Molecular Mechanism Underlying Anti-Inflammatory and Anti-Allergic Activities of Phytochemicals: An Update
Abstract
:1. Introduction
2. Major Classes of Phytochemicals
3. Molecular Mechanism Underlying Phytochemicals
3.1. Inflammation
Target pathway | Effects | Compounds | Mechanism of action | References |
---|---|---|---|---|
Antioxidative and radical scavenging activities | Promoting antioxidant enzymes activity | Quercetin, resveratrol, curcumin, hydroxytyrosol, catechin, luteolin | Increasing the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), γ-glutamylcysteine synthetase (γ-GCS) NADPH:quinone oxidoreductase-1 (NQO1) and heat shock proteins 70 (HSP70) expression | [21,22,23,24,25,26,27,28,29,30] |
Inhibiting pro-oxidant enzymes activity | Epigallocatechin, ECG, EGCG | Inhibiting lipoxygenase and cyclooxygenase | [31] | |
Typheramide, alfrutamide, (−)-epicatechin, procyanidin | Inhibiting the activities of 5- lipoxygenase, 12-lipoxygenase and 15-lipoxygenase | [32,33] | ||
Curcumin, resveratrol, lupeol | Decreasing the activity of iNOS and myeloperoxidase (MPO) level | [24,30,34] | ||
Ellagic acid gallic, acid corilagin, luteolin | Inhibiting tyrosinase and xanthine oxidase | [35,36] | ||
Resveratrol | Inhibiting O-acetyltransferase and sulfotransferase activities | [37] | ||
Prevent free radical attacks | Epicatechin, rutin, mannitol | Scavenging hydroxyl radical (OH.) | [38] | |
Ellagic acid gallic, acid corilagin, luteolin, β-carotene, tetrandrine | Scavenging superoxide radical (O2.) | [35,36,39,40] | ||
Quercetin, curcumin, lycopene | Decreasing MDA and lipoperoxidation | [22,30,41] | ||
Enhancing endogenous antioxidant molecules | Quercetin, resveratrol, catechin, proanthocyanidin B4, β-carotene | Elevating cellular GSH content | [21,24,26,42] | |
Modulation of cellular activities of inflammation-related cells | Inhibition of enzymes involved in signaling transduction and cell activation processes (T cell, B lymphocyte) or cytokine production | Genistein | Inhibition of tyrosine protein kinaseinducing anti-proliferative effects on T cell, reducing IL-2 secretion and IL-2R expression | [43,44] |
Quercetin, kaempferol, apigenin, chrysin, luteolin | Inhibition of tyrosine protein kinaseinducing anti-proliferative effects on M-CSF-activated macrophages | [45] | ||
Inhibition of arachidonic acid release from membranes (degranulation) | Quercetin | Inhibiting lysosomal enzyme release from stimulated neutrophil (elastase, β-glucuronidase) | [46,47,48] | |
Impairing lysosomal enzyme release from polymorphonuclear leukocytes | [47,49,50] | |||
Rutin | Reducing the polymorphonuclear neutrophils chemotaxis to FMLP | [51] | ||
Modulation of arachidonic acid (AA) related enzymes | Inhibition of arachidonic acid metabolism | Quercetin, kaempferol, myricetin, hesperetin, naringenin, quercetagetin, kaempferol-3-galactoside, scutellarein, ochnaflavone, amentoflavone, ginkgetin, morelloflavone, bilobetin, triptolide, papyriflavonol A | Inhibition of PLA2 activity | [50,51,52,53,54,55,56,57,58,59] |
Inhibition of proinflammatory enzymes (COX, LOX and NOS) from different sources | Luteolin, 3',4'-dihydroxyflavone, galangin, morin, apigenein, chrysin, quercetin, myricetin, morusin, kuwanon C, sanggenon D, broussoaurone A, cycloheterophyllin, broussochalcone A broussoflavonol F, catechin, EGCG, resveratrol, xanthomicrol, cirsiliol, hypolaetin, diosmetin, tectorigenin, kuraridin, kurarinone, sophoraflavanone G, morusin, sanggenon B, kazinol B, rutaecarpine, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dlGG), curcumin, 4'-Me-gallocatechin, lonchocarpol A, tomentosanol D, catechins, catechins gallate | Inhibited COX activity | [6,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74] | |
Sophoraflavanone G, kenusanone A, kuraridin, papyriflavonol A, sanggenon B, sanggenon D, boswellic acid, diphyllin acetylapioside | Inhibited 5-LOX activity | [69,75,76,77] | ||
Quercetin, kaempferol, fisetin, quercetagetin-7-O-glucoside, hibifolin, hypolaetin, sideritoflavone, 5,6,7-trihydroxyflavone (baicalein) | Inhibited 12-LOX activity | [6,78] | ||
Kaempferol, quercetin, myricetin, morin, cirsiliol, artonins | Inhibited 5-LOX and 12-LOX activity | [79,80,81,82] | ||
Quercetin | Inhibited eNOS activity | [83] | ||
Modulation of the production of other proinflammatory molecules | Inhibition of proinflammatory cytokines from different sources | Formononetin | Inhibited iNOS activity | [84] |
Genistein, apigenin, quercetin, morin, wogonin, soyisoflavones, daidzein, glycitein, dlGG, paeonol | Inhibited NO production | [71,85,86,87,88,89] | ||
Genistein, quercetin, wogonin, baicalein, luteolin, nobiletin, paeonol, chlorogenic acid, hematein, aucubin, catalposide, tetrandrine, fangchinoline, colchicines, piperlactam S | Inhibited cytokine production : IL-1β, IL-6, TNF-α | [89,90,91,92,93,94,95,96,97,98,99,100,101] | ||
Curcumin, amoradicin, genistein, silybin, quercetin, wogonin, rutin, luteolin, eriodictyol, hesperitin, EGCG, geraniin, corilagin, pinoresinol, woorenoside, lariciresinol glycoside, terpinen-4-ol, physalin B, triptolide, lupeol, [6]-shogaol, vitamin D, cepharanthine, fangchinoline, adenosine | Inhibited TNF-α production | [34,98,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123] | ||
Apigenin, wogonin, bacalein | Inhibited IL-6 and IL-8 production | [124,125] | ||
Genistein, ilicic acid, inuviscolide acid, tryptanthrin | Inhibited LTB4 production | [126,127,128] | ||
Saikosaponins, masticaienonic acid, masticadienolic acid, morolic acid | Reducing LTC4 production | [128,129,130,131] | ||
Chrysin, flavone, galangin, kaempferol, quercetin, salidroside, syringin, phillyrin, coniferin, tryptanthrin | Inhibited TXB2 production | [79,128,132] | ||
Lupeol, paeonol, quercetin, salidroside, syringin, phillyrin, tectorigenin, tectoridin, platycodin D, β-turmerone, ar-turmerone, rutaecarpine | Inhibited PGE2 production | [34,89,105,132,133,134,135,136] | ||
Modulation of proinflammatory gene expression | Inhibition of the expression of various inflammation-related proteins/enzymes, by suppressing activation of transcription factors such as NF-κB and AP-1 | Baicalein, oroxylin A, baicalin, skullcapflavone II | Inhibited eotaxin production | [137] |
Rutin, bilobetin, ginkgetin, isoginkgetin, ochnaflavone, morusin, kuwanon C, kazinol B, sanggenon B and D, echinoisoflavanone, wogonin, apigenin, kaempferol, genistein, chrysin, luteolin, quercetin, myricetin, flavone, tectorigenin, nobiletin, oroxylin A, galangin, EGCG, isoliquiritigenin, silymarin, curcumin, flavones, daidzein, glycitein, isorhamnetin, naringenin, pelargonidin, soyisoflavones, wogonin, resveratrol, triptolide, lupeol, butyrate, zeaxanthin, β-carotene | Inhibited iNOS expression | [56,84,87,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157] | ||
Bilobetin, ginkgetin, paeonol, tectorigenin, tectoridin, platycodin D, apigenin, genistein, kaempferol, quercetin, myricetin, nobiletin, rhamnetin, eriodictyol, luteolin, fisetin, phloretin, wogonin, galangin, oroxylin A, lupeol, isoliquiritigenin, amentoflavone, butyrate, ursolic acid, iridoid, pendunculariside, agnuside, ferulic acid, [6]-Gingerol, resveratrol, EGCG | Inhibited COX-2 expression | [56,89,133,134,140,141,142,143,147,154,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172] | ||
Lycopene, dlGG, wogonin, genistein, apigenin, kaempferol, myricetin, oroxylin, silymarin, β-carotene, resveratrol, quercetin, avicins, parthenolide, chlorogenic acid, triptolide, capsaicin, butyrate, luteolin, curcumin | Inhibition of NF-κB activation | [41,71,87,90,140,142,145,148,157,171,173,174,175,176,177,178,179,180,181] | ||
Hematein, casearinols A and B, casearinones A and B, colchicine | Inhibited the expression of ICAM-1 and VCAM-1 on the surface of different cells | [95,182,183] |
Herbal formulation/Compound | Indication | Clinical efficiency | References |
---|---|---|---|
Curcumin | Antirheumatic |
| [184] |
Active constituents of honeysuckle (Lonicera japonica) stem | Anti-inflammatory and analgesic effect |
| [185] |
Cocoa extracts containing polyphenols enriched with procyanidins | COX and/or lipooxygenase (LOX) modulators, NO or NO-synthase modulators, as non-steroidal anti-inflammatory agents, platelet aggregation modulators, antioxidants, inhibitors of oxidative DNA damage and DNA topoisomerase II inhibitor |
| [186] |
Composition comprising: Ajuga turkestanica, Panax quinquefolius, Rhodiola rosea root, Glycyrrhiza glabra, Morinda citrifolia fruit, Uncaria tomentosa inner bark, Capsicum frutescens, chondroitin sulfate, Curcuma longa, Dioscorea villosa, glucosamine sulfate, Harpagophytum procumbens and Tribulus terrestris | Treating arthritis and its symptoms, rheumatoid arthritis and osteoarthritis as well as any inflammatory condition of the joints and their symptoms, pain swelling, heat, redness and limitation of movement |
| [187] |
Synergistic mixture of standardized Boswellia serrata extract, glucosamine salts, and curcuminoids. The composition optionally containing bromelain, chondroitin, methylsulphonylmethane, resveratrol, extracts of white willow and ginger, and quercetin. | Treating and controlling inflammatory diseases, preventing and curing cancer |
| [188] |
Extracts of Vitex leucoxylon and its constituents: corosolic acid, agnuside and 6-O-caffeoylarbutin | Inflammatory diseases, diabetic conditions, liver disorders and free radical mediated diseases |
| [189] |
Carotenoids, and xanthophyll carotenoids, or analogs or derivatives of astaxanthin, lutein, zeaxanthin, lycoxanthin, lycophyll, or lycopene | Reduce the adverse side effects associated with administration of COX-2 selective inhibitor drugs. Reduce peroxidation of low density lipoprotein (LDL) and other lipids in the serum and plasma cell membranes, and reduce the incidence of deleterious clinical cardiovascular events of subjects undergoing COX-2 selective inhibitor drug therapy |
| [190] |
Two herbal compositions. The first composition comprises Radix Clematidis, Radix Angelicae Pubescentis, Rhizoma et Radix Notopterygii, Radix Saposhnikoviae, and Radix Gentianae Macrophyllae. The second composition comprises Rhizoma Chuanxiong, Radix Angelicae Sinensis, Cortex Eucommiae, and Radix Achyranthis Bidentataeas | Preventive and therapeutic effects on alleviating symptoms associated with inflammatory and rheumatic diseases |
| [191] |
[5-hydroxy-7-methoxy-2-(4'-methoxyphenyl}-4-oxo-4H-chromen-8-yl] sulfonic acid monoester obtainable by extraction of plant material selected from Sidastrum acuminatum, Sidastrum burrerense, Sidastrum E.G. Baker, Sidastrum kicranthum, Sidastrum lodiegense, Sidastrum multiflorum, Sidastrum micranthum, Sidastrum paniculatum, Sidastrum strictum, Sidastrum tehuacanum or Sidastrum quinquenervium | Inhibits the arachidonic acid cascade |
| [192] |
Oil-soluble licorice extract | Inhibitory effect on: hyaluronidase activity, hexosaminidase release, platelet aggregation, and phospholipase A2 activity, and which is suitably used especially as an external preparation for skin |
| [193] |
Extracts or fractions of Aphanamixis polystachya | Diseases mediated by 5-lipoxygenase enzyme |
| [194] |
Extracts and fractions from Hypericum gentianoides | Inhibition of inflammation, PGE2-mediated disease, disorder or condition, a COX-mediated disease, disorder or condition, or an infection of HIV |
| [195] |
Compositions containing one or more of a flavone or flavonoid glycoside a non-bovine heavily sulfated proteoglycan, an unrefined olive kernel extract, a hexosamine sulfate, a histamine-1 and histamine-3 receptor agonist, an antagonist of CRH, a long-chain unsaturated fatty acid, a phospholipid, Krill oil, a polyamine, glutiramer acetate and interferon | Treatment of inflammatory conditions. Inhibitors of mast cell activation and secretion in the brain as in multiple sclerosis |
| [196] |
Berry extract containing stable anthocyanin | Treating inflammation, oxidative damage, or cancer |
| [197] |
Free-B-Ring flavonoids from Scutellaria baicalensis | Treatment of COX-2 mediated diseases and conditions |
| [198] |
3.2. Allergy
Target pathway | Effects | Compounds | Mechanism of action | Ref. |
---|---|---|---|---|
Effect on IgE-mediated Hypersensitivity (Type I) | Inhibition of chemical mediator release and cytokine production by mast, basophil or T cells | Luteolin, quercetin, baicalein | Inhibited the release of histamine, leukotrienes and prostaglandin D2 Inhibited IgE-mediated TNF-α and IL-6 production | [199] |
Luteolin, quercetin, baicalein, apigenin | Inhibited the p44/42 MAPK phosphorylation in response to crosslinkage of FcεRI | [200] | ||
Tetrandrine | Suppression of prostaglandin and leukotriene generation | [201] | ||
Coixol, pseudoephedrine, mallotophilippen A and B | Inhibited the release of histamine | [202,203,204] | ||
Apigenin, luteolin, 3.6-dihydroxy flavones, fisetin, kaempferol, quercetin, myricetin | Inhibition of the hexosaminidase release Suppression of cysteinyl leukotriene synthesis | [205] | ||
Flavone, quercetin | Inhibition of transport ATPase in histamine secretion | [206,207] | ||
Isoquercitrin | Inhibited carbachol and leukotriene D4 production | [208] | ||
Cirsiliol (3',4',5-trihydroxy-6,7-dimethoxy flavone) | Suppressed cysteinyl leukotrienes release | [80] | ||
Ayanin, luteolin, apigenin, diosmetin, fisetin, ombuin, quercetin, kaempferol (other compounds see Table 1) | Suppression of IL-4 synthesis (other cytokines see Table 1) | [209] | ||
Inhibition of signal transduction and gene expression in mast, basophil or T cells Preventing allergic asthma | Mallotophilippen A and B (other compounds see Table 1) | Inhibited iNOS gene expression (other enzymes see Table 1) | [204] | |
Luteolin, apigenin, fisetin | Suppressed CD40 ligand expression | [209,210] | ||
Nobiletin | Reduced eotaxin expression | [211] | ||
Luteolin, apigenin, fisetin | Inhibited AP-1 and NFAT activation | [210] | ||
Dietary polyphenols | Interfer with activated T-helper 2 | [212] | ||
Quercetin, provinol, flavin-7 | Anti-inflammatory effects in experimental allergic asthma | [213,214,215] | ||
Effect on cell-mediated hypersensitivity (type IV) | Preventing contact dermatitis | Polyphenol (extract from the bark of Acacia mearnsii) | Inhibited itching in atopic dermatitis by preventing the skin from drying | [216] |
Polyphenols and anthocyanins derived from Vaccinium uliginosum L | Improve atopic dermatitis disease in mice by reducing the Th2/Th1 ratio, IL-4 and IL-13 (as Th2 cytokines), IFN-γ, and IL-12 (as a Th1 cytokine) in spleens Decreased gene expression, such as IL-4, IL-5, CCR3, eotaxin-1, IL-12, IFN-γ, MCP-1, and IL-17, and suppressed Th 17 | [217] | ||
Attenuating autoimmune disorders | Improving multiple sclerosis (MS) disease | Dietary polyphenols, carotenoids, curcumin | Inhibited neuroinflammation in MS Inhibited the differentiation and expansion of Th17 cells in circulation induced by inflammatory cascade; Enhanced the expression of ZO-1; Down-regulated expression of CXC chemokines and receptor; Decreased Th17 cells to transmigrate across the blood brain barrier and the inhibition of autoreactive T cells transmigration can reduce neuroinflammation; Blocked IL17 and others, which lead to centtral system nervous tissue destruction in MS | [218,219,220] |
Herbal formulations/Compounds | Indication | Clinical efficiency | Ref. |
---|---|---|---|
Seeds of Cucurbita moschata and flowers of Carthamus tinctorius and at least one crude drug selected from Plantago asiatica, Lonicera japonica, Glycyrrhiza uralensis, Coix lachrymal-jobi var. ma-yuen, Zingiber officinale, Curcuma longa, Curcuma zedoaria and Artemisia argyi. | Prevention or therapy of pollen allergy, allergic rhinitis, atopic dermatitis, asthma or urticaria | Animal trials: Inhibiting the production of total IgE antibodies in the blood of mice sensitized with cedar pollen Human trials: Therapeutic effects on patients suffering from cedar pollen allergy | [221] |
Formulation(s) comprises of Tinospora cardifolia, Piper longum, Albizia lebbeck and Curcuma amada | Treatment of allergy | Decreased the histamine release (mast cell degranulation) in rats-Reduced lipid peroxidation and superoxide dismutase activity, and increased catalase activity in tissues (liver, kidney and heart) rats | [222] |
The composition comprises at least one of the following ingredients: luteolin from Perilla leaf or seed, Cinnamon, Kiwi, Picao preto, Hesperidin, Acerola cherry, Guaco, Holy Basil, Kakadu, Solamum, Rosmarinic acid, Tinospora and Aframomum | Inhibits and/or mitigates an allergic response | Inhibition of the IgE secretion by U266 human myeloma cells-Reduction of the IgE receptor expression by RBL-2H3 cells-Inhibiting or preventing the release of mediators such as histamine, PGD 2 and LTC4 by RBL-2H3 cells | [223] |
Flavonoid and/or a flavonoid derivative (Troxerutin or Veneruton®) | Treating symptoms of common cold, allergic rhinitis and infections relating to the respiratory tract | Showed success results on different patients suffering from common cold symptoms-Reduced the symptom score after treatment of patients suffering from allergic airway conditions | [224] |
Kaempferol, apigenin | Treatment of contact dermatis | Inhibited iNOS induction produced in contact dermatitis | [225] |
Dehydrocorydaline | Treatment of hypersensivities reactions | Inhibited the induction phase of picryl chloride-induced contact dermatitisin mice | [226] |
4. Conclusions
Acknowledgments
References
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar]
- Jachak, S.M.; Saklani, A. Challenges and opportunities in drug discovery from plants. Curr. Sci. 2007, 92, 1251–1257. [Google Scholar]
- Harvey, A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today 2000, 5, 294–300. [Google Scholar] [CrossRef]
- Bakhotmah, B.A.; Alzahrani, H.A. Self-reported use of complementary and alternative medicine (CAM) products in topical treatment of diabetic foot disorders by diabetic patients in Jeddah, Western Saudi Arabia. BMC Res. Notes 2010, 2010, 254. [Google Scholar]
- Bellik, Y.; Hammoudi, S.M.; Abdellah, F.; Iguer-Ouada, M.; Boukraâ, L. Phytochemicals to prevent inflammation and allergy. Recent Pat. Inflamm. Allergy Drug Discov. 2012, 6, 147–158. [Google Scholar] [CrossRef]
- Kim, Y.S.; Young, M.R.; Bobe, G.; Colburn, N.H.; Milner, J.A. Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prev. Res. 2009, 2, 200–208. [Google Scholar] [CrossRef]
- Gautam, R.; Jachak, S.M. Recent developments in anti-infammatory natural products. Med. Res. Rev. 2009, 29, 767–820. [Google Scholar] [CrossRef]
- Calixto, J.B.; Otuki, M.F.; Santos Adair, R.S. Anti-inflammatory compounds of plant origin. Part I. Action on arachidonic acid pathway, nitric oxide and nuclear factor κB (NF-κB). Planta Med. 2003, 69, 973–983. [Google Scholar] [CrossRef]
- Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging 2000, 21, 383–421. [Google Scholar]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J.; Snader, K.M. Natural products in drug discovery and development. J. Nat. Prod. 1997, 60, 52–60. [Google Scholar]
- Brito, F.A.; Lima, L.A.; Ramos, M.F.S.; Nakamura, M.J.; Cavalher-Machado, S.C.; Siani, A.C.; Henriques, M.G.M.O.; Sampaio, A.L.F. Pharmacological study of anti-allergic activity of Syzygium cumini (L.) Skeels. Braz. J. Med. Biol. Res. 2007, 40, 105–115. [Google Scholar]
- Nettis, E.; Colanardi, M.C.; Ferrannini, A.; Tursi, A. Antihistamines as important tools for regulating inflammation. Curr. Med. Chem. Anti Inflamm. Anti Allergy Agents 2005, 4, 81–89. [Google Scholar] [CrossRef]
- Tewtrakul, S.; Itharat, A. Anti-allergic substances from the rhizomes of Dioscorea membranacea. Bioorg. Med. Chem. 2006, 14, 8707–8711. [Google Scholar] [CrossRef]
- Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural Products (Secondary Metabolites). In Biochemistry & Molecular Biology of Plants; Buchanan, B., Gruissem, W., Jones, R., Eds.; Wiley: Hoboken, NJ, USA, 2000; Volume 24, pp. 1250–1318. [Google Scholar]
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar]
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Iavicoli, I.; Di Paola, R.; Koverech, A.; Cuzzocrea, S.; Rizzarelli, E.; Calabrese, E.J. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim. Biophys. Acta. 2012, 1822, 753–783. [Google Scholar]
- Nichenametla, S.N.; Taruscio, T.G.; Barney, D.L.; Exon, J.H. A Review of the effects and mechanisms of polyphenolics in cancer. Crit. Rev. Food Sci. Nutr. 2006, 46, 161–183. [Google Scholar]
- Arya, V.; Arya, M.L. A Review on anti-inflammatory plant barks. Int. J. Pharm.Tech. Res. 2011, 3, 899–908. [Google Scholar]
- Vauzour, D. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell. Longev. 2012. [Google Scholar] [CrossRef]
- Alía, M.; Ramos, S.; Mateos, R.; Granado-Serrano, A.B.; Bravo, L.; Goya, L. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol. Appl. Pharmacol. 2006, 212, 110–118. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Protective effect of resveratrol on markers of oxidative stress in human erythrocytes subjected to in vitro oxidative insult. Phytother. Res. 2010, 24, S11–S14. [Google Scholar] [CrossRef]
- Scharf, G.; Prustomersky, S.; Knasmuller, S.; Schulte-Hermann, R.; Huber, W.W. Enhancement of glutathione and g-glutamylcysteine synthetase, the rate limiting enzyme of glutathione synthesis, by chemoprotective plant-derived food and beverage components in the human hepatoma cell line HepG2. Nutr. Cancer 2003, 45, 74–83. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant properties of resveratrol: A structure-activity insight. Innovat. Food Sci. Emerg Tech. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Fki, I.; Sahnoun, Z.; Sayadi, S. Hypocholesterolemic effects of phenolic extracts and purified hydroxytyrosol recovered from olive mill wastewater in rats fed a cholesterol-rich diet. J. Agric. Food. Chem. 2007, 55, 624–631. [Google Scholar]
- Du, Y.; Guo, H.; Lou, H. Grape seed polyphenols protect cardiac cells from apoptosis via induction of endogenous antioxidant enzymes. J. Agric. Food. Chem. 2007, 55, 1695–1701. [Google Scholar]
- Rodrigo, R.; Miranda, A.; Vergara, L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin. Chim. Acta 2011, 412, 410–424. [Google Scholar]
- Leung, H.W.; Kuo, C.L.; Yang, W.H.; Lin, C.H.; Lee, H.Z. Antioxidant enzymes activity involvement in luteolin-induced human lung squamous carcinoma CH27 cell apoptosis. Eur. J. Pharmacol. 2006, 534, 12–18. [Google Scholar] [CrossRef]
- Vanhees, K.; van Schooten, F.J.; Moonen, E.J.; Maas, L.M.; van Waalwijk van Doorn-Khosrovani, S.B.; Godschalk, R.W.L. Maternal intake of quercetin during gestation alters ex vivo benzo[a]pyrene metabolism and DNA adduct formation in adult offspring. Mutagenesis 2012, 27, 445–451. [Google Scholar] [CrossRef]
- Shen, S.Q.; Zhang, Y.; Xiang, J.J.; Xiong, C.L. Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World J. Gastroenterol. 2007, 13, 1953–1961. [Google Scholar]
- Hong, J.; Smith, T.J.; Ho, C.T.; August, D.A.; Yang, C.S. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem. Pharmacol. 2001, 62, 1175–1183. [Google Scholar]
- Park, J.B. Effects of typheramide and alfrutamide found in Allium species on cyclooxygenases and lipoxygenases. J. Med. Food 2011, 14, 226–231. [Google Scholar]
- Schewe, T.; Sadik, C.; Klotz, L.O.; Yoshimoto, T.; Kuhn, H.; Sies, H. Polyphenols of cocoa: Inhibition of mammalian 15-lipoxygenase. Biol. Chem. 2001, 382, 1687–1696. [Google Scholar]
- Fernandez, M.A.; de las Heras, B.; Garcia, M.D.; Saenz, M.T.; Villar, A. New insights into the mechanism of action of the anti-inflammatory triterpene lupeol. J. Pharm. Pharmacol. 2001, 53, 1533–1539. [Google Scholar]
- Rangkadilok, N.; Sitthimonchai, S.; Worasuttayangkurn, L.; Mahidol, C.; Ruchirawat, M.; Satayavivad, J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem. Toxicol. 2007, 45, 328–336. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Cadenas, S.; Barja, G. Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA damage induced by the kidney carcinogen KBrO3. Free Radic. Biol. Med. 1999, 26, 1531–1537. [Google Scholar] [CrossRef]
- Hanaski, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygen scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med. 1994, 16, 845–850. [Google Scholar]
- Mascio, P.D.; Murphy, M.E.; Sies, H. Antioxidant defense systems: The role of carotenoids, tocopherols, and thiols. Am. J. Clin. Nutr. 1991, 53, 194S–200S. [Google Scholar]
- Chen, Y.; Tsai, Y.H.; Tseng, S.H. The potential of tetrandrine as a protective agent for ischemic stroke. Molecules 2011, 16, 8020–8032. [Google Scholar] [CrossRef]
- Srinivasan, M.; Sudheer, A.R.; Pillai, K.R.; Kumar, P.R.; Sudhakaran, P.R.; Menon, V.P. Lycopene as a natural protector against gamma-radiation induced DNA damage, lipid peroxidationand antioxidant status in primary culture of isolated rat hepatocytes in vitro. Biochim. Biophys. Acta 2007, 1770, 659–665. [Google Scholar] [CrossRef]
- Yang, S.C.; Huang, C.C.; Chu, J.S.; Chen, J.R. Effects of β-carotene on cell viability and antioxidant status of hepatocytes from chronically ethanol-fed rats. Br. J. Nutr. 2004, 92, 209–215. [Google Scholar] [CrossRef]
- Manna, S.K. Double-edged sword effect of biochanin to inhibit nuclear factor kappaB: Suppression of serine/threonine and tyrosine kinases. Biochem. Pharmacol. 2012, 15, 1383–1392. [Google Scholar]
- Trevillyan, J.M.; Lu, Y.L.; Atluru, D.; Phillips, C.A.; Bjorndahl, J.M. Differential inhibition of T cell receptor signal transduction and early activation events by selective inhibitor of protein-tyrosine kinase. J. Immunol. 1990, 145, 3223–3230. [Google Scholar]
- Comalada, M.; Ballester, I.; Bailon, E.; Sierra, S.; Xaus, J.; Galvez, J.; de Medina, F.S.; Zarzuelo, A. Inhibition of pro-inflammatory markers in primary bonemarrow-derived mouse macrophages by naturally occurring flavonoids: Analysis of the structure-activity relationship. Biochem. Pharmacol. 2006, 72, 1010–1021. [Google Scholar] [CrossRef]
- Pečivová, J.; Mačičková, T.; Sviteková, K.; Nosá, R. Quercetin inhibits degranulation and superoxide generation in PMA stimulated neutrophils. Interdiscip. Toxicol. 2012, 5, 81–83. [Google Scholar]
- Kanashiro, A.; Souza, J.G.; Kabeya, L.M.; Azzolini, A.E.; Lucisano-Valim, Y.M. Elastase release by stimulet neutrophils inhibited by flavonoids: Importance of the catechol group. Z. Naturforsch. C 2007, 62, 357–361. [Google Scholar]
- Tordera, M.; Ferrandiz, M.L.; Alcaraz, M.J. Influence of anti-inflammatory flavonoids on degranulation and arachidonic acid release in rat neutrophils. Z. Naturforsch.C 1994, 49, 235–240. [Google Scholar]
- Berton, G.; Schneider, C.; Romeo, D. Inhibition by quercetin of activation of polymorphonuclear leukocyte functions. Stimulus-specific effects. Biochim. Biophys. Acta 1980, 595, 47–55. [Google Scholar] [CrossRef]
- Lee, T-P.; Matteliano, M.L.; Middletone, E. Effect of quercetin on human polymorphonuclear leukocyte lysosomal enzyme release and phospholipid metabolism. Life Sci. 1982, 31, 2765–2774. [Google Scholar] [CrossRef]
- Selloum, L.; Bouriche, H.; Tigrine, C.; Boudoukha, C. Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils chemotaxis and degranulation. Exp. Toxicol. Pathol. 2003, 54, 313–318. [Google Scholar] [CrossRef]
- Lanni, C.; Becker, E.L. Inhibition of neutrophil phospholipase A2 by p-bromophenylacyl bromide, nordihydroguaiaretic acid, 5,8,11,14-eicosatetrayenoic acid and quercetin. Int. Arch. Allergy Appl. Immunol. 1985, 76, 214–217. [Google Scholar] [CrossRef]
- Chiou, Y.L.; Lin, S.R.; Hu, W.P.; Chang, L.S. Quercetin modulates activities of Taiwan cobra phospholipase A2 via its effects on membrane structure and membrane-bound mode of phospholipase A2. J. Biosci. 2012, 37, 277–87. [Google Scholar] [CrossRef]
- Gil, B.; Sanz, M.J.; Terencio, M.C.; Ferrandiz, M.L.; Bustos, G.; Paya, M.; Gunasegaran, R.; Alcaraz, M.J. Effects of flavonoids on Naja naja and human recombinant synovial phospholipase A2 and inflammatory responses in mice. Life Sci. 1994, 54, PL333–PL338. [Google Scholar] [CrossRef]
- Chang, H.W.; Baek, S.H.; Chung, K.W.; Son, K.H.; Kim, H.P.; Kang, S.S. Inactivation of phospholipase A2 by naturally occurring biflavonoid, ochnaflavone. Biochem. Biophys. Res. Commun. 1994, 205, 843–849. [Google Scholar]
- Gil, B.; Sanz, M.J.; Terencio, M.C.; Gunasegaran, R.; Paya, M.; Alcaraz, M.J. Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with anti-inflammatory activity. Biochem. Pharmacol. 1997, 53, 733–740. [Google Scholar]
- Baek, S.H.; Yun, S.S.; Kwon, T.K.; Kim, J.R.; Chang, H.W.; Kwak, J.Y.; Kim, J.H.; Kwun, K.B. The effects of two new antagonists of secretory PLA2 on TNF-α, iNOS, and COX-2 expression in activated macrophages. Shock 1999, 12, 473–478. [Google Scholar] [CrossRef]
- Hong, J.; Bose, M.; Ju, J.; Ryu, J.H.; Chen, X.; Sang, S.; Lee, M.J.; Yang, C.S. Modulation of arachidonic acid metabolism by curcumin and related beta diketone derivatives: Effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 2004, 25, 1671–1679. [Google Scholar] [CrossRef]
- Kwak, W.-J.; Moon, T.C.; Lin, C.X.; Rhyn, H.G.; Jung, H.; Lee, E.; Kwon, D.Y.; Son, K.H.; Kim, H.P.; Kang, S.S.; et al. Papyriflavonol A from Broussonetia papyrifera inhibits the passive cutaneous anaphylaxis reaction and has a secretory phospholipase A2-inhibitory activity. Biol. Pharm. Bull. 2003, 26, 299–302. [Google Scholar] [CrossRef]
- Bauman, J.; von Bruchhausen, F.V.; Wurm, G. Flavonoids and related compounds as inhibitors of arachidonic acid peroxidation. Prostaglandins 1980, 20, 627–639. [Google Scholar] [CrossRef]
- Landorfi, R.; Mower, R.L.; Steiner, M. Modification of platelet function and arachidonic acid metabolism by biflavonoids. Structure-activity relations. Biochem. Pharmacol. 1984, 33, 1525–1530. [Google Scholar] [CrossRef]
- Akhtar, N.; Haqqi, T.M. Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. Arthritis Res. Ther. 2011, 13, R93. [Google Scholar] [CrossRef]
- Kimura, Y.; Okuda, H.; Nomura, T.; Fukai, T.; Arichi, S. Effects of phenolic constituents from the mulberry tree on arachidonate metabolism in rat platelets. J. Nat. Prod. 1986, 49, 639–644. [Google Scholar] [CrossRef]
- Lin, C.N.; Lu, C.M.; Lin, H.C.; Fang, S.C.; Shieh, B.J.; Hsu, M.F.; Wang, J.P.; Ko, F.N.; Teng, C.M. Novel antiplatelet constituents from Formosan Moraceous plants. J. Nat. Prod. 1996, 59, 834–838. [Google Scholar] [CrossRef]
- Gerhauser, C.; Klimo, K.; Heiss, E.; Neumann, I.; Gamal-Eldeen, A.; Knauft, J.; Liu, G.Y.; Sitthimonchai, S.; Frank, N. Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutat. Res. 2003, 523-524, 163–172. [Google Scholar] [CrossRef]
- Csaki, C.; Keshishzadeh, N.; Fischer, K.; Shakibaei, M. Regulation of inflammation signaling by resveratrol in human chondrocytes in vitro. Biochem. Pharmacol. 2008, 75, 677–687. [Google Scholar]
- Ferrandiz, M.L.; Ramachandran Nair, A.G.; Alcaraz, M.J. Inhibition of sheep platelet arachidonatemetabolism by flavonoids from Spanish and Indian medicinal herbs. Pharmazie 1990, 45, 206–208. [Google Scholar]
- You, K.M.; Jong, H.; Kim, H.P. Inhibition of cyclooxygenase/lipoxygenase from human platelets by polyhydroxylated/methoxylated flavonoids isolated from the several medicinal plants. Arch. Pharm. Res. 1999, 22, 18–24. [Google Scholar] [CrossRef]
- Chi, Y.S.; Jong, H.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Effects of naturally occurring prenylated flavonoids on arachidonic acid metabolizing enzymes: Cylooxygenases and lipoxygenases. Biochem. Pharmacol. 2001, 62, 1185–1191. [Google Scholar] [CrossRef]
- Moon, T.C.; Murakami, M.; Kudo, I.; Son, K.H.; Kim, H.P.; Kang, S.S.; Chang, H.W. A new class of Cox-2 inhibitor, rutaecarpine from Evoida rutaecarpa. Inflamm. Res. 1999, 48, 621–625. [Google Scholar] [CrossRef]
- Hou, C.-C.; Chen, Y.-P.; Wu, J.-H.; Huang, C.-C.; Wang, S.-Y.; Yang, N.-S.; Shyur, L.-F. A Galactolipid possesses novel cancer chemopreventive effects by suppressing inflammatory mediators and mouse B16 melanoma. Cancer Res. 2007, 67, 6907–6915. [Google Scholar] [CrossRef]
- Noreen, Y.; Serrano, G.; Perera, P.; Bohlin, L. Flavan-3-ols isolated from some medicinal plants inhibiting COX-1 and COX-2 catalysed prostaglandin biosynthesis. Planta Med. 1998, 64, 520–524. [Google Scholar] [CrossRef]
- Jang, D.S.; Cuendet, M.; Hawthorne, M.E. Prenylated flavonoids of the leaves of Macaranga conifera with inhibitory activity against cyclooxygenase-2. Phytochemistry 2002, 61, 867–872. [Google Scholar] [CrossRef]
- Likhiwitayawuid, K.; Sawasdee, K.; Kirtikara, K. Flavonoids and stilbenoids with COX-1 and COX-2 inhibitory activity from Dracaena loureiri. Planta Med. 2002, 68, 841–843. [Google Scholar] [CrossRef]
- Sailer, E.R.; Subramanian, L.R.; Rall, B.; Hoernlein, R.F.; Ammon, H.P.; Safayhi, H. Acetyl-11-keto-beta-boswellic acid (AKBA): Structure requirements for binding and 5-lipoxygenase inhibitory activity. Br. J. Pharmcol. 1996, 117, 615–618. [Google Scholar] [CrossRef]
- Safayhi, H.; Boden, S.E.; Schweizer, S.; Ammon, H.P. Concentration-dependent potentiating and inhibitory effects of Boswellia extracts on 5-lipoxygenase product formation in stimulated PMNL. Planta Med. 2000, 66, 110–113. [Google Scholar] [CrossRef]
- Prieto, J.M.; Giner, R.M.; Recio, M.M.C.; Schinella, G.; Manez, S.; Rios, J.L. Diphyllin acetylapioside, a 5-lipoxygenase inhibitor from Haplophyllum hispanicum. Planta Med. 2002, 68, 359–360. [Google Scholar] [CrossRef]
- Nakadate, T.; Yamamoto, S.; Aizu, E.; Kato, R. Effects of flavonoids and antioxidants on 12-O-tetradecanoylphorbol 13-acetate induced epidermal ornithine decarboxylase induction and tumor promotion in relation to lipoxygenase inhibition by these compounds. Gann 1984, 75, 214–222. [Google Scholar]
- Laughton, M.J.; Evans, P.J.; Moroney, M.A.; Hoult, J.R.S.; Halliwell, B. Inhibition of mammalian 5-lipoxygenase and cyclooxygenase by flavonoids and phenolic dietary additives. Biochem. Pharmacol. 1991, 42, 1673–1681. [Google Scholar] [CrossRef]
- Kim, H.P.; Indu, M.; Iversen, L.; Ziboh, V.A. Effects of naturally occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs. Prostaglandins Leukot. Essent. Fatty Acids 1998, 58, 17–24. [Google Scholar] [CrossRef]
- Yoshimoto, T.; Furukawa, M.; Yamamoto, S.; Horie, T.; Watanabe-Kohno, S. Flavonoids: Potent inhibitors of arachidonate 5-lipoxygenase. Biochem. Biophys. Res. Commun. 1983, 116, 612–618. [Google Scholar] [CrossRef]
- Reddy, G.R.; Ueda, N.; Hada, T.; Sackeyfio, A.C.; Yamamoto, S.; Hana, Y. A prenylatedflavone, artonin E, as arachidonate 5-lipoxygenase inhibitor. Biochem. Pharmacol. 1991, 41, 115–118. [Google Scholar] [CrossRef]
- Kinaci, M.K.; Erkasap, N.; Kucuk, A.; Koken, T.; Tosun, M. Effects of quercetin on apoptosis, NF-κB and NOS gene expression in renal ischemia/reperfusion injury. Exp. Ther. Med. 2012, 3, 249–254. [Google Scholar]
- Wang, Y.; Zhu, Y.; Gao, L.; Yin, H.; Xie, Z.; Wang, D.; Zhu, Z.; Han, X. Formononetin attenuates IL-1β-induced apoptosis and NF-κB activation in INS-1 cells. Molecules 2012, 17, 10052–10064. [Google Scholar] [CrossRef]
- Sadowska-Krowicka, H.; Mannick, E.E.; Oliver, P.D.; Sandoval, M.; Zhang, X.J.; Eloby-Childess, S.; Clark, D.A.; Miller, M.J. Genistein and gut inflammation: Role of nitric oxide. Proc. Soc. Exp. Biol. Med. 1998, 217, 351–357. [Google Scholar]
- Soliman, K.F.A.; Mazzio, E.A. In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc. Soc. Exp. Biol. Med. 1998, 218, 390–397. [Google Scholar]
- Kim, H.; Kim, Y.S.; Kim, S.Y.; Suk, K. The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production. Neurosci. Lett. 2001, 309, 67–71. [Google Scholar] [CrossRef]
- Kao, T.K.; Ou, Y.C.; Raung, S.L.; Lai, C.Y.; Liao, S.L.; Chen, C.J. Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sci. 2010, 86, 315–321. [Google Scholar] [CrossRef]
- Fu, P.K.; Wu, C.L.; Tsai, T.H.; Hsieh, C.L. Anti-Inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats. Evid. Based Complement. Alternat. Med. 2012. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, B.; Lotz, M. Protein tyrosine kinase activation is required for lipopolysaccharide induction of cytokines in human blood monocytes. J. Immunol. 1993, 151, 6692–6700. [Google Scholar]
- Yoon, J.S.; Chae, M.K.; Lee, S.Y.; Lee, E.J. Anti-inflammatory effect of quercetin in a whole orbital tissue culture of Graves’ orbitopathy. Br. J. Ophthalmol. 2012, 96, 1117–1121. [Google Scholar] [CrossRef]
- Jang, S.; Dilger, R.N.; Johnson, R.W. Luteolin inhibits microglia and alters hippocampal-dependent spatial working memory in aged mice. J. Nutr. 2010, 140, 1892–1898. [Google Scholar] [CrossRef]
- Lin, N.; Sato, T.; Takayama, Y.; Mimaki, Y.; Sashida, Y.; Yano, M.; Ito, A. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem. Pharmacol. 2003, 65, 2065–2071. [Google Scholar] [CrossRef]
- Krakauer, T. The polyphenol chlorogenic acid inhibits staphylococcal exotoxin-induced inflammatory cytokines and chemokines. Immunopharmacol. Immunotoxicol. 2002, 24, 113–119. [Google Scholar] [CrossRef]
- Hong, J.J.; Jeong, T.S.; Choi, J.H.; Park, J.H.; Lee, K.Y.; Seo, Y.J.; Oh, S.R.; Oh, G.T. Hematein inhibits tumor necrotic factor-alpha-induced vascular cell adhesion molecule-1 and NF-kappaB-dependent gene expression in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 2001, 281, 1127–1133. [Google Scholar] [CrossRef]
- Jeong, H.J.; Koo, H.N.; Na, H.J.; Kim, M.S.; Hong, S.H.; Eom, J.W.; Kim, K.S.; Shin, T.Y.; Kim, H.M. Inhibition of TNF-alpha and IL-6 production by Aucubin through blockade of NF-kappaB activation RBL-2H3 mast cells. Cytokine 2002, 18, 252–259. [Google Scholar] [CrossRef]
- An, S.J.; Pae, H.O.; Oh, G.S.; Choi, B.M.; Jeong, S.; Jang, S.I.; Oh, H.; Kwon, T.O.; Song, C.E.; Chung, H.T. Inhibition of TNF-alpha, IL-1beta, and IL-6 productions and NF-kappa B activation in lipopolysaccharide-activated RAW 264.7 macrophages by catalposide, an iridoid glycoside isolated from Catalpa ovata G. Don (Bignoniaceae). Int. Immunopharmacol. 2002, 2, 1173–1181. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, H.S.; Min, K.R.; Kim, Y.; Lim, H.K.; Chang, Y.K.; Chung, M.W. Antiinflammatory effects of fangchinoline and tetrandrine. J. Ethnopharmacol. 2000, 69, 173–179. [Google Scholar] [CrossRef]
- Onai, N.; Tsunokawa, Y.; Suda, M.; Watanabe, N.; Nakamura, K.; Sugimoto, Y.; Kobayashi, Y. Inhibitory effects of bisbenzylisoquinoline alkaloids on induction of proinflammatory cytokines, interleukin-1 and tumor necrosis factor-alpha. Planta Med. 1995, 61, 497–501. [Google Scholar] [CrossRef]
- Kiraz, S.; Ertenli, I.; Arici, M.; Calguneri, M.; Haznedaroglu, I.; Celik, I.; Pay, S.; Kirazli, S. Effects of colchicine on inflammatory cytokines and selectins in familial Mediterranean fever. Clin. Exp. Rheumatol. 1998, 16, 721–724. [Google Scholar]
- Chiou, W.F.; Peng, C.H.; Chen, C.F.; Chou, C.J. Anti-inflammatory propertiesof piperlactam S: Modulation of complement 5a-induced chemotaxis and inflammatory cytokines production in macrophages. Planta Med. 2003, 69, 9–14. [Google Scholar] [CrossRef]
- Sun, J.; Han, J.; Zhao, Y.; Zhu, Q.; Hu, J. Curcumin induces apoptosis in tumor necrosis factor-alpha-treated HaCaT cells. Int. Immunopharmacol. 2012, 13, 170–174. [Google Scholar] [CrossRef]
- Ding, J.; Polier, G.; Köhler, R.; Giaisi, M.; Krammer, P.H.; Li-Weber, M. Wogonin and related natural flavones overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein resistance of tumors by down-regulation of c-FLIP protein and up-regulation of TRAIL receptor 2 expression. J. Biol. Chem. 2012, 2, 641–649. [Google Scholar]
- Wadsworth, T.L.; McDonald, T.L.; Koop, D.R. Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced signaling pathways involved in the release of tumor necrosis factor-α. Biochem.Pharmacol. 2001, 62, 963–974. [Google Scholar] [CrossRef]
- Morikawa, K.; Nonaka, M.; Narahara, M.; Torii, I.; Kawaguchi, K.; Yoshikawa, T.; Kumazawa, Y.; Morikawa, S. Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci. 2003, 74, 709–721. [Google Scholar] [CrossRef]
- Dien, M.V.; Takahashi, K.; Mu, M.M.; Koide, N.; Sugiyama, T.; Mori, I.; Yoshida, T.; Yokochi, T. Protective effect of wogonin on endotoxin-induced lethalshock in D-galactosamine-sensitized mice. Microbiol. Immunol. 2001, 45, 751–756. [Google Scholar]
- Takahashi, K.; Morikawa, A.; Kato, Y.; Sugiyama, T.; Koide, N.; Mu, M.M.; Yoshida, T.; Yokochi, T. Flavonoids protect mice from two types of lethal shock induced by endotoxin. FEMS Immunol. Med. Microbiol. 2001, 31, 29–33. [Google Scholar] [CrossRef]
- Shin, D.K.; Kim, M.H.; Lee, S.H.; Kim, T.H.; Kim, S.Y. Inhibitory effects of luteolin on titanium particle-induced osteolysis in a mouse model. Acta Biomater. 2012, 8, 3524–3351. [Google Scholar] [CrossRef]
- Kim, J.E.; Son, J.E.; Jang, Y.J.; Lee, D.E.; Kang, N.J.; Jung, S.K.; Heo, Y.S.; Lee, K.; Lee, H.J. Luteolin, a novel natural inhibitor of TPL2 kinase, inhibits tumor necrosis factor-α-induced cyclooxygenase-2 expression in JB6 mouse epidermis cell. J. Pharmacol. Exp. Ther. 2011, 338, 1013–1022. [Google Scholar] [CrossRef]
- Ueda, H.; Yamazaki, C.; Yamazaki, M. A hydroxyl group of flavonoids affects oral anti-inflammatoryactivity and inhibition of systemic tumor necrosis factor-α production. Biosci. Biotechnol. Biochem. 2004, 68, 119–125. [Google Scholar] [CrossRef]
- Li, Y.C.; Yeh, C.H.; Yang, M.L.; Kuan, Y.H. Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFκB pathway in acute lung injury induced by lipopolysaccharide in mice. Evid. Based Complement. Alternat. Med. 2012. [Google Scholar] [CrossRef]
- Kumazawa, Y.; Kawaguchi, K.; Takimoto, H. Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor α. Curr. Pharm. Des. 2006, 12, 4271–4279. [Google Scholar] [CrossRef]
- Okabe, S.; Suganuma, M.; Imayoshi, Y.; Taniguchi, S.; Yoshida, T.; Fujiki, H. New TNFα releasing inhibitors, geraniin and corilagin, in leaves of Acer nikoense, Megusurino-Ki. Biol. Pharm. Bull. 2001, 10, 1145–1148. [Google Scholar]
- Cho, J.Y.; Park, J.; Yoo, E.S.; Yoshikawa, K.; Baik, K.U.; Lee, J.; Park, M.H. Inhibitory effect of lignans from the rhizomes of Coptis japonica var. dissecta on tumor necrosis factor-alpha production in lipopolysaccharide-stimulated RAW264.7 cells. Arch. Pharmacol. Res. 1998, 21, 12–16. [Google Scholar] [CrossRef]
- Cho, J.Y.; Baik, K.U.; Yoo, E.S.; Yoshikawa, K.; Park, M.H. In vitro anti-inflammatory effects of neolignan woorenosides from the rhizomes of Coptis japonica. J. Nat. Prod. 2000, 63, 1205–1209. [Google Scholar] [CrossRef]
- Hart, P.H.; Brand, C.; Carson, C.F.; Riley, T.V.; Prager, R.H.; Finlay-Jones, J.J. Terpinen-4-ol, themain component of the essential oil of Malaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm. Res. 2000, 49, 619–626. [Google Scholar] [CrossRef]
- Soares, M.B.; Bellintani, M.C.; Ribeiro, I.M.; Tomassini, T.C.; Ribeiro dos Santos, R. Inhibition of macrophage activation and lipopolysaccaride-induced death by seco-steroids purified from Physalis angulata L. Eur. J. Pharmacol. 2003, 459, 107–112. [Google Scholar] [CrossRef]
- Lin, N.; Sato, T.; Ito, A. Triptolide, a novel diterpenoid triepoxide from Tripterygium wilfordii Hook. F., suppresses the production and gene expression of pro-matrix metalloproteinases 1 and 3 and augments those of tissue inhibitors of metalloproteinases 1 and 2 in human synovial fibroblasts. Arthritis Rheum. 2001, 44, 193–2200. [Google Scholar]
- Liacini, A.; Sylvester, J.; Zafarullah, M. Triptolide suppresses proinflammatory cytokine-induced matrix metalloproteinase and aggrecanase-1 gene expression in chondrocytes. Biochem. Biophys. Res. Commun. 2005, 327, 320–327. [Google Scholar] [CrossRef]
- Ha, S.K.; Moon, E.; Ju, M.S.; Kim, D.H.; Ryu, J.H.; Oh, M.S.; Kim, S.Y. 6-Shogaol, a ginger product, modulates neuroinflammation: A new approach to neuroprotection. Neuropharmacology 2012, 63, 211–223. [Google Scholar] [CrossRef]
- Shany, S.; Levy, Y.; Lahav-Cohen, M. The effects of 1α, 24(S)-dihydroxyvitamin D2 analog on cancer cell proliferation and cytokine expression. Steroids 2001, 66, 319–325. [Google Scholar] [CrossRef]
- Ono, M.; Tanaka, N.; Moriyasu, T. Anti-inflammatory action of cepharanthine ointment ingredient in experimental animals: Studies on chronic inflammation and TNF-alpha production. Ensho 1994, 14, 425–429. [Google Scholar] [CrossRef]
- Parmely, M.J.; Zhou, W.W.; Edwards, C.K., III; Borcherding, D.R.; Silverstein, R.; Morrison, D.C. Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrosis factor-alpha production and protect mice against endotox challenge. J. Immunol. 1993, 151, 389–396. [Google Scholar]
- Gerritsen, M.E.; Carley, W.W.; Ranges, G.E.; Shen, C.P.; Phan, S.A.; Ligon, G.F.; Perry, C.A. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am. J. Pathol. 1995, 147, 278–292. [Google Scholar]
- Nakamura, N.; Hayasaka, S.; Zhang, X.Y.; Nagaki, Y.; Matsumoto, M.; Hayasaka, Y.; Terasawa, K. Effects of baicalin, baicalein and wogonin on interleukin-6 and interleukin-8 expression, and nuclear factor-κB binding activities induced by interleukin-1β in human retinal pigmant epithelial cell line. Exp. Eye Res. 2003, 77, 195–202. [Google Scholar] [CrossRef]
- Atluru, D.; Jackson, T.M.; Atluru, S. Genistein, a selective protein tyrosine kinase inhibitor, inhibits interleukin-2 and leukotriene B4 production from human mononuclear cells. Clin. Immunol. Immunopathol. 1991, 59, 379–387. [Google Scholar] [CrossRef]
- Hernandez, V.; del Carmen Recio, M.; Manez, S.; Prieto, J.M.; Giner, R.M.; Rios, J.L. A mechanistic approach to the in vivo anti-inflammatory activity of sesquiterpenoid compounds isolated from Inula viscosa. Planta Med. 2001, 67, 726–731. [Google Scholar] [CrossRef]
- Danz, H.; Stoyanova, S.; Thomet, O.A.; Simon, H.U.; Dannhardt, G.; Ulbrich, H.; Hamburger, M. Inhibitory activity of tryptanthrin on prostaglandin and leukotriene synthesis. Planta Med. 2002, 68, 875–880. [Google Scholar] [CrossRef]
- Bermejo, B.P.; Abad Martinez, M.J.; Silvan Sen, A.M.; Sanz Gomez, A.; Fernandez Matellano, L.; Sanchez Contreras, S.; Diaz Lanza, A.M. In vivo and in vitro anti-inflammatory activity of saikosaponins. Life Sci. 1998, 63, 1147–1156. [Google Scholar] [CrossRef]
- Bermejo, B.P.; Diaz Lanza, A.M.; Silvan Sen, A.M.; de Santos Galindez, J.; Fernandez Matellano, L.; Sanz Gomez, A.; Abad Martinez, M.J. Effects of some iridoids from plant origin on arachidonic acid metabolism in cellular systems. Planta Med. 2000, 66, 324–328. [Google Scholar] [CrossRef]
- Giner-Larza, E.M.; Manez, S.; Giner, R.M.; Recio, M.C.; Prieto, J.M.; Cerda-Nicolas, M.; Rios, J.L. Anti-inflammatory triterpenes from Pistacia terebinthus galls. Planta Med. 2002, 68, 311–315. [Google Scholar] [CrossRef]
- Diaz Lanza, A.M.; Abad Martinez, M.J.; Fernandez Matellano, L.; Recuero Carretero, C.; Villaescusa Castillo, L.; Silvan Sen, A.M.; Bermejo Benito, P. Lignan and phenylpropanoid glycosides from Phillyrea latifolia and their in vitro anti-inflammatory activity. Planta Med. 2001, 67, 219–223. [Google Scholar] [CrossRef]
- Kim, Y.P.; Yamada, M.; Lim, S.S.; Lee, S.H.; Ryu, N.; Shin, K.H. Inhibition of tectorigenin and tectoridin of prostaglandin E2 production and cyclooxygenase-2 induction in rat peritoneal macrophages. Biochim. Biophys. Acta 1999, 1438, 399–407. [Google Scholar] [CrossRef]
- Kim, Y.P.; Lee, E.B.; Kim, S.Y.; Li, D.; Ban, H.S.; Lim, S.S.; Shin, K.H.; Ohuchi, K. Inhibition of prostaglandin E2 production by platycodin D isolated from the root of Platycodon grandiflorum. Planta Med. 2001, 67, 362–364. [Google Scholar] [CrossRef]
- Hong, C.H.; Noh, M.S.; Lee, W.Y.; Lee, S.K. Inhibitory effects of natural sesquiterpenoids isolated from the rhizomes of Curcuma zedoaria on prostaglandin E2 and nitric oxide production. Planta Med. 2002, 68, 545–547. [Google Scholar] [CrossRef]
- Woo, H.G.; Lee, C.H.; Noh, M.S.; Lee, J.J.; Jung, Y.S.; Baik, E.J.; Moon, C.H.; Lee, S.H. Rutaecarpine, a quinazolinocarboline alkaloid, inhibits prostaglandin production in RAW26.7 macrophages. Planta Med. 2001, 67, 505–509. [Google Scholar] [CrossRef]
- Nakajima, T.; Imanishi, M.; Yamamoto, K.; Cyong, J.C.; Hirai, K. Inhibitory effect of baicalein, a flavonoid in Scutellaria root, on eotaxin production by human dermal fibroblasts. Planta Med. 2001, 67, 132–135. [Google Scholar] [CrossRef]
- Chi, Y.S.; Cheon, B.S.; Kim, H.P. Effect of wogonin, a plant flavones from Scutellaria radix, on the suppression of cyclooxygenase and the induction of inducible nitric oxide synthase in lipopolysaccharide-treated RAW 26.7 cells. Biochem. Pharmacol. 2001, 61, 1195–1203. [Google Scholar] [CrossRef]
- Kim, H.K.; Cheon, B.S.; Kim, Y.H.; Kim, S.Y.; Kim, H.P. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structural-activity relationships. Biochem. Pharmacol. 1999, 58, 759–765. [Google Scholar] [CrossRef]
- Liang, Y.C.; Huang, Y.T.; Tsai, S.H.; Lin-Shiau, S.Y.; Chen, C.F.; Lin, J.K. Suppression of inducible cyclooxygenase and inducible nitricoxide synthase by apigenin and related flavonoids in mousemacrophages. Carcinogenesis 1999, 20, 1945–1952. [Google Scholar] [CrossRef]
- Murakami, A.; Nakamura, Y.; Torikai, K.; Tanaka, T.; Koshiba, T.; Koshimizu, K.; Kuwahara, S.; Takahashi, Y.; Ogawa, K.; Yano, M.; Tokuda, H.; et al. Inhibitory effect of citrus nobiletin onphorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res. 2000, 60, 5059–5066. [Google Scholar]
- Chen, Y.C.; Yang, L.L.; Lee, T.J.F. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation. Biochem. Pharmacol. 2000, 59, 1445–1457. [Google Scholar] [CrossRef]
- Raso, G.M.; Meli, R.; di Carlo, G.; Pacillio, M.; di Carlo, R. Inhibiton of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci. 2001, 68, 921–931. [Google Scholar] [CrossRef]
- Shen, S.C.; Lee, W.R.; Lin, H.Y.; Huang, H.C.; Ko, C.H.; Yang, L.L.; Chen, Y.C. In vitro and in vivo inhibitory activities of rutin, wogonin, andquercetin on lipopolysaccharide-induced nitric oxide andprostaglandin E2 production. Eur. J. Pharmacol. 2002, 446, 187–194. [Google Scholar] [CrossRef]
- Singh, R.; Ahmed, S.; Islam, N.; Goldberg, V.M.; Haqqi, T.M. Epigallocatechin-3-gallate inhibits interleukin-1β-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes. Suppression of nuclear factor κB by degradation of the inhibitor of nuclear factor κB. J. Rheumatol. 2002, 46, 2079–2086. [Google Scholar]
- Chan, M.M.; Fong, D.; Ho, C.T.; Huang, H.T. Inhibition of induciblenitric oxide synthase gene expression and enzyme activity byepigallocatechin gallate, a natural product from green tea. Biochem. Pharmacol. 1997, 54, 1281–1286. [Google Scholar] [CrossRef]
- Takahashi, T.; Takasuka, N.; Ligo, M.; Baba, M.; Nishino, H.; Tsuda, H. Isoliquilitigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci. 2004, 95, 448–453. [Google Scholar] [CrossRef]
- Kang, J.S.; Jeon, Y.J.; Kim, H.M.; Han, S.H.; Yang, K.H. Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J. Pharmacol. Exp. Ther. 2002, 302, 138–144. [Google Scholar] [CrossRef]
- Chan, M.M.; Huang, H.I.; Fenton, M.R.; Fong, D. In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem. Pharmacol. 1998, 55, 1955–1962. [Google Scholar] [CrossRef]
- Hamalainen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaBactivations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with theirinhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007, 2007, 45673. [Google Scholar]
- Lee, H.; Kim, Y.O.; Kim, H.; Kim, S.Y.; Noh, H.S.; Kang, S.S. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J. 2003, 17, 1943–1944. [Google Scholar]
- Qureshi, A.A.; Guan, X.Q.; Reis, J.C.; Papasian, C.J.; Jabre, S.; Morrison, D.C.; Qureshi, N. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor. Lipids Health Dis. 2012, 11, 76. [Google Scholar] [CrossRef]
- Wang, B.; Ma, L.; Tao, X.; Lipsky, P.E. Triptolide, an active component of the Chinese herbal remedy Tripterygium wilfordii Hook F, inhibits production of nitric oxide by decreasing inducible nitric oxide synthase gene transcription. Arthritis Rheum. 2004, 50, 2995–3003. [Google Scholar] [CrossRef]
- Suh, N.; Honda, T.; Finlay, H.J.; Barchowsky, A.; Williams, C.; Benoit, N.E.; Xie, Q.W.; Nathan, C.; Gribble, G.W.; Sporn, M.B. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res. 1998, 58, 717–723. [Google Scholar]
- Stempelj, M.; Kedinger, M.; Augenlicht, L.; Klampfer, L. Essential role of the JAK/STAT1 signalingpathway in the expression of inducible and its regulation by butyrate. J. Biol. Chem. 2007, 282, 9797–804. [Google Scholar]
- Palombo, P.; Fabrizi, G.; Ruocco, V. Beneficial long-term effects of combined oral/topical antioxidanttreatment with the carotenoids lutein and zeaxanthin on humanskin: A double-blind, placebo-controlled study. Skin Pharmacol. Physiol. 2007, 20, 199–210. [Google Scholar] [CrossRef]
- Kang, N.J.; Shin, S.H.; Lee, H.J.; Lee, K.W. Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol. Ther. 2011, 130, 310–324. [Google Scholar] [CrossRef]
- Hooshmand, S.; Soung do, Y.; Lucas, E.A.; Madihally, S.V.; Levenson, C.W.; Arjmandi, B.H. Genistein reduces the production of proinflammatory molecules in human chondrocytes. J. Nutr. Biochem. 2007, 18, 609–614. [Google Scholar]
- Kwak, W.J.; Han, C.K.; Son, K.H.; Chang, H.W.; Kang, S.S.; Park, B.K.; Kim, H.P. Effects of ginkgetin from Ginkgo biloba leaves on cyclooxygenases and in vivo skin inflammation. Planta Med. 2002, 68, 316–321. [Google Scholar] [CrossRef]
- Mutoh, M.; Takahashi, M.; Fukuda, K.; Komatsu, H.; Enya, T.; Matsushima-Hibiya, Y.; Mutoh, H.; Sugimura, T.; Wakabayashi, K. Suppression by flavonoids of cyclooxygenase-2 promotor-dependent transcriptional activity incolon cancer cells: Structural-activity relationship. Jpn. J. Cancer Res. 2000, 91, 686–691. [Google Scholar] [CrossRef]
- Chen, C.Y.; Peng, W.H.; Tsai, K.D.; Hsu, S.L. Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci. 2007, 81, 1602–1614. [Google Scholar] [CrossRef]
- Wakabayashi, I.; Yasui, K. Wogonin inhibits inducible prostaglandin E2 production in macrophages. Eur. J. Pharmacol. 2000, 406, 477–481. [Google Scholar] [CrossRef]
- Park, B.K.; Heo, M.Y.; Park, H.; Kim, H.P. Inhibition of TPA-inducedcyclooxygenase-2 and skin inflammation in mice by wogonin, a plant flavone from Scutellaria radix. Eur. J. Pharmacol. 2001, 425, 153–157. [Google Scholar] [CrossRef]
- Banerjee, T.; Valacchi, G.; Ziboh, V.A.; van der Vliet, A. Inhibitionof TNFα-induced cyclooxygenase-2 expression by amentoflavonethrough suppression of NF-κB activation in A549 cells. Mol. Cell. Biochem. 2002, 238, 105–110. [Google Scholar] [CrossRef]
- Tong, X.; Yin, L.; Joshi, S.; Rosenberg, D.W.; Giardina, C. Cyclooxygenase-2 regulation in colon cancer cells: Modulation of RNA polymerase II elongation by histone deacetylase inhibitors. J. Biol. Chem. 2005, 280, 15503–15509. [Google Scholar]
- Subbaramaiah, K.; Michaluart, P.; Sporn, M.B.; Dannenberg, A.J. Ursolic acid inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Cancer Res. 2000, 60, 2399–2404. [Google Scholar]
- Suksamrarn, A.; Kumpun, S.; Kirtikara, K.; Yingyongnarongkul, B.; Suksamrarn, S. Iridoids with anti-inflammatory activity from Vitex peduncularis. Planta Med. 2002, 68, 72–73. [Google Scholar] [CrossRef]
- Hirata, A.; Murakami, Y.; Atsumi, T.; Shoji, M.; Ogiwara, T.; Shibuya, K.; Ito, S.; Yokoe, I.; Fujisawa, S. Ferulic acid dimer inhibits lipopolysaccharide-stimulated cyclooxygenase-2 expression in macrophages. In Vivo 2005, 19, 849–853. [Google Scholar]
- Kim, S.O.; Kundu, J.K.; Shin, Y.K.; Park, J.H.; Cho, M.H.; Kim, T.Y.; Surh, Y.J. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-κB in phorbol ester stimulated mouse skin. Oncogene 2005, 24, 2558–2567. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, Y.; Na, K.M.; Surh, Y.J.; Kim, T.Y. [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radic. Res. 2007, 41, 603–614. [Google Scholar] [CrossRef]
- Kundu, J.K.; Shin, Y.K.; Kim, S.H.; Surh, Y.J. Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-κB in mouse skin by blocking IκB kinase activity. Carcinogenesis 2006, 27, 1465–1474. [Google Scholar] [CrossRef]
- Peng, G.; Dixon, D.A.; Muga, S.J.; Smith, T.J.; Wargovich, M.J. Green tea polyphenol (−)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol. Carcinog. 2006, 45, 309–319. [Google Scholar] [CrossRef]
- Donnelly, L.E.; Newton, R.; Kennedy, G.E.; Fenwick, P.S.; Leung, R.H.F.; Ito, K.; Russell, R.E.K.; Barnes, P.J. Anti-inflammatory effects of resveratrol in lung epithelial cells: Molecular mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 287, L774–L783. [Google Scholar] [CrossRef]
- Haridas, V.; Arntzen, C.J.; Gutterman, J.U. Avicins, a family of triterpenoid saponins from Acacia victoriae (Bentham), inhibit activation of nuclear factor-kappaB by inhibiting both its nuclear localization and ability to bind DNA. Proc. Natl. Acad. Sci.USA 2001, 98, 11557–11562. [Google Scholar]
- Sheehan, M.; Wong, H.R.; Hake, P.W.; Malhotra, V.; O’Connor, M.; Zingarelli, B. Parthenolide, an inhibitor of the nuclear factor-kappaB pathway, ameliorates cardiovascular derangement and outcome in endotoxicshock in rodents. Mol. Pharmacol. 2002, 61, 953–963. [Google Scholar] [CrossRef]
- Feng, R.; Lu, Y.; Bowman, L.L.; Qian, Y.; Castranova, V.; Ding, M. Inhibition of AP-1, NF-kB and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J. Biol. Chem. 2005, 280, 2888–2895. [Google Scholar]
- Qiu, D.; Zhao, G.; Aoki, Y.; Shi, L.; Uyei, A.; Nazarian, S.; Ng, J.C.-H.; Kao, P.N. Immunosuppressant PG490(triptolide) inhibits T-cell interleukin-2 expression at the levelof purine-box/nuclear factor of activated T-cells and NFkappaB transcriptional activation. J. Biol. Chem. 1999, 274, 13443–13450. [Google Scholar]
- Han, S.S.; Keum, Y.S.; Chun, K.S.; Surh, Y.J. Suppression of phorbol ester-induced NF-jB activation by capsaicin in cultured human promyelocytic leukemia cells. Arch. Pharm. Res. 2002, 25, 475–479. [Google Scholar] [CrossRef]
- Lührs, H.; Gerke, T.; Müller, J.G.; Melcher, R.; Schauber, J.; Boxberge, F.; Scheppach, W.; Menzel, T. Butyrate inhibitsNF-κB activation in lamina propria macrophagesof patients with ulcerative colitis. Scand. J. Gastroenterol. 2002, 37, 458–466. [Google Scholar] [CrossRef]
- Kim, J.S.; Jobin, C. The flavonoid luteolin prevents lipopolysaccharide-induced NK-kappaB signaling and gene expressionby blocking I-kappaB kinase activity in intestinal epithelial cellsand bone-marrow derived dendritic cells. Immunology 2005, 115, 373–387. [Google Scholar]
- Jobin, C.; Bradham, C.A.; Russo, M.P.; Juma, B.; Narula, A.S.; Brenner, D.A.; Sartor, R.B. Curcumin blocks cytokine-mediated NF-κB activation and pro-inflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity. J. Immunol. 1999, 163, 3474–3483. [Google Scholar]
- Hunter, M.S.; Corley, D.G.; Carron, C.P.; Rowold, E.; Kilpatrick, B.F.; Durley, R.C. Four new clerodane diterpenes from the leaves of Casearia guianensis which inhibit the interaction of leukocyte function antigen 1 with intercellular adhesion molecule 1. J. Nat. Prod. 1997, 60, 894–899. [Google Scholar] [CrossRef]
- Asahina, A.; Tada, Y.; Nakamura, K.; Tamaki, K. Colchicine and griseofulvin inhibit VCAM-1 expression on human vascular endothelial cells-evidence for the association of VCAM-1 expression with microtubules. J. Dermatol. Sci. 2001, 25, 1–9. [Google Scholar] [CrossRef]
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008, 75, 787–809. [Google Scholar] [CrossRef]
- Kwak, W.J.; Cho, Y.B.; Han, C.K.; Shin, H.J.; Ryu, K.H.; Yoo, H.; Rhee, H.I. Extraction and purification method of active constituents from stem of Lonicera japonica thunb, its usage for anti-inflammatory and analgesic drug. US20087314644, 1 January 2008. [Google Scholar]
- Kealey, K.S.; Snyder, R.M.; Romanczyk, L.J.; Geyet, H.M.; Myers, M.E.; Whitacre, E.J.; Schmitz, H.H. Treatment of inflammation. US20080188550, 7 August 2008. [Google Scholar]
- Olalde Rangel, J.A. Arthritis phyto-nutraceutical synergistic composition. US20087416748, 26 August 2008. [Google Scholar]
- Gokaraju, G.R.; Gokaraju, R.R.; Gottumukkala, V.S.; Golakoti, T. Dietary supplement formulation for controlling inflammation and cancer. US20087455860, 25 December 2008. [Google Scholar]
- Gokaraju, G.R.; Gokaraju, R.R.; Gottumukkala, V.S.; Somepalli, V. Pharmaceutically Active Extracts of Vitex Leucoxylon, a Process of Extracting the Same and a Method of Treating Diabetes and Inflammatory Diseases Therewith. US20080199543, 21 August 2008. [Google Scholar]
- Lockwood, S.F.; Mason, P.R. Use of carotenoids and/or carotenoid derivatives/analogs for reduction/inhibition of certain negative effects of COX inhibitors. US20080293679, 27 November 2008. [Google Scholar]
- Li, Y. Herbal compositions for prevention and treatment of rheumatic and inflammatory diseases and method of preparing the same. US20097553506, 3 July 2009. [Google Scholar]
- Buchholz, H.; Wirth, C.; Carola, C.; Alves Fontes, R. Flavonoid derivates. US20097588783, 15 September 2009. [Google Scholar]
- Miyake, Y.; Yoko, I. Anti-inflammatory agent. US20100120903, 13 May 2010. [Google Scholar]
- Gokaraju, G.R.; Gokaraju, R.R.; Golakoti, T.; Chirravuri, V.R.; Alluri, V.K.R.; Bhupathiraju, K. Use of Aphanamixis polystacha extracts or fractions against 5-lipoxygenase mediated diseases. US20100178288, 15 July 2010. [Google Scholar]
- Hillwig, M.L. Anti-inflammatory and anti-HIV compositions and methods of use. US20107854946, 21 December 2010. [Google Scholar]
- Theoharides, T.C. Anti-inflammatory compositions for treating multiple sclerosis. US20117906153, 15 March 2011. [Google Scholar]
- Mumper, R.J.; Dai, J.; Gallicchio, V.S. Berry preparations and extracts. US20117964223, 21 June 2011. [Google Scholar]
- Jia, Q.; Nichols, T.C.; Rhoden, E.E.; Walte, S. Identification of Free-B-Ring flavonoids as potent COX-2 inhibitors. US20110245333, 6 October 2011. [Google Scholar]
- Kimata, M.; Shichijo, M.; Miura, T.; Serizawa, I.; Inagaki, N.; Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy 2000, 30, 501–508. [Google Scholar]
- Yano, S.; Tachibana, H.; Yamada, K. Flavones suppress the expression of the high-affinity IgE receptor Fc epsilon RI in human basophilic KU812 cells. J. Agric. Food Chem. 2005, 53, 1812–1817. [Google Scholar] [CrossRef]
- Wu, S.J.; Ng, L.T. Tetrandrine inhibits proinflammatory cytokines, iNOS and COX-2 expression in human monocytic cells. Biol. Pharm. Bull. 2007, 30, 59–62. [Google Scholar] [CrossRef]
- Otsuka, H.; Hirai, Y.; Nagao, T.; Yamasaki, K. Antiinflammatory activity of benzoxazinoids from roots of Coix lachryma-jobi var. ma-yuen. J. Nat. Prod. 1988, 51, 74–79. [Google Scholar] [CrossRef]
- Wang, M.; Huang, Y.J.; Zhang, T.H.; Tong, Z.Q. Anti-allergic, anti-histamine and anti-inflammatory effects ofcompound pseudoephedrine. J. Shenyang Pharm. Univ. 1996, 132, 129–133. [Google Scholar]
- Daikonya, A.; Katsuki, S.; Wu, J.-B.; Kitanaka, S. Anti-allergic agents from natural sources (41)): Anti-allergic activity of new phloroglucinol derivatives from Mallotus philippensis (Euphorbiaceae). Chem. Pharm. Bull. 2002, 50, 1566–1659. [Google Scholar] [CrossRef]
- Cheong, H.; Ryu, S.Y.; Oak, M.H.; Cheon, S.H.; Yoo, G.S.; Kim, K.M. Studies of structure activity relationship of flavonoids for the anti-allergic actions. Arch. Pharm. Res. 1998, 21, 478–480. [Google Scholar] [CrossRef]
- Fewtrell, C.M.; Gomperts, B.D. Effect of flavone inhibitors on transport ATPases on histamine secretion from rat mast cells. Nature 1977, 265, 635–636. [Google Scholar] [CrossRef]
- Middleton, E.J.; Drzewiecki, G.; Krishnarao, D. Quercetin: An inhibitor of antigen-induced human basophil histamine release. J. Immunol. 1981, 127, 546–550. [Google Scholar]
- Fernandez, J.; Reyes, R.; Ponce, H.; Oropeza, M.; Vancalsteren, M.R.; Jankowski, C.; Campos, M.G. Isoquercitrin from Argemone platyceras inhibits carbachol and leukotriene D4-induced contraction in guinea-pig airways. Eur.J. Pharmacol. 2005, 522, 108–115. [Google Scholar] [CrossRef]
- Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara, K.; Yamadori, T.; Shima, Y.; et al. Flavonoids and related compounds as anti-allergic substances. Allergol. Int. 2007, 56, 113–123. [Google Scholar] [CrossRef]
- Hirano, T.; Arimitsu, J.; Higa, S.; Naka, T.; Ogata, A.; Shima, Y.; Fujimoto, M.; Yamadori, T; Ohkawara, T.; Kuwabara, Y.; et al. Luteolin, a flavonoid, inhibits CD40 ligand expression by activated human basophils. Int. Arch. Allergy Immunol. 2006, 140, 150–156. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Zhou, C.H.; Tao, J.; Li, S.N. Antagonistic effects of nobiletin, a polymethoxyflavonoid, on eosinophilic airway inflammation of asthmatic rats and relevant mechanisms. Life Sci. 2006, 78, 2689–2696. [Google Scholar] [CrossRef]
- Magrone, T.; Jirillo, E. Influence of polyphenols on allergic immune reactions: Mechanisms of action. Proc. Nutr. Soc. 2012, 71, 316–321. [Google Scholar] [CrossRef]
- Joskova, M.; Franova, S.; Sadloňova, V. Acute bronchodilator effect of quercetin in experimental allergic asthma. Bratisl. Lek. Listy 2011, 112, 9–12. [Google Scholar]
- Fraňova, S.; Strapkova, A.; Mokry, J.; Šutovska, M.; Joškova, M.; Sadloňova, V.; Antošova, M.; Pavelčikova, D.; Fleškova, D.; Nosaľova, G. Pharmacologic modulation of experimentally induced allergic asthma. Interdiscp. Toxicol. 2011, 4, 27–32. [Google Scholar] [CrossRef]
- Joskova, M.; Sadlonova, V.; Nosalova, G.; Novakova, E.; Franova, S. Polyphenols and their components in experimental allergic asthma. Adv. Exp. Med. Biol. 2013, 756, 91–98. [Google Scholar] [CrossRef]
- Ikarashi, N.; Sato, W.; Toda, T.; Ishii, M.; Ochiai, W.; Sugiyama, K. Inhibitory effect of polyphenol-rich fraction from the bark of Acacia mearnsii on itching associated with allergic dermatitis. Evid. Based Complement. Alternat. Med. 2012. [Google Scholar] [CrossRef]
- Kim, M.J.; Choung, S.Y. Mixture of polyphenols and anthocyanins from Vaccinium uliginosum L. alleviates DNCB-induced atopic dermatitis in NC/Nga Mice. Evid. Based Complement Alternat. Med. 2012. [Google Scholar] [CrossRef]
- Riccio, P.; Rossano, R.; Liuzzi, G.M. May diet and dietary supplements improve the wellness of multiple sclerosis patients? A molecular approach. Autoimmune Dis. 2010, 2010, 249842. [Google Scholar]
- Riccio, P. The molecular basis of nutritional intervention inmultiplesclerosis: A narrative review. Complement.Ther. Med. 2011, 19, 228–237. [Google Scholar] [CrossRef]
- Xie, L.; Li, X.K.; Takahara, S. Curcumin has bright prospects for the treatment of multiplesclerosis. Int. Immunopharmacol. 2011, 11, 323–330. [Google Scholar] [CrossRef]
- Yoshida, S. Preventive or therapeutic agent for pollen allergy, allergic rhinitis, atopic dermatitis, asthma or urticaria, or health food for prevention or improvement or reduction of symptoms thereof. US20046811796, 2 November 2004. [Google Scholar]
- Palpu, P.; Rao, C.V.; Rawat, A.K.S.; Ojha, S.K.; Reddy, G.D. Anti-allergic herbal formulation. US20087344739, 18 March 2008. [Google Scholar]
- Menon, G.R.; Fast, D.J.; Krempin, D.W.; Goolsby, J.N. Anti-Allergy composition and related method. US20087384654, 10 June 2008. [Google Scholar]
- Frimman Berg, K. Method of treating symptoms of common cold, allergic rhinitis and infections relating to the respiratory tract. US20118003688, 23 August 2011. [Google Scholar]
- Olszanecki, R.; Gebska, A.; Kozlovski, V.I.; Gryglewski, R.J. Flavonoids and nitric oxide synthase. J. Physiol. Pharmacol. 2002, 53, 571–584. [Google Scholar]
- Matsuda, H.; Tokuoka, K.; Wu, J.; Shiomoto, H.; Kubo, M. Inhibitory effects of dehydrocorydaline isolated from Corydalis Tuber against type I-IV allergic models. Biol. Pharm. Bull. 1997, 20, 431–434. [Google Scholar] [CrossRef]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Carboni, G.P.; Contri, P.; Davalli, R. Allergic contact dermatitis from apomorphine. Contact Derm. 1997, 36, 177–178. [Google Scholar] [CrossRef]
- Waclawski, E.R.; Aldridge, R. Occupational dermatitis from thebaine and codeine. Contact Derm. 1995, 33, 51. [Google Scholar]
- Tanaka, S.; Otsuki, T.; Matsumoto, Y.; Hayakawa, R.; Sugiura, M. Allergic contact dermatitis from enoxolone. Contact Derm. 2001, 44, 192. [Google Scholar] [CrossRef]
- Basketter, D.A.; Wright, Z.M.; Colson, N.R.; Patlewicz, G.Y.; Pease, C.K. Investigation of the skin sensitizing activity of linalool. Contact Derm. 2002, 47, 161–164. [Google Scholar] [CrossRef]
- Ríos, J.L.; Bas, E.; Recio, M.C. Effects of natural products on contact dermatitis. Curr. Med. Chem. Anti Inflamm. Anti Allergy Agents 2005, 4, 65–80. [Google Scholar] [CrossRef]
- Olthof, M.R.; Hollman, P.C.; Zock, P.L.; Katan, M.B. Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am. J. Clin. Nutr. 2001, 73, 532–538. [Google Scholar]
- Muller, T.; Woitalla, D.; Hauptmann, B.; Fowler, B.; Kuhn, W. Decrease of methionine and S-adenosylmethionine and increase of homocysteine in treated patients with Parkinson’s disease. Neurosci. Lett. 2001, 308, 54–56. [Google Scholar] [CrossRef]
- Hegarty, V.M.; May, H.M.; Khaw, K.T. Tea drinking and bone mineral density in older women. Am. J. Clin. Nutr. 2000, 71, 1003–1425. [Google Scholar]
- Estruch, R.; Sacanella, E.; Mota, F.; Chiva-Blanch, G.; Antúnez, E.; Casals, E.; Deulofeu, R.; Rotilio, D.; Andres-Lacueva, C.; Lamuela-Raventos, R.M.; et al. Moderate consumption of red wine, but not gin, decreases erythrocyte superoxide dismutase activity: A randomised crossover trial. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 46–53. [Google Scholar] [CrossRef]
- Ward, N.C.; Hodgson, J.M.; Croft, K.D.; Burke, V.; Beilin, L.J.; Puddey, I.B. The combination of vitamin C and grape-seed polyphenols increases blood pressure: A randomized, double-blind, placebo-controlled trial. J. Hypertens. 2005, 23, 427–434. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bellik, Y.; Boukraâ, L.; Alzahrani, H.A.; Bakhotmah, B.A.; Abdellah, F.; Hammoudi, S.M.; Iguer-Ouada, M. Molecular Mechanism Underlying Anti-Inflammatory and Anti-Allergic Activities of Phytochemicals: An Update. Molecules 2013, 18, 322-353. https://doi.org/10.3390/molecules18010322
Bellik Y, Boukraâ L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, Iguer-Ouada M. Molecular Mechanism Underlying Anti-Inflammatory and Anti-Allergic Activities of Phytochemicals: An Update. Molecules. 2013; 18(1):322-353. https://doi.org/10.3390/molecules18010322
Chicago/Turabian StyleBellik, Yuva, Laïd Boukraâ, Hasan A. Alzahrani, Balkees A. Bakhotmah, Fatiha Abdellah, Si M. Hammoudi, and Mokrane Iguer-Ouada. 2013. "Molecular Mechanism Underlying Anti-Inflammatory and Anti-Allergic Activities of Phytochemicals: An Update" Molecules 18, no. 1: 322-353. https://doi.org/10.3390/molecules18010322
APA StyleBellik, Y., Boukraâ, L., Alzahrani, H. A., Bakhotmah, B. A., Abdellah, F., Hammoudi, S. M., & Iguer-Ouada, M. (2013). Molecular Mechanism Underlying Anti-Inflammatory and Anti-Allergic Activities of Phytochemicals: An Update. Molecules, 18(1), 322-353. https://doi.org/10.3390/molecules18010322