Synthesis of β-Maltooligosaccharides of Glycitein and Daidzein and their Anti-Oxidant and Anti-Allergic Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of β-maltooligosaccharides of glycitein and daidzein
2.2. Anti-allergic activity of β-glycosides of glycitein and daidzein
Compound | IgE levela |
---|---|
None | 392.8 ± 120.7 |
2 | 382.2 ± 100.5 |
3 | 176.3 ± 87.0* |
4 | 407.7 ± 126.2 |
5 | 453.0 ± 186.9 |
6 | 251.1 ±68.8 |
7 | 356.2 ± 188.8 |
9 | 397.5 ± 150.7 |
10 | 164.1 ± 78.5* |
11 | 410.6 ± 188.0 |
12 | 435.7 ± 181.4 |
13 | 389.9 ± 145.5 |
14 | 400.8 ± 130.8 |
Hydrocortisone | 341.0 ± 122.5 |
2.3. Anti-oxidant activity of β-glycosides of glycitein and daidzein
Compound | IC50 (μM) | |
---|---|---|
DPPH free-radical scavenging | Superoxide-radical scavenging | |
2 | 55 | 770 |
3 | 51 | 708 |
4 | 140 | >1,000 |
5 | >200 | >1,000 |
6 | >200 | >1,000 |
7 | >200 | >1,000 |
9 | 76 | 829 |
10 | 45 | 767 |
11 | 155 | >1,000 |
12 | >200 | >1,000 |
13 | >200 | >1,000 |
14 | >200 | >1,000 |
Vitamin C | 30 | 704 |
3. Experimental
3.1. General
3.2. Bacterial strain and culture conditions
3.3. Production of β-glucosides of glycitein and daidzein by L. delbrueckii
3.4. Production of β-maltooligosides of glycitein and daidzein by CGTase
3.5. Suppressive action on IgE antibody formation
3.6. DPPH radical scavenging activity
3.7. Superoxide-radical scavenging activity
4. Conclusions
- Sample Availability: Contact the authors.
References
- Martin, M.P.; Horwitz, K.B.; Ryan, D.S.; McGuire, W.L. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 1978, 103, 1860–1867. [Google Scholar] [CrossRef]
- Messina, M.J.; Persky, V.; Setchell, K.D.R.; Barnes, S. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 1994, 21, 113–131. [Google Scholar] [CrossRef]
- Adlercreutz, H.; Goldin, B.R.; Gorbach, S.L.; Höckerstedt, K.A.V.; Watanabe, S. Soybean phytoestrogen intake and cancer risk. J. Nutr. 1995, 125, 757–770. [Google Scholar]
- Molteni, A.; Brizio-Molteni, L.; Persky, V. In vitro hormonal effects of soybean isoflavones. J. Nutr. 1995, 125, 751–756. [Google Scholar]
- Adlercreutz, H.; Mazur, W. Phytoestrogens and Western diseases. Ann. Med. 1997, 29, 95–120. [Google Scholar]
- Wang, C.; Kurzer, M.S. Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr. Cancer 1997, 28, 236–247. [Google Scholar] [CrossRef]
- Barnes, S. Evolution of the health benefits of soy isoflavones. Proc. Soc. Exp. Biol. Med. 1998, 217, 386–392. [Google Scholar]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef]
- Setchell, K.D.R.; Cassidy, A. Dietary isoflavones: Biological effects and relevance to human health. J. Nutr. 1999, 129, 758–767. [Google Scholar]
- Marotta, F.; Mao, G.S.; Liu, T.; Chui, D.H.; Lorenzetti, A.; Xiao, Y.; Marandola, P. Anti-inflammatory and neuroprotective effect of a phytoestrogen compound on rat microglia. Ann. N. Y. Acad. Sci. 2006, 1089, 276–281. [Google Scholar] [CrossRef]
- Chacko, B.K.; Chandler, R.T.; D’Alessandro, T.L.; Mundhekar, A.; Khoo, N.K.; Botting, N.; Barnes, S.; Patel, R.P. Anti-inflammatory effects of isoflavones are dependent on flow and human endothelial cell PPARgamma. J. Nutr. 2007, 137, 351–356. [Google Scholar]
- Kaminaga, Y.; Nagatsu, A.; Akiyama, T.; Sugimoto, N.; Yamazaki, T.; Maitani, T.; Mizukami, H. Production of unnatural glycosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Lett. 2003, 555, 311–316. [Google Scholar] [CrossRef]
- Hollman, P.C.H.; Devries, J.H.M.; Vanleeeuwen, S.D.; Mengelers, M.J.B.; Katan, M.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 1995, 62, 1276–1282. [Google Scholar]
- Morand, C.; Manach, C.; Crespy, V.; Remesy, C. Quercetin 3-O-beta-glucoside is better absorbed than other quercetin forms and is not present in rat plasma. Free Radic. Res. 2000, 33, 667–676. [Google Scholar] [CrossRef]
- Hosny, M.; Rosazza, J.P.N. Novel isoflavone, cinnamic acid, and triterpenoid glycosides in soybean molasses. J. Nat. Prod. 1999, 62, 853–858. [Google Scholar] [CrossRef]
- Li, D.; Park, J.H.; Park, J.T.; Park, C.S.; Park, K.H. Biotechnological production of highly soluble daidzein glycosides using Thermotoga maritima maltosyltransferase. J. Agric. Food Chem. 2004, 52, 2561–2567. [Google Scholar] [CrossRef]
- Koda, A.; Miura, T.; Inagaki, N.; Sakamoto, O.; Arimura, A.; Nagai, H.; Mori, H. A method for evaluating anti-allergic drugs by simultaneously induced passive cutaneous anaphylaxis and mediator cutaneous reactions. Int. Arch. Allergy. Appl. Immunol. 1990, 92, 209–216. [Google Scholar] [CrossRef]
- Satoh, T.; Miyataka, H.; Yamamoto, K.; Hirano, T. Synthesis and physiological activity of novel tocopheryl glycosides. Chem. Pharm. Bull. 2001, 49, 948–953. [Google Scholar] [CrossRef]
- Uhrig, R.K.; Picard, M.A.; Beyreuther, K.; Wiessler, M. Synthesis of antioxidative and anti-inflammatory drugs glucoconjugates. Carbohydr. Res. 2000, 325, 72–80. [Google Scholar] [CrossRef]
- Shimoda, K.; Kobayashi, T.; Akagi, M.; Hamada, H.; Hamada, H. Synthesis of oligosaccharides of genistein and quercetin as potential anti-inflammatory agents. Chem. Lett. 2008, 37, 876–877. [Google Scholar] [CrossRef]
- Ozsoy, N.; Candoken, E.; Akev, N. Implications for degenerative disorders: Antioxidative activity, total phenols, flavonoids, ascorbic acid, β-carotene and β-tocopherol in Aloe vera. Oxid. Med. Cell Longev. 2009, 2, 99–106. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shimoda, K.; Hamada, H. Synthesis of β-Maltooligosaccharides of Glycitein and Daidzein and their Anti-Oxidant and Anti-Allergic Activities. Molecules 2010, 15, 5153-5161. https://doi.org/10.3390/molecules15085153
Shimoda K, Hamada H. Synthesis of β-Maltooligosaccharides of Glycitein and Daidzein and their Anti-Oxidant and Anti-Allergic Activities. Molecules. 2010; 15(8):5153-5161. https://doi.org/10.3390/molecules15085153
Chicago/Turabian StyleShimoda, Kei, and Hiroki Hamada. 2010. "Synthesis of β-Maltooligosaccharides of Glycitein and Daidzein and their Anti-Oxidant and Anti-Allergic Activities" Molecules 15, no. 8: 5153-5161. https://doi.org/10.3390/molecules15085153
APA StyleShimoda, K., & Hamada, H. (2010). Synthesis of β-Maltooligosaccharides of Glycitein and Daidzein and their Anti-Oxidant and Anti-Allergic Activities. Molecules, 15(8), 5153-5161. https://doi.org/10.3390/molecules15085153