar] [CrossRef]
- Okokon, J.E.; Ita, B.N.; Udokpoh, A.E. Antiplasmodial activity of Cylicodiscus gabunensis. J. Ethnopharmacol. 2006, 107, 175–178. [Google Scholar] [CrossRef]
- Abosl, A.O.; Mbukwa, E.; Majinda, R.R.; Raserok, B.H.; Yenesew, A.; Midiwo, J.O.; Akala, H.; Liyala, P.; Waters, N.C. Vangueria infausta root bark: in vivo and in vitro antiplasmodial activity. Br. J. Biomed. Sci. 2006, 63, 129–133. [Google Scholar]
- Lategan, C.A.; Campbell, W.E.; Seaman, T.; Smith, P.J. The bioactivity of novel furanoterpenoids isolated from Siphonochilus aethiopicus. J. Ethnopharmacol. 2009, 121, 92–97. [Google Scholar] [CrossRef]
- Pedersen, M.M.; Chukwujekwu, J.C.; Lategan, C.A.; Staden, J.; Smith, P.J.; Staerk, D. Antimalarial sesquiterpene lactones from Distephanus angulifolius. Phytochemistry 2009, 70, 601–607. [Google Scholar] [CrossRef]
- Efange, S.M.; Brun, R.; Wittlin, S.; Connolly, J.D.; Hoye, T.R.; McAkam, T.; Makolo, F.L.; Mbah, J.A.; Nelson, D.P.; Nyongbela, K.D.; Wirmum, C.K. Okundoperoxide, a bicyclic cyclo-farnesylsesquiterpene endoperoxide from Scleria striatinux with antiplasmodial activity. J. Nat. Prod. 2009, 72, 280–283. [Google Scholar] [CrossRef]
- Murata, T.; Miyase, T.; Muregi, F.W.; Naoshima-Ishibashi, Y.; Umehara, K.; Warashina, T.; Kanou, S.; Mkoji, G.M.; Terada, M.; Ishih, A. Antiplasmodial triterpenoids from Ekebergia capensis. J. Nat. Prod. 2008, 71, 167–174. [Google Scholar] [CrossRef]
- Jonville, M.C.; Capel, M.; Frederich, M.; Angenot, Luc; Dive, G.; Faure, R.; Azas, N.; Ollivier, E. Fagraldehyde, a secoiridoid isolated from Fagraea fragrans. J. Nat. Prod. 2008, 71, 2038–2040. [Google Scholar] [CrossRef]
- Adelekan, A.M.; Prozesky, E.A.; Hussein, A.A.; Urena, L.D.; van Rooyen, P.H.; Liles, D.C.; Meyer, J.J.; Rodriguez, B. Bioactive diterpenes and other constituents of Croton steenkampianus. J. Nat. Prod. 2008, 71, 1919–1922. [Google Scholar] [CrossRef]
- Matsuno, Y.; Deguchi, J.; Hirasawa, Y.; Ohyama, K.; Toyoda, H.; Hirobe, C.; Ekasari, W.; Widyawaruyanti, A.; Zaini, N.C.; Morita, H. Sucutiniranes A and B, new cassane-type diterpenes from Bowdichia nitida. Bioorg. Med. Chem. Lett. 2008, 18, 3774–3777. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Van Zyl, R.L.; Davids, H.; Heerden, F.R.V.; Lourens, A.C.U.; Viljoen, A.M. Antimalarial and anticancer activities of selected South African Salvia species and isolated compounds from S. radula. S. Afr. J. Bot. 2008, 74, 238–243. [Google Scholar] [CrossRef]
- Chukwujekwu, J.C.; Lategan, C.A.; Smith, P.J.; Van Heerden, F.R.; Van Staden, J. Antiplasmodial and cytotoxic activity of isolated sesquiterpene lactones from the acetone leaf extract of Vernonia colorata. S. Afr. J. Bot. 2009, 75, 176–179. [Google Scholar]
- Olagnier, D.; Costes, P.; Berry, A.; Linas, M.D.; Urrutigoity, M.; Dechy-Cabaret, O.; Benoit-Vical, F. Modifications of the chemical structure of terpenes in antiplasmodial and antifungal drug research. Bioorg. Med. Chem. Lett. 2007, 17, 6075–6078. [Google Scholar] [CrossRef]
- Ngouamegne, E.T.; Fongang, R.S.; Ngouela, S.; Boyom, F.F.; Rohmer, M.; Tsamo, E.; Gut, J.; Rosenthal, P.J. Endodesmiadiol, a friedelane triterpenoid, and other antiplasmodial compounds from Endodesmia calophylloides. Chem. Pharm. Bull. (Tokyo) 2008, 56, 374–377. [Google Scholar] [CrossRef]
- Moon, H.I. Antiplasmodial activity of ineupatorolides A from Carpesium rosulatum. Parasitol. Res. 2007, 100, 1147–1149. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, M.Y.; Moon, H.I. Antiplasmodial activity of sesquiterpene lactone from Carpesium rosulatum in mice. Parasitol. Res. 2008, 103, 341–344. [Google Scholar] [CrossRef]
- de Sa, M.S.; Costa, J.F.; Krettli, A.U.; Zalis, M.G.; Maia, G.L.; Sette, I.M.; Camara, C.D.; Filho, J.M.; Giulietti-Harley, A.M.; Ribeiro Dos Santos, R.; Soares, M.B. Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice. Parasitol. Res. 2009, 105, 275–279. [Google Scholar] [CrossRef]
- Ortet, R.; Prado, S.; Mouray, E.; Thomas, O.P. Sesquiterpene lactones from the endemic Cape Verdean Artemisia gorgonum. Phytochemistry 2008, 69, 2961–2965. [Google Scholar] [CrossRef]
- Afolayan, A.F.; Mann, M.G.; Lategan, C.A.; Smith, P.J.; Bolton, J.J.; Beukes, D.R. Antiplasmodial halogenated monoterpenes from the marine red alga Plocamium cornutum. Phytochemistry 2009, 70, 597–600. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Chen, F.; Androulakis, X.M.; Wargovich, M.J. Anticancer activity of limonoid from Khaya senegalensis. Phytother. Res. 2007, 21, 731–734. [Google Scholar] [CrossRef]
- Roy, A.; Saraf, S. Limonoids: Overview of significant bioactive triterpenes distributed in plant kingdom. Biol. Pharm. Bull. 2006, 29, 191–201. [Google Scholar] [CrossRef]
- Mohamad, K.; Hirasawa, Y.; Litaudon, M.; Awang, K.; Hadi, A.H.; Takeya, K.; Ekasari, W.; Widyawaruyanti, A.; Zaini, N.C.; Morita, H. Ceramicines B-D, new antiplasmodial limonoids from Chisocheton ceramicus. Bioorg Med Chem 2009, 17, 727–730. [Google Scholar] [CrossRef]
- Banzouzi, J.T.; Soh, P.N.; Mbatchi, B.; Cave, A.; Ramos, S.; Retailleau, P.; Rakotonandrasana, O.; Berry, A.; Benoit-Vical, F. Cogniauxia podolaena: bioassay-guided fractionation of defoliated stems, isolation of active compounds, antiplasmodial activity and cytotoxicity. Planta Med. 2008, 74, 1453–1456. [Google Scholar] [CrossRef]
- Muiva, L.M.; Yenesew, A.; Derese, S.; Heydenreich, M.; Peter, M.G.; Akala, H.M.; Eyase, F.; Waters, N.C.; Mutai, C.; Keriko, J.M.; Walsh, D. Antiplasmodial β-hydroxydihydrochalcone from seedpods of Tephrosia elata. Phytochem. Lett. 2009, in press. [Google Scholar] [CrossRef]
- Kunert, O.; Swamy, R.C.; Kaiser, M.; Presser, A.; Buzzi, S.; Appa-Rao, A.V.N.; Shuhly, W. Antiplasmodial and leishmanicidal activity of biflavonoids from Indian Selaginella bryopteris. Phytochem. Lett. 2008, 1, 171–174. [Google Scholar] [CrossRef]
- Oshimi, S.; Tomizawa, Y.; Hirasawa, Y.; Honda, T.; Ekasari, W.; Widyawaruyanti, A.; Rudyanto, M.; Indrayanto, G.; Zaini, N.C.; Morita, H. Chrobisiamone A, a new bischromone from Cassia siamea and a biomimetic transformation of 5-acetonyl-7-hydroxy-2-methylchromone into cassiarin A. Bioorg. Med. Chem. Lett. 2008, 18, 3761–3763. [Google Scholar] [CrossRef]
- Zelefack, F.; Guilet, D.; Fabre, N.; Bayet, C.; Chevalley, S.; Ngouela, S.; Lenta, B.N.; Valentin, A.; Tsamo, E.; Dijoux-Franca, M.G. Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea. J. Nat. Prod. 2009, 72, 954–957. [Google Scholar] [CrossRef] [Green Version]
- Martin, F.; Hay, A.E.; Cressende, D.; Reist, M.; Vivas, L.; Gupta, M.P.; Carrupt, P.A.; Hostettmann, K. Antioxidant c-glucosylxanthones from the leaves of Arrabidaea patellifera. J. Nat. Prod. 2008, 71, 1887–1890. [Google Scholar] [CrossRef]
- Hou, Y.; Cao, S.; Brodie, P.J.; Callmander, M.W.; Ratovoson, F.; Rakotobe, E.A.; Rasamison, V.E.; Ratsimbason, M.; Alumasa, J.N.; Roepe, P.D.; Kingston, D.G. Antiproliferative and antimalarial anthraquinones of Scutia myrtina from the Madagascar forest. Bioorg. Med. Chem. 2009, 17, 2871–2876. [Google Scholar] [CrossRef]
- Ziegler, H.L.; Hansen, H.S.; Staerk, D.; Christensen, S.B.; Hägerstrand, H.; Jaroszewski, J.W. The antiparasitic compound licochalcone A is a potent echinocytogenic agent that modifies the erythrocyte membrane in the concentration range where antiplasmodial activity is observed. Antimicrob. Agents Chemother. 2004, 48, 4067–4071. [Google Scholar] [CrossRef]
- Mishra, L.C.; Bhattacharya, A.; Bhasin, V.K. Phytochemical licochalcone A enhances antimalarial activity of artemisinin in vitro. Acta Trop. 2009, 109, 194–198. [Google Scholar] [CrossRef]
- Lehane, A.M.; Saliba, K.J. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res. Notes 2008, 1, 26. [Google Scholar] [CrossRef]
- Moein, M.R.; Pawar, R.S.; Khan, S.I.; Tekwani, B.L.; Khan, I.A. Antileishmanial, antiplasmodial and cytotoxic activities of 12,16-dideoxy aegyptinone B from Zhumeria majdae Rech.f. & Wendelbo. Phytother. Res. 2008, 22, 283–285. [Google Scholar] [CrossRef]
- Ajaiyeoba, E.O.; Oladepo, O.; Fawole, O.I.; Bolaji, O.M.; Akinboye, D.O.; Ogundahunsi, O.A.T.; Falade, C.O.; Gbotosho, G.O.; Itiola, O.A.; Happi, T.C.; Ebong, O.O.; Ononiwu, I.M.; Osowole, O.S.; Oduola, O.O.; Ashidi, J.S.; Oduola, A.M.J. Cultural categorization of febrile illnesses in correlation with herbal remedies for treatment in Southwestern Nigeria. J. Ethnopharmacol. 2003, 85, 179–185. [Google Scholar] [CrossRef]
- Ajaiyeoba, E.O.; Bolaji, O.M.; Akinboye, D.O.; Falade, C.O.; Gbotosho, G.O.; Ashidi, J.S.; Okpako, L.C.; Oduola, O.O.; Falade, M.O.; Itiola, O.A.; Houghton, P.J.; Wright, C.W.; Ogundahunsi, O.A.; Oduola, A.M.J. In vitro antiplasmodial and cytotoxic activities of plants used as antimalarial agents in the southwest Nigerian ethnomedicine. J. Nat. Rem. 2005, 5, 1–6. [Google Scholar]
- Ajaiyeoba, E.O.; Ashidi, J.S.; Okpako, L.C.; Houghton, P.J.; Wright, C.W. Antiplasmodial compounds from Cassia siamea stem bark extract. Phytother. Res. 2008, 22, 254–255. [Google Scholar] [CrossRef]
- Ramanandraibe, V.; Grellier, P.; Martin, M.T.; Deville, A.; Joyeau, R.; Ramanitrahasimbola, D.; Mouray, E.; Rasoanaivo, P.; Mambu, L. Antiplasmodial phenolic compounds from Piptadenia pervillei. Planta Med. 2008, 74, 417–421. [Google Scholar] [CrossRef]
- Roumy, V.; Fabre, N.; Portet, B.; Bourdy, G.; Acebey, L.; Vigor, C.; Valentin, A.; Moulis, C. Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis. Phytochemistry 2009, 70, 305–311. [Google Scholar] [CrossRef]
- Flores, N.; Jimenez, I.A.; Gimenez, A.; Ruiz, G.; Gutierrez, D.; Bourdy, G.; Bazzocchi, I.L. Benzoic acid derivatives from Piper species and their antiparasitic activity. J. Nat. Prod. 2008, 71, 1538–1543. [Google Scholar] [CrossRef]
- Marti, G.; Eparvier, V.; Moretti, C.; Susplugas, S.; Prado, S.; Grellier, P.; Retailleau, P.; Guéritte, F.; Litaudon, M. Antiplasmodial benzophenones from the trunk latex of Moronobea coccinea (Clusiaceae). Phytochemistry 2009, 70, 75–85. [Google Scholar] [CrossRef]
- Tasdemir, D.; Brun, R.; Franzblau, S.G.; Sezgin, Y.; Çalis, I. Evaluation of antiprotozoal and antimycobacterial activities of the resin glycosides and the other metabolites of Scrophularia cryptophila. Phytomedicine 2008, 15, 209–215. [Google Scholar] [CrossRef]
- Flores, N.; Jimenez, I.A.; Gimenez, A.; Ruiz, G.; Gutierrez, D.; Bourdy, G.; Bazzocchi, I.L. Antiparasitic activity of prenylated benzoic acid derivatives from Piper species. Phytochemistry 2009, 70, 621–627. [Google Scholar] [CrossRef]
- de Andrade-Neto, V.F.; da Silva, T.; Lopes, L.M.; do Rosario, V.E.; de Pilla Varotti, F.; Krettli, A.U. Antiplasmodial activity of aryltetralone lignans from Holostylis reniformis. Antimicrob. Agents Chemother. 2007, 51, 2346–2350. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, W.H.; Moon, H.I. Bioassay-guided isolation of antiplasmodial anacardic acids derivatives from the whole plants of Viola websteri Hemsl. Parasitol. Res. 2009, 104, 463–466. [Google Scholar] [CrossRef]
- Abrantes, M.; Mil-Homens, T.; Duarte, N.; Lopes, D.; Cravo, P.; Madureira, M.; Ferreira, M.J. Antiplasmodial activity of lignans and extracts from Pycnanthus angolensis. Planta Med. 2008, 74, 1408–1412. [Google Scholar] [CrossRef]
- Willcox, M.L.; Bodeker, G. Traditional herbal medicines for malaria. Brit. Med. J. 2004, 329, 1156–1159. [Google Scholar] [CrossRef]
- Harborne, J.B. Twenty-five years of chemical ecology. Nat. Prod. Rep. 2001, 18, 361–379. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Batista, R.; De Jesus Silva Júnior, A.; De Oliveira, A.B. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products. Molecules 2009, 14, 3037-3072. https://doi.org/10.3390/molecules14083037
Batista R, De Jesus Silva Júnior A, De Oliveira AB. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products. Molecules. 2009; 14(8):3037-3072. https://doi.org/10.3390/molecules14083037
Chicago/Turabian StyleBatista, Ronan, Ademir De Jesus Silva Júnior, and Alaíde Braga De Oliveira. 2009. "Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products" Molecules 14, no. 8: 3037-3072. https://doi.org/10.3390/molecules14083037
APA StyleBatista, R., De Jesus Silva Júnior, A., & De Oliveira, A. B. (2009). Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products. Molecules, 14(8), 3037-3072. https://doi.org/10.3390/molecules14083037