Chemical and Biological Properties of Quinochalcone C-Glycosides from the Florets of Carthamus tinctorius
Abstract
:1. Introduction
Scientific Language | |
---|---|
Colour Index [3] | Natural Red 26 & Natural Yellow 5 |
Semitic and Arabic Languages | |
Aramaic/Hebrew | Qurtami, Qurtema, Qurtam (in modern Hebrew); Dardara & Qotzah (thorn, thistle); Moriqa (of the “thistle”) |
Arabic | Osfur, Usfar; Qurtum, Qorton; Khiri |
Latin | Carthamus |
English | Safflower, Dyer’s thistle, False saffron, Bastard saffron, Dyer’s saffron |
European Languages [4] | |
Italian | Cartamo, Zaffrone, Zaffranone, Zafferano bastardo, Asfore, Grogo |
French | Carthame officinal, Faux safran, Graine de perroquet, Safran Bâtard, Safran d’Allemagne, Vermillon de Provence |
German | Borstenkraut, Deutscher Saflor, Falscher Saffran, Färber-Saflor, Wilder Saflor, Türkische Saflor |
Spanish | Caeramo, Azafaran bastardo, Alazor, Azafran romì |
Asian Languages | |
Chinese [5] | Honghua (red flower), Grass safflower, Huai safflower, Chuan safflower, Du safflower |
Japanese [6] | Benibana, Benihana |
Hindi [7] | Kusumba, Kusuma, Kusum, Karadai, Hubulkhurtum, Cusumbha, Kamalotarra |
Pakistani [7] | Khurtum |
Afghan [7] | Muswar, Maswarah, Kajireh, Kariza |
Iranian [7] | Kafsha, Kafshe, Kosheh, Zafaran-golu, Kouchan gule, Kah'li, Golbar aftab, Brarta, Kharkhool |
Days Since Emergence | 50 | 75 | 100 |
---|---|---|---|
Stage | Bud formation | Flower formation (petal, stamen, pistil and pollen) | Full flowering |
Flower color | Yellow (+++), red (+) | Yellow (++), red (++) | Red (+++), yellow (+) |
2. Physicochemical Properties
2.1. Taste and Appearance
2.2. Melting Points
Compound | Melting Point (°C) | Reference |
---|---|---|
Carthamin | >300 (with decomposition); 210.5–212.6 | [57,58] |
HSYA | 184.2; 184–186 | [59,60] |
Safflomin A | 300 (with decomposition) | [35] |
Safflomin C | 171.3; 300 (with decomposition) | [61,62] |
Isosafflomin C | 175.0 | [61] |
SYA | 184–187 (with decomposition); 185–188 | [59,63] |
Cartormin | >230 (with decomposition) | [54] |
2.3. Solubilities
2.4. Partition Coefficient (K)
No. | Solvent System | Ratio (v/v) | K |
---|---|---|---|
1 | n-Butanol-water | 1:1 | 0.03 |
2 | n-Butanol-acetone-water | 4:1:5 | 0.14 |
3 | n-Butanol-methanol-water | 5:1:5 | 0.06 |
4 | n-Butanol-methanol-water | 6:1:4 | 0.30 |
5 | n-Butanol-0.1 mol/L HCl | 1:1 | 1.15 |
3. Chromatographic Behavior
3.1. Thin-Layer Chromatography (TLC) on Silica Gel
Sample | Silica Gel Type | Developing Solvent | Rf Values | Reference | |
---|---|---|---|---|---|
Carthamin | Silica gel G (type 60) | n -Butanol-glacial acetic acid-H2O (4:1:2) | 0.93 | [69] | |
Kieselgel 60 F254 | n -Butanol-glacial acetic acid-H2O (4:1:2) | 0.88 | [69] | ||
- | n -BuOH-AcOH-H2O (4:1:5, upper layer) | 0.399 | [71] | ||
- | n BuOH-EtOH-H2O (4:1:2) | 0.573 | [71] | ||
- | n -BuOH-toluene-pyridine-H2O (5:1:3:3) | 0.679 | [71] | ||
Merck Kieselgel 60 F254 | n -BuOH-HOAc-H2O (4:1:2) | 0.49 | [25] | ||
SY | Silica gel G (type 60) | n -Butanol-glacial acetic acid-H2O (4:1:2) | 0.85 | [69] | |
Kieselgel 60 F254 | n -Butanol-glacial acetic acid-H2O (4:1:2) | 0.78 | [69] | ||
HSYA | Merck Kieselgel 60 F254 | n -BuOH-HOAc-H2O (4:1:2) | 0.33 | [25] | |
- | n -BuOH-EtOH-H2O (4:1:2) | 0.34 | [49] | ||
SYB | Merck Kieselgel 60 F254 | n -BuOH-HOAc-H2O (4:1:2) | 0.42 | [25] | |
- | n -BuOH-EtOH-H2O (4:1:2) | 0.42 | [56] | ||
Precarthamin | - | n -BuOH-EtOH-H2O (4:1:2) | 0.46 | [56] | |
Safflomin C | Merck Kieselgel 60 F254 | EtOAc-MeOH-H2O (100:16:12) | 0.2 | [25] | |
Tinctormin | Merck Kieselgel 60 F254 | EtOAc-MeOH-H2O (100:16:12) | 0.15 | [25] | |
Cartormin | - | n -BuOH-EtOH-H2O (4:1:2) | 0.62 | [72] |
3.2. Reversed-Phase HPLC (RP-HPLC)
3.3. Capillary Zone Electrophoresis (CZE)
3.4. High-Speed Countercurrent Chromatography (HSCCC)
4. Spectroscopic Characteristics
4.1. Specific Optical Rotation
Compound | [α]D (°) | Solvent | Concentration (g/100 mL) | Reference |
---|---|---|---|---|
Carthamin | −57.3 | Me2CO | 20 | [84] |
HSYA | −54.3 | MeOH | 10 | [25] |
SYB | +208 | MeOH | 10 | [25] |
Safflomin C | −99.1 | MeOH | 10 | [61] |
Isosafflomin C | −114.7 | MeOH | 10 | [61] |
SYA | −164.5 | MeOH | 6 | [85] |
Tinctormin | −206 | MeOH | 10 | [31] |
Cartormin | −153.4 | Pyridine | 1.23 | [86] |
Saffloquinoside A | −24.6 | MeOH | 4 | [32] |
Saffloquinoside B | −215 | MeOH | 7 | [32] |
Saffloquinoside C | −30.6 | MeOH | 6 | [33] |
Methylsafflomin C | +22.4 | MeOH | 3 | [34] |
Methylisosafflomin C | −16.0 | MeOH | 3 | [34] |
4.2. Ultraviolet Visible (UV-Vis) Spectra
Compound | Solvent | lmax Value (log e) (nm) | Reference |
---|---|---|---|
Carthamin | EtOH | 515 (4.69), 377 (4.28), 244 (4.13) | [21] |
HSYA | MeOH | 403 (4.51), 226 (4.30); 399 (4.00) | [21,56] |
SYB | MeOH | 410 (4.77), 239 (4.43); 410 (4.55) | [21,56] |
Safflomin C | MeOH | 406 (4.37), 346 (sh), 230 (4.26) | [61] |
Isosafflomin C | MeOH | 407 (4.53), 348 (sh), 230 (4.44) | [61] |
SYA | MeOH | 400, 334 (sh), 224 | [63] |
Precarthamin | MeOH | 406 (4.66), 238 (4.36); 417 (4.47) | [21,56] |
EtOH | 423 (4.56), 343 (4.25) | [88] | |
AHSYB | MeOH | 410 (4.62), 230 (4.33) | [21] |
Tinctormin | MeOH | 405 (4.5), 275 (4.5) | [25] |
Cartormin | MeOH | 406 (4.03), 245 (sh), 221 (3.78) | [72] |
Saffloquinoside A | MeOH | 404 (4.25), 314 (3.54), 243 (3.86), 202 (3.66) | [32] |
Saffloquinoside B | MeOH | 389 (3.64), 282 (3.11), 222 (3.43), 205 (3.55) | [32] |
Saffloquinoside C | MeOH | 428, 348, 263 | [33] |
Methylsafflomin C | MeOH | 404, 340 (sh), 227 | [34] |
Methylisosafflomin C | MeOH | 408, 337 (sh), 231 | [34] |
4.3. Infrared (IR) Spectra
Compound | Matrix | Wave Numbers (cm−1) | Reference |
---|---|---|---|
Carthamin | KBr | 3370, 1740, 1675, 1622, 1600, 1584, 1512 | [21] |
HSYA | KBr | 3381, 1676, 1622, 1601, 1516 | [21] |
SYB | KBr | 3388, 1680, 1623, 1600, 1517 | [21] |
Safflomin C | KBr | 3365, 1669, 1600; 3400, 1700, 1613, 1595, 1510, 1400, 1230, 1162, 1068, 920, 825 | [62,68] |
Isosafflomin C | KBr | 3354, 1670, 1600 | [62] |
SYA | KBr | 3380, 1650, 1620, 1600, 1515, 1505, 1170, 1075, 1025, 930 | [65] |
Precarthamin | KBr | 3352, 1669, 1621, 1599, 1583, 1521 | [21] |
AHSYB | KBr | 3188, 1653, 1620, 1600, 1559 | [21] |
Tinctormin | KBr | 3400, 1620, 1600 | [25] |
Cartormin | KBr | 3400, 1640, 1600, 1269, 1070 | [86] |
Saffloquinoside A | KBr | 3381, 2935, 1625, 1598, 1521, 1439, 1252, 1171, 1088, 964, 918, 832, 727 | [32] |
Saffloquinoside B | KBr | 3383, 2932, 1726, 1668, 1616, 1583, 1516, 1441, 1405, 1248, 1171, 1088, 932, 906, 834 | [32] |
Saffloquinoside C | KBr | 3368, 2928, 1651, 1606, 1511, 1369, 1208, 1103, 1089, 1001, 969 | [33] |
4.4. Mass Spectrometry (MS)
Attribution of Fragment Ions | Fragmentation Pathway (m/z) | |||
---|---|---|---|---|
HSYA | SYA | Safflomin C | Cartormin | |
[M−H]-· | 611 | 593 | 613 | 574 |
[M−H−163]-· | 611→448 | 593→430 | 613→450 | 574→411 |
Fragmentation 1 | 593→473 | 613→493 | 574→454 | |
613→551→431 | ||||
Fragmentation 2 | 593→447 | 613→467 | 574→428 | |
613→551→405 |
4.5. NMR Data
Position | 1H | 13C | HMBC |
---|---|---|---|
1 | 196.2 | OH-2 | |
2 | 78.3 | OH-2 | |
3 | 142.2 | OH-2, H-16 | |
4 | 114.8 | H-16, -NH- | |
5 | 185.7 | ||
6 | 109.3 | ||
7 | 180.4 | H-8, H-9 | |
8 | 7.36 (d, J = 15.8 Hz, 1H) | 118.8 | |
9 | 7.65 (d, J = 15.8 Hz, 1H) | 141.3 | H-11, H-15 |
10 | 126.3 | H-8, H-9, H-12, H-14 | |
11 | 7.56 (d, J = 8.4 Hz, 2H) | 130.6 | H-8, H-9, H-15 |
12 | 6.84 (d, J = 8.4 Hz, 2H) | 116.0 | H-14 |
13 | 160.0 | H-11, H-12, H-14, H-15 | |
14 | 6.84 (d, J = 8.4 Hz, 1H) | 116.0 | H-12 |
15 | 7.56 (d, J = 8.4 Hz, 1H) | 130.6 | H-8, H-9, H-11 |
16 | 6.37 (s) | 103.4 | H-18, -NH- |
17 | 135.0 | H-16, -NH- | |
18 | 4.53 (d, J = 7.6 Hz, 1H) | 76.6 | H-21 |
19 | 4.06 (m) | 76.0 | H-18, H-21, OH-19 |
20 | 4.11 (m) | 70.5 | H-21 |
21 | 3.62 (m)4.13 (m) | 72.9 | |
22 | 3.29 (d, J = 9.5 Hz, 1H) | 84.2 | OH-2, H-23, OH-23 |
23 | 3.43 (overlap) | 69.1 | H-22, H-24 |
24 | 3.12 (m) | 78.5 | H-23, H-25 |
25 | 3.11 (m) | 69.3 | H-24 |
26 | 2.86 (m) | 79.5 | H-22 |
27 | 3.50 (overlap) | 60.7 | OH-27 |
Compuond | δC C-8 | δC C-9 | Solvent | Reference | |
---|---|---|---|---|---|
1-enol-3,7-diketo | HSYA | 122.8 | 135.9 | DMSO-d6 | [6] |
Safflomin C | 123.2 | 135.1 | DMSO-d6 | [6] | |
HSYA | 124.2 | 138.1 | Pyridine-d5 | [6] | |
Safflomin C | 122.1 | 139.4 | Pyridine-d5 | [32] | |
7-enol-1,3-diketo | Saffloquinoside A | 117.9 | 142.4 | DMSO-d6 | [18] |
Saffloquiniside B | 118.3 | 143.5 | DMSO-d6 | [18] | |
SYA | 118.0 | 143.0 | DMSO-d6 | [6] | |
Cartormin | 118.8 | 141.3 | DMSO-d6 | [6] |
Carbon | Safflomin C | Isosafflomin C | ||
---|---|---|---|---|
13C | HMBC (C→H) | 13C | HMBC (C→H) | |
1 | 192.28 | 16 | 192.11 | 16 |
2 | 108.39 | 108.60 | ||
3 | 195.54 | 195.59 | ||
4 | 82.12 | G1, G2 | 82.12 | |
5 | 173.20 | 16 | 172.89 | 16 |
6 | 113.84 | 16, 17 | 113.86 | 16, 17 |
7 | 180.36 | 8, 9 | 180.39 | 8, 9 |
8 | 119.25 | 9 | 119.25 | |
9 | 143.34 | 11, 15 | 143.31 | 11, 15 |
10 | 128.22 | 8, 9, 12, 14 | 128.22 | 8, 9, 12, 14 |
11, 15 | 131.49 | 9, 12, 14 | 131.49 | 9 |
12, 14 | 116.68 | 11, 15 | 116.67 | 11, 15 |
13 | 161.07 | 11, 12, 14, 15 | 161.09 | 11, 12, 14, 15 |
16 | 36.65 | 17, 20, 24 | 36.19 | 17, 20, 24 |
17 | 38.72 | 16 | 37.56 | 16 |
18 | 176.62 | 16, 17 | 176.48 | 16, 17 |
19 | 135.52 | 16, 17, 21, 23 | 135.53 | 16, 17, 21, 23 |
20, 24 | 129.45 | 16, 21, 23 | 129.51 | 16 |
21, 23 | 115.49 | 20, 24 | 115.58 | 20, 24 |
22 | 156.29 | 20, 21, 23, 24 | 156.32 | 20, 21, 23, 24 |
G1 | 88.23 | G2 | 88.23 | G2 |
G2 | 70.44 | G1, G3 | 70.45 | G1, G3 |
G3 | 79.57 | G2, G4 | 79.59 | G2, G4 |
G4 | 69.75 | G3, G6 | 69.68 | G3, G6 |
G5 | 80.63 | G4, G6 | 80.57 | G4 |
G6 | 61.32 | G4 | 61.30 | G4 |
Compound | Precarthamin | Carthamin | Hydroxyethylcarthamin | AHYB | SYB | |||||
---|---|---|---|---|---|---|---|---|---|---|
1H a) | 13C a) | 1H b) | 13C b) | 1H b) | 13C b) | 1H b) | 13C b) | 1H b) | 13C b) | |
MHz | 400 | 100 | 800 | 150 | 800 | 150 | 400 | 100 | 400 | 100 |
1, 1' | 193.69, 193.58 | 188.4 | 188.0 | 202.87, 196.99 | 197.22, 196.51 | |||||
2, 2' | 107.02, 106. 67 | 113.1 | 114.0 | 104.24, 112.42 | 103.67, 113.92 | |||||
3, 3' | 174.04, 173.47 | 192.5 | 193.3 | 189.31, 187.94 | 190.66, 188.77 | |||||
4, 4' | 81.46, 81.29 | 89.6 | 89.3 | 85.32, 87.44 | 79.43, 86.05 | |||||
5, 5' | 172.66 | 194.2 | 194.3 | 186.84, 171.14 | 184.64, 175.47 | |||||
6, 6' | 107.74 | 109.5 | 110.2 | 103.74, 108.42 | 107.38, 109.39 | |||||
7, 7' | 178.64, 178.56 | 183.3 | 182.2 | 180.08, 171.31 | 181.15, 180.94 | |||||
8, 8' | 7.30 (d, 16) | 118.91 | 8.21 (d,15.8) | 121.2 | 8.26 (d,15.6) | 121.1 | 8.24 (d, 16.0) | 122.52 | 8.39 (d, 15.6) | 123.40 |
7.28 (d,16) | 8.28 (d, 16.0) | 119.20 | 8.20 (d, 15.6) | 119.88 | ||||||
9, 9' | 7.58 (d,16) | 140.60, | 8.03 (d,15.8) | 141.5 | 8.11 (d,15.6) | 141.7 | 7.96 (d, 16.0) | 138.89 | 8.00 (d, 15.6) | 138.25 |
140.40 | 7.79 (d, 16.0) | 141.54 | 7.87 (d, 15.6) | 142.12 | ||||||
10 | 126.35 | 127.4 | 127.3 | 127.67 | 127.28 | |||||
11, 11', 15, 15' | 7.52 (d,8.8) | 130.45 | 7.50 (d,7.6) | 130.7 | 7.52 (d,8.5) | 130.9 | 7.33 (d, 8.4) | 130.30 | 7.52 (d, 8.4) | 130.28 |
7.50 (d,8.8) | 7.80 (d, 8.4) | 131.40 | 7.35 (d, 8.8) | 130.88 | ||||||
12, 12', 14, 14' | 6.83 (d,8.8) | 115.93 | 6.89 (d,7.6) | 116.3 | 6.87 (d,8.5) | 116.4 | 6.81 (d, 8.4) | 116.35 | 6.90 (d,8.4) | 116.47 |
6.80 (d,8.8) | 7.18 (d, 8.4) | 116.83 | 6.88 (d, 8.8) | 116.53 | ||||||
13, 13' | 159.83, 159.78 | 160.6 | 161.0 | 160.17, 161.29 | 160.17, 161.06 | |||||
16 | 4.82 (s) | 36.55 | 9.31 (s) | 143.9 | ||||||
17 | 189.81 | |||||||||
G1, G1' | 3.50 (d,9.6) | 86.84, | 4.90 (d,9.4) | 86.3 | 4.99 (d,9.4) | 87.0 | 4.96 (d, 9.6) | 86.98 | 4.63 (d, 9.6) | 85.39 |
86.46 | 4.55 (d, 9.6) | 88.13 | 4.72 (d, 9.6) | 88.20 | ||||||
G2, G2' | 3.33 (m) | 68.87 | 4.45 (t,9.4) | 70.9 | 4.59 (t,9.3) | 70.9 | 4.52 (t, 9.6) | 71.05 | 4.79 (t, 9.6) | 71.41 |
4.37 (t, 9.6) | 88.13 | 4.31 (t, 9.6) | 70.58 | |||||||
G3, G3' | 3.13 (m) | 68.53, | 4.05 (t,9.3) | 80.0 | 4.12 (t,9.3) | 79.9 | 4.31 (t, 9.6) | 80.74 | 4.13 (t, 9.6) | 80.20 |
68.13 | 3.94 (t, 9.6) | 79.97 | 4.06 (t, 9.6) | 80.30 | ||||||
G4, G4' | 2.88 (m) | 79.73, | 4.11 (t,9.3) | 69.7 | 4.14 (t,9.4) | 69.7 | 4.35 (t, 9.6) | 70.00 | 4.00 (t, 9.6) | 71.19 |
79.47 | 3.90 (t, 9.6) | 71.41 | 4.19 (t, 9.6) | 70.01 | ||||||
G5, G5' | 3.11 (m) | 78.48 | 3.68 (br d,9.3) | 81.6 | 3.78 (m) | 79.6 | 4.02 (bdd, 9.6, 6.0) | 80.91 | 3.87 (ddd, 3.5, 7.0, 9.6) | 82.88 |
3.88 (bdd, 40.0, 9.6) | 81.89 | 3.68 (dt, 2.0, 2.0, 9.6) | 80.99 | |||||||
G6, G6' | 3.45 (m) | 60.05 | 4.74 (br d,10.8) | 60.0 | 4.72 (br d,6.7) | 66.6 | 4.42 (bd, 11.8), | 61.62 | 4.49 (dd, 3.5, 12.0) | 62.88 |
3.30 (m) | 59.65 | 4.39 (br d,10.8) | 4.07 (br d,9.2) | 4.26 (dd, 6.0, 11.8) | 63.07 | 4.12 (dd, 7.0, 12) | 61.39 | |||
G"1 | 5.92 (d, 7.6) | 38.04 | 5.88 (d, 7.6) | 38.23 | ||||||
G"2 | 6.21 (dd, 7.6, 4.6) | 94.27 | 5.93 (dd, 7.6, 7.0) | 95.92 | ||||||
G"3 | 4.85 (dd, 4.6, 3.4) | 72.74 | 4.92 (dd, 7.0, 1.2) | 72.89 | ||||||
G"4 | 4.72 (dd, 3.4, 7.2) | 73.57 | 4.63 (dd, 1.2, 8.4) | 72.89 | ||||||
G"5 | 4.57 (ddd, 3.8, 6.3, 7.2) | 73.65 | 4.53 (ddd, 4.0, 6.4, 8.4) | 73.25 | ||||||
G"6 | 4.50 (dd, 3.8, 11.7) | 65.03 | 4.44 (dd, 4.0, 11.6) | 65.13 | ||||||
4.38 (dd, 6.3, 11.7) | 4.28 (dd, 6.4, 11.6) | |||||||||
E1 | 3.68 (m) | 71.9 | ||||||||
E2 | 4.25 (m) | 59.3 | ||||||||
3.65 (m) |
No. | Saffloquinoside A | Saffloquinoside B | Saffloquinoside C | ||||||
---|---|---|---|---|---|---|---|---|---|
δCa) | δH (mult) a) | HMBC c) | δCa) | δH (mult) a) | δH (mult) b) | HMBC c) | δCa) | δH (mult)a) | |
1 | 187.5 | 196.8 | 176.9 | ||||||
2 | 107.7 | 112.8 | 102.5 | ||||||
3 | 193.8 | 188.6 | 195.7 | ||||||
4 | 77.5 | 6.05 br s (OH) | 3,4,5,1" | 89.7 | 5.06 br s (OH) | 3,4,5,1" | 82.8 | ||
5 | 173.1 | 201.7 | 186.8 | ||||||
6 | 116.6 | 63.6 | 96.3 | ||||||
7 | 179.2 | 17.42 br s (OH) | 2,7,8 | 182.4 | 17.83 br s (OH) | 1,2,7,8 | 181.4 | ||
8 | 117.9 | 7.48 d (16.0) | 7,9,1' | 118.3 | 7.13 d (16.0) | 7.11 d (16.0) | 7,1' | 126.7 | 7.51 d (15.5) |
9 | 142.4 | 7.68 d (16.0) | 7,1',2',6' | 143.6 | 7.72 d (16.0) | 7.71 d (16.0) | 7,8,2',6' | 135.8 | 7.16 d (15.5) |
1' | 126.0 | 125.9 | 126.7 | ||||||
2',6' | 130.6 | 7.54 d (8.0) | 4' | 131.4 | 7.60 d (8.5) | 7.59 d (8.5) | 9,4' | 129.0 | 7.33 d (8.5) |
3',5' | 116.0 | 6.83 d (8.0) | 1',4' | 115.9 | 6.81 d (8.5) | 6.81 d (8.5) | 1',4' | 115.9 | 6.72 d (8.5) |
4' | 160.2 | 10.11 br s (OH) | 3',5' | 160.5 | 10.15 br s (OH) | 3',4',5' | 159.5 | 9.76 br s (OH) | |
1" | 83.0 | 3.51 overlap | 5 | 77.7 | 4.61 overlap | 4.60 d (8.5) | 5,3",5" | 84.6 | 3.39 d (9.0) |
2" | 69.8 | 3.51 m | 1" | 69.1 | 3.32 m | 70.1 | 3.35 t (9.0) | ||
3" | 78.1 | 3.12 m | 4",5" | 78.3 | 3.17 m | 77.9 | 3.14 t (9.0) | ||
4" | 69.9 | 2.89 m | 3",5 | 71.0 | 2.86 dd (9.0, 6.0) | 3",5" | 69.2 | 3.05 t (9.0) | |
5" | 81.1 | 3.02 m | 6" | 82.0 | 3.09 m | 4" | 79.2 | 2.93 m | |
6" | 61.8 | 3.63 m | 5" | 61.9 | 3.81 m | 60.3 | 3.47 m | ||
3.31 m | 3.44m | ||||||||
1''' | 34.9 | 3.17 d (15.5) | 5,2''',3''' | 79.1 | 3.84 d (10.0) | 3.84 d (10.5) | 1,5,6 | 33.8 | 2.96 d (14.5) |
2.59 d (15.5) | 2.35 d (14.5) | ||||||||
2''' | 109.5 | 71.5 | 3.24 m | 3''' | 113.9 | ||||
3''' | 70.2 | 3.65 m | 5''' | 78.0 | 3.07 m | 1''' | 69.9 | 3.65 d (9.0) | |
4''' | 69.5 | 3.71 m | 3''' | 68.7 | 3.00 m | 68.9 | 3.76 m | ||
5''' | 68.6 | 3.79 m | 6''' | 78.1 | 3.24 m | 3''' | 69.8 | 3.78 m | |
6''' | 66.1 | 3.91m | 5''' | 60.7 | 3.55 m 3.38 m | 5''' | 65.9 | 3.91 d (11.5) | |
3.60 m | 3.60 d (11.5) | ||||||||
1'''' | 125.0 | ||||||||
2'''',6'''' | 130.8 | 6.63 d (8.5) | 6.63 d (7.5) | 3'''',4'''', | |||||
5'''' | |||||||||
3'''',5'''' | 114.7 | 6.46 d (8.5) | 6.46 d (7.5) | 1'''',2'''', | |||||
4'''',6'''' | |||||||||
4'''' | 156.1 | 9.13 br s (OH) | 3'''',4'''', | ||||||
5'''' | |||||||||
7'''' | 43.5 | 3.17 d (13.0) | 1,5,6,1'''',2'''',6'''' | ||||||
3.01 d (13.0) |
Position | HSYA | Tinctormin | SYA | |||
---|---|---|---|---|---|---|
δHa) | δCb) | δHa) | δHb) | δCa) | δCa) | |
1 | 189.3 (s) | 185.7 (s) | 189.4 (s) | |||
2 | 105.8 (s) | 109.2 (s) | 106.0 (s) | |||
3 | 195.0 (s) | 195.8 (s) | 194.4 (s) | |||
4 | 85.2 (s) | 77.9 (s) | 85.8 (s) | |||
5 | 182.9 (s) | 114.6 (s) | 183.2 (s) | |||
6 | 99.3 (s) | 6.30 s | 6.37 s | 101.5 (d) | 99.4 (s) | |
7 | 179.3 (s) | 180.3 (s) | 170.0 (s) | |||
8 | 7.42 d (15.5) | 123.1 (d) | 7.35 d (16.0) | 7.28 d (16.0) | 118.9 (d) | 123.6 (d) |
9 | 7.31 d (15.5) | 135.9 (d) | 7.68 d (16.0) | 7.63 d (16.0) | 140.9 (d) | 136.8 (d) |
10 | 127.2 (s) | 126.2 (s) | 127.8 (s) | |||
11 | 7.41 d (9.0) | 129.2 (d) | 7.58 d (8.5) | 7.52 d (8.5) | 130.4 (d) | 130.0 (d) |
12 | 6.77 d (9.0) | 115.5 (d) | 6.88 d (8.5) | 6.81 d (8.5) | 115.8 (d) | 115.6 (d) |
13 | 158.3 (s) | 159.8 (s) | 158.6 (s) | |||
1' | 3.64 d (9.5) | 85.5 (d) | 3.30 d (9.5) | 3.26 d (9.5) | 84.2 (d) | 85.8 (d) |
2' | 3.35 dd (9.5, 4.5) | 69.5 (d) | 3.45 m | 3.37 t (9.5) | 69.0 (d) | 69.0 (d) |
3' | 3.11 dd (9.5, 4.5) | 78.2 (d) | 3.17 m | 3.12 t (9.5) | 78.3 (d) | 79.0 (d) |
4' | 2.89 td (9.5, 4.5) | 69.7 (d) | 3.15 m | 3.10 t (9.5) | 69.2 (d) | 70.0 (d) |
5' | 2.96 td (9.5, 4.5) | 80.0 (d) | 2.95 m | 2.98 dd (9.5, 2) | 79.7 (d) | 80.7 (d) |
6' | 3.37 t (10.0) | 60.8 (t) | 3.50 m | 3.41 dd (11, 2) | 60.7 (t) | 61.2 (t) |
3.60 m | 3.54 m | 3.52 dd (11, 9.5) | ||||
1" | 4.21 d (9.5) | 73.8 (d) | 140.9 (s) | 74.1 (d) | ||
2" | 4.12 td (9.5, 4.5) | 68.7 (d) | 138.2 (s) | 71.0 (d) | ||
3" | 3.15 dd (10.0, 4.5) | 79.1 (d) | 4.85 m | 4.79 d (3.5) | 65.9 (d) | 78.0 (d) |
4" | 3.10 dd (10.0, 4.5) | 70.8 (d) | 3.57 m | 3.46 dd (7.5, 3.5) | 73.9 (d) | 70.0 (d) |
5" | 3.05 dd (10, 4.5) | 80.5 (d) | 3.62 m | 3.57 br d (7.5, 3.5) | 71.3 (d) | 80.7 (d) |
6" | 3.41 m | 61.4 (t) | 3.47 m | 3.38 dd (11, 3.5) | 63.3 (t) | 61.7 (t) |
3.67 m | 3.58 dd (11, 7.5) | |||||
3.58 ddd (12, 6.5, 4.5) | ||||||
3-OH | 18.61 s | 17.95 s | ||||
4-OH | 4.53 d (4.5) | 5.70 br s | ||||
5-OH | 9.75 br s | |||||
13-OH | 8.30 s | 10.07 br s | ||||
2'-OH | 4.64 d (4.5) | 4.98 d (5.5) | ||||
3'-OH | 4.78 d (4.5) | 4.94 m | ||||
4'-OH | 4.76 d (4.5) | 4.81 m | ||||
6'-OH | 4.80 t (4.5) | 4.11 t (5.5) | ||||
1"-OH | 11.26 s | |||||
2"-OH | 4.01 d (4.5) | |||||
3"-OH | 4.12 m | 4.85 m | ||||
4"-OH | 4.69 d (4.5) | 4.59 br d | ||||
6"-OH | 4.45 t (4.5) | 4.36 t (4.5) | ||||
-NH- | 4.65 d (4.5) |
4.6. X-ray Crystallography
5. Biological Activities
5.1. Anticoagulant Effects
5.2. Effects on Cardiovascular Functions
5.3. Effects on the Central Nervous System
5.4. Anti-Inflammatory Properties
5.5. Antioxidant Activity
5.6. Hepatoprotective Activity
5.7. Antihypertensive Effects
5.8. Anti-Tumor Activity
5.9. Anti-Diabetic Properties
5.10. Other Activities
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Ashri, A.; Knowles, P.F. Cytogenetics of safflower (Carthamus L.) species and their hybrids. Agron. J. 1960, 52, 11–17. [Google Scholar] [CrossRef]
- Shirwaikar, A.; Khan, S.; Kamariya, Y.H.; Patel, B.D.; Gajera, F.P. Medicinal plants for the management of post-menopausal osteoporosis: A review. Open Bone J. 2010, 2, 1–13. [Google Scholar] [CrossRef]
- Rowe, F.M.; F.I.C., D.Sc. The Colour Index, 3rd ed.; The Society of Dyers and ColouristsThe Society of Dyers and Colourists: Bradford, UK, 1971; p. 3240. [Google Scholar]
- Brunello, F. The Art of Dyeing in the History of Mankind; Neri Pozza: Vicenza, Italy, 1973; p. 340. [Google Scholar]
- Yuan, G.B.; Han, Y.Z.; Li, D.J. Safflower Germplasm and Its Exploitation and Utilization; Science Press: Beijing, China, 1989; p. 344. [Google Scholar]
- Smith, J.R. Safflower; AOCS Press: Champaign, IL, USA, 1996; p. 624. [Google Scholar]
- Ashri, A. Cytogenetics and morphology of Carthamus L. species and hybrids. Ph.D. Dissertation, University of California, Davis, CA, USA, 1957. [Google Scholar]
- Kafka, S. Safflower Production in California; UC ANR Publication: Oakland, CA, USA, 1965; pp. 4–5. [Google Scholar]
- Li, D.J.; Mündel, H.H. Safflower Carthamus tinctorius L. International Plant Genetic Resources Institute: Rome, Italy, 1996; pp. 207–297. [Google Scholar]
- Zheng, H.Z.; Dong, Z.H.; She, J. Modern Study of Traditional Chinese Medicine; Xue Yuan Press: Beijing, China, 1998. [Google Scholar]
- Compendium of Chinese traditional herbal drugs compilation group. Compendium of Chinese Traditional Herbal Drugs; People’s Health Press: Beijing, China.
- Feng, Z.M.; He, J.; Jiang, J.S.; Chen, Z.; Yang, Y.N.; Zhang, P.C. NMR solution structure study of the representative component hydroxysafflor yellow A and other quinochalcone C-glycosides from Carthamus tinctorius. J. Nat. Prod. 2013, 76, 270–274. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, H.Y.; Xu, M.; Zhou, L.; Guo, H.; Han, J.; Wang, B.R.; Guo, D.A. Qualitative evaluation and quantitative determination of 10 major active components in Carthamus tinctorius L. by high-performance liquid chromatography coupled with diode array detector. J. Chromatogr. A 2009, 1216, 2063–2070. [Google Scholar] [CrossRef]
- Hattori, M.; Huang, X.L.; Che, Q.M.; Kawata, Y.; Tezuka, Y.; Kikuchi, T.; Namba, T. 6-hydroxykaempferol and its glycosides from Carthamus tinctorius petals. Phytochemistry 1992, 31, 4001–4004. [Google Scholar]
- Li, F.; He, Z.S.; Ye, Y. Flavonoids from Carthamus tinctorius. Zhongguo Huaxue 2002, 20, 699–702. [Google Scholar]
- Roh, J.S.; Han, J.Y.; Kim, J.H.; Hwang, J.K. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogeneis. Biol. Pharm. Bull. 2004, 27, 1976–1978. [Google Scholar] [CrossRef]
- Sato, H.; Kawagishi, H.; Nishimura, T.; Yoneyama, S.; Yoshimoto, Y.; Sakamura, S.; Furusaki, A.; Katsuragi, S.; Matsumoto, T. Serotobenine, a novel phenolic amide from safflower sedds (Carthamus tinctorius L.). Agric. Biol. Chem. 1985, 49, 2969–2974. [Google Scholar] [CrossRef]
- Sadao, S.; Yoshihiko, T.; Satomi, K.; Akitami, I.; Hideya, S. Conjugated serotonins and phenolic constituents in safflower seed (Carthamus tinctorius L.). Agric. Biol. Chem. 1980, 44, 2951–2954. [Google Scholar]
- Nagatsu, A.; Zhang, H.L.; Watanake, T.; Taniauchi, N.; Hatano, K.; Mizukami, H.; Sakakibara, J. New steroid and matairesinol glycosides from safflower (Carthamus tinctorius L.) oil cake. Chem. Pharm. Bull. 1998, 46, 1044–1047. [Google Scholar] [CrossRef]
- Chang, H.T.; Han, H.X.; Tu, P.F. Chemical constituents and pharmacological effects of safflower. Xiandai Yaowu Yu Linchuang 1999, 14, 201–203. [Google Scholar]
- Kazuma, K.; Takahashi, T.; Sato, K.; Takeuchi, H.; Matsumoto, T.; Okuno, T. Quinochalcones and flavonoids from fresh florets in different cultivars of Carthamus tinctorius. Biosci. Biotechnol. Biochem. 2000, 64, 1588–1599. [Google Scholar] [CrossRef]
- Obara, H.; Onodera, J.I. Structure of carthamin. Chem. Lett. 1979, 201–204. [Google Scholar] [CrossRef]
- Saito, K. Is carthamine a single component? J. Soc. Dyers Colour. 1994, 110, 270–273. [Google Scholar] [CrossRef]
- Sato, K.; Sugimoto, N.; Ohta, M.; Yamazaki, T.; Maitani, T.; Tanamoto, K. Structure determination of minor red pigment in carthamus red colorant isolated by preparative LC/MS. Food Addit. Contam. 2003, 20, 1015–1022. [Google Scholar] [CrossRef]
- Meselhy, M.R.; Kadota, S.; Momose, Y.; Hatakeyama, N.; Kusai, A.; Hattori, M.; Namba, T. Two new quinochalcone yellow pigments from Carthamus tinctorius and Ca2+ antagonistic activity of tinctormine. Chem. Pharm. Bull. 1993, 41, 1796–1802. [Google Scholar] [CrossRef]
- Zhu, H.B.; Wang, Z.H.; Ma, C.J.; Tian, J.W.; Fu, F.H.; Li, C.L.; Guo, D.; Roder, E.; Liu, K. Neuroprotective effects of hydroxysafflor yellow A in vivo and in vitro studies. Planta Med. 2003, 69, 429–433. [Google Scholar] [CrossRef]
- The State Pharmacopoeia Commission of China. Pharmacopoeia of the People’s Republic of China; Part I; Chemical Industry Press: Beijing, China, 2005; p. 10. [Google Scholar]
- Wang, C.Y.; Zhang, D.L.; Li, G.S.; Liu, J.T.; Tian, J.W.; Fu, F.H.; Liu, K. Neuroprotective effects of safflor yellow B on brain ischemic injury. Exp. Brain Res. 2007, 177, 533–539. [Google Scholar] [CrossRef]
- Kumazawa, T.; Sato, S.; Kanenari, D.; Kunimatsu, A.; Hirose, R.; Matsuba, S.; Obara, H.; Suzuki, M.; Sato, M.; Onodera, J.I. Precursor of carthamin, a constituent of safflower. Chem. Lett. 1994, 12, 2343–2344. [Google Scholar]
- Kazuma, K.; Shirai, E.; Wada, M.; Umeo, K.; Sato, A.; Matsumoto, T.; Okuno, T. Structure of precarthamin, a biosynthetic precursor of carthamin. Biosci. Biotechnol. Biochem. 1995, 59, 1588–1590. [Google Scholar] [CrossRef]
- Meselhy, M.R.; Kadota, S.; Momose, Y.; Hattori, M.; Namba, T. Tinctormine, a novel Ca2+ antagonist N-containing quinochalcone C-glycoside from Carthamus tinctorius L. Chem. Pharm. Bull. 1992, 40, 3355–3357. [Google Scholar] [CrossRef]
- Jiang, J.S.; He, J.; Feng, Z.M.; Zhang, P.C. Two new quinochalcones from the florets of Carthamus tinctorius. Org. Lett. 2010, 12, 1196–1199. [Google Scholar] [CrossRef]
- Jiang, J.S.; Chen, Z.; Yang, Y.N.; Feng, Z.M.; Zhang, P.C. Two new glycosides from the florets of Carthamus tinctorius. J. Asian Nat. Prod. Res. 2013, 15, 427–432. [Google Scholar] [CrossRef]
- Yoon, H.R.; Paik, Y.S. Radical-scavenging activities of four quinochalcones of safflower. J. Korean Soc. Appl. Biol. Chem. 2008, 51, 346–348. [Google Scholar] [CrossRef]
- Onodera, J.; Obara, H.; Maruyama, Y.; Sato, S. The structure of safflomin-A, a component of safflower yellow. Chem. Lett. 1981, 10, 433–436. [Google Scholar]
- Sato, S.; Nojiri, T.; Onodera, J.I. Studies on the synthesis of safflomin-A, a yellow pigment in safflower petals: Oxidation of 3-C-β-d-glucopyranosyl-5-methylphloroacetophenone. Carbohydr. Res. 2005, 340, 389–393. [Google Scholar] [CrossRef]
- Kanehira, T.; Naruse, A.; Fukushima, A.; Saito, K. Decomposition of carthamin in aqueous solutions: Influence of temperature, pH, light, buffer system, external gas phases, metal ions, and certain chemicals. Z. Lebensm. Unters. Forsch. 1990, 190, 299–305. [Google Scholar] [CrossRef]
- Kanehira, T.; Saito, K. Stability of carthamin and safflor yellow B on silk powders under continuous irradiation of fluorescent or UV-C light. Food Sci. Technol. 2001, 34, 55–59. [Google Scholar]
- Saito, K.; Matsuhisa, Y.; Naruse, A.; Kanehira, T. Successive entrapping of red and yellow quinoid chalcones from aqueous extracts of dyer’s saffron florets: A newly established and practically approved technique. Z. Lebensm. Unters. Forsch. 1989, 189, 418–421. [Google Scholar]
- Sato, S.; Kumazawa, T.; Watanabe, H.; Takayanagi, K.; Matsuba, S.; Onodera, J.I.; Obara, H.; Furuhata, K. Synthesis of cathamin acetate, the red pigment in safflower petals. Chem. Lett. 2001, 30, 1318–1319. [Google Scholar]
- Sato, S.; Obara, H.; Kumazawa, T.; Onodera, J.I.; Furuhata, K. Synthesis of (+), (−)-model compounds and absolute configuration of carthamin; a red pigment in the flower petals of safflower. Chem. Lett. 1996, 25, 833–834. [Google Scholar]
- Obara, H.; Machida, Y.; Namai, S.; Onodera, J.I. Synthesis of 2-(p-hydroxycinnamoyl)-4-hydroxy-4,6-dimethyl-cyclohexane-1,3,5-trione, an analog of safflomin A. Chem. Lett. 1985, 14, 1393–1394. [Google Scholar]
- Sato, S.; Obara, H.; Onodera, J.I.; Endo, A.; Matsuba, S. Synthesis of model compounds of safflomin C. Bull. Chem. Soc. Jpn. 1992, 65, 452–457. [Google Scholar] [CrossRef]
- Kumazawa, T.; Amano, Y.; Haga, T.; Matsuba, S.; Sato, S.; Kawamoto, K.I.; Onodera, J.I. Synthesis of model compounds of the precursor of carthamin, a colouring matter of safflower, and their conversion into carthamin-type compouds. Chem. Lett. 1995, 8, 625–626. [Google Scholar]
- Obara, H.; Namai, S.; Machida, Y. Synthesis of 2-[[3-hydroxy-5-[3-(4-hydroxyphenyl)-1-oxo-2-propenyl]-3-methyl-2,4,6-trioxocyclohex-1-yl]methylene]-4-hydroxy-6-[3-(4-hydroxyphenyl)-1-oxo-2-propenyl]-4-methyl-1,3,5-trioxocyclohexane, an analog of carthamin. Chem. Lett. 1986, 15, 495–496. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Li, W.W.; Zhang, H.X.; Liu, C. Analysis of 485 reports of ADR/ADE caused by Honghua injection. Zhongguo Xiandai Yisheng 2012, 50, 65–67. [Google Scholar]
- Chen, X.W.; Tao, M.Y.; Zhang, T.; He, Y.; Gao, T. Analysis of 55 reports of ADR/ADE caused by safflower injection. Zhongguo Zhongyi Jizhen 2012, 21, 2044–2045. [Google Scholar]
- Liu, Z.F.; Li, C.M.; Li, M.; Li, D.L.; Liu, K. The subchronic toxicity of hydroxysafflor yellow A of 90 days repeatedly intraperitoneal injections in rats. Toxicology 2004, 203, 139–143. [Google Scholar] [CrossRef]
- Wang, S.J.; Sun, M.J.; Ping, Q.N. Enhancing effect of Labrafac Lipophile WL 1349 on oral bioavailability of hydroxysafflor yellow A in rats. Int. J. Pharm. 2008, 358, 198–204. [Google Scholar] [CrossRef]
- Li, J.R.; Sun, M.J.; Ping, Q.N.; Chen, X.J.; Qi, J.P.; Han, D.E. Metabolism, excretion and bioavailability of hydroxysafflor yellow A after oral administration of its lipid-based formulation and aqueous solution in rats. Zhongguo Tianran Yaowu 2010, 8, 233–240. [Google Scholar]
- Qi, J.P.; Zhuang, J.; Wu, W.; Lu, Y.; Song, Y.M.; Zhang, Z.T.; Jia, J.; Ping, Q.N. Enhanced effect and mechanism of water-in-oil microemulsion as an oral delivery system of hydroxysafflor yellow A. Int. J. Nanomed. 2011, 6, 985–991. [Google Scholar]
- Lv, L.Z.; Tong, C.Q.; Lv, Q.; Tang, X.J.; Li, L.M.; Fang, Q.X.; Yu, J.; Han, M.; Gao, J.Q. Enhanced absorption of hydroxysafflor yellow A using a self-double-emulsifying drug delivery. Int. J. Nanomed. 2012, 12, 4099–4107. [Google Scholar]
- Obara, H.; Onodera, J.I. Carthamin and isocarthamin. Chem. Lett. 1978, 7, 643–644. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, M.L.; Li, R.P.; Li, Y.; Zhang, H.M.; Su, Z.W. A novel compound from Flos carthami and its bioactivity. Chem. Nat. Compd. 2009, 45, 398–401. [Google Scholar] [CrossRef]
- The Japanese Pharmacopoeia, 13th ed.; (English version); Ministry of Health and Welfare: Tokyo, Japan, 1996.
- Yoon, J.M.; Cho, M.H.; Park, J.E.; Kim, Y.H.; Hahn, T.R.; Paik, Y.S. Thermal stability of the pigments hydroxysafflor yellow A, safflor yellow B, and precarthamin from safflower (Carthamus tinctorius). J. Food Sci. 2003, 68, 839–843. [Google Scholar] [CrossRef]
- An, X.Q.; Fang, S.D.; Li, Y.H.; Chen, J.; Li, F.G.; Chen, Y. Isolation and elucidation of safflor yellow A and carthamin from Carthamus tinctorius. Zhongcaoyao 1990, 4, 44–45. [Google Scholar]
- Wang, A.L. Studies on the carthamin from safflower. Master Dissertation, Chongqing University, Chongqing, China, 2006. [Google Scholar]
- Bai, Y.H.; Lu, P.; Han, C.H.; Yu, C.Y.; Chen, M.G.; He, F.; Yi, D.; Wu, L.J. Hydroxysafflor yellow A (HSYA) from flowers of Carthamus tinctorius L. and its vasodilatation effects on pulmonary artery. Molecules 2012, 17, 14918–14927. [Google Scholar] [CrossRef]
- Goda, Y.; Suuki, J.; Maitani, T. Structure of safflomin A and content of safflomin in commercial safflower products. Jpn.J. Food Chem. 1997, 4, 54–58. [Google Scholar]
- Yoon, H.R.; Paik, Y.S. Isolation of two quinochalcones from Carthamu tinctorius. J. Korean Soc. Appl. Biol. Chem. 2008, 51, 169–171. [Google Scholar]
- Onodera, J.I.; Obara, H.; Hirose, R.; Matsuba, S.; Sato, N.; Sato, S.; Suzuki, M. The structure of safflomin C, a constituent of safflower. Chem. Lett. 1989, 18, 1571–1574. [Google Scholar]
- Liu, Y.Q.; Wang, R.; Bi, K.S. Quantitative determination of safflor yellow A in Carthamus tinctorius L. Yaowu Fenxi Zazhi 2004, 24, 356–358. [Google Scholar]
- Zhang, H.F.; Guo, J.X.; Huang, L.S.; Ping, Q.N. Absorption mechanism of hydroxysafflor yellow A in rats. Zhongguo Yaoke Daxue Xuebao 2006, 37, 312–317. [Google Scholar]
- Kizil, S.; Çakmak, Ö.; Kirici, S.; İnan, M. A comprehensive study on safflower (Carthamus tinctorius L.) in semi-arid conditions. Biotechnol. Biotechnol. Equip. 2008, 22, 947–953. [Google Scholar]
- Koren, Z.C. A Successful Talmudic-Flavored High-Performance Liquid Chromatographic Analysis of Carthamin from Red Safflower Dyeing. In Dyes in History and Archaeology; Archetype Publications: London, UK, 2001; Chapter 16; pp. 158–166. [Google Scholar]
- Li, L.N.; Zhang, Y.; Hou, X.M.; Gu, D.Y.; Hang, B.; Abdulla, R.; Wu, G.R.; Xin, X.L.; Aisa, H.A. Bioassay-guided separation and purification of water-soluble antioxidants from Carthamus tinctorius L. by combination of chromatographic techniques. Sep. Purif. Technol. 2013, 104, 200–207. [Google Scholar] [CrossRef]
- Pharmacopoeia of the People’s Republic of China; (English Edition); People’s Medical Publishing House: Beijing, China, 2000/2005; Volume I.
- Fatahi, N.; Carapetian, J.; Heidari, R. Spectrophotometric measurement of valuable pigments from petals of safflower (Carthamus tinctorius L.) and their identification by TLC method. Res. J. Biol. Sci. 2008, 3, 761–763. [Google Scholar]
- Hirokado, M.; Kimura, K.; Suuki, K.; Sadamasu, Y.; Katsuki, Y.; Yasuda, K.; Nishijima, M. Detection method of madder colour, cochineal extract, lac coloure, Carthamus yellow and Carthamus red in processed foods by TLC. Shokuhin Eiseigaku Zasshi 1999, 40, 488–493. [Google Scholar] [CrossRef]
- Cho, M.H.; Paik, Y.S.; Hahn, T.R. Enzymatic conversion of precarthamin to carthamin by a purified enzyme from the yellow petals of safflower. J. Agric. Food Chem. 2000, 48, 3917–3921. [Google Scholar] [CrossRef]
- Yoon, H.R.; Han, H.G.; Paik, Y.S. Flavonoid Glycosides with antioxidant activity from the petals of Carthamus tinctorius. J. Appl. Biol. Chem. 2007, 50, 175–178. [Google Scholar]
- Wang, H.Q.; Xie, M.Y.; Fu, B.Q. Determination of yellow pigments in safflower (Carthamus tinctorius L.) by RP-HPLC. Fenxi Kexue Xuebao 2005, 21, 408–410. [Google Scholar]
- Xie, M.Y.; Wang, H.Q.; Nie, S.P. Study on antioxidant activities of extract of safflower florets (Carthamus tinctorius L.). Shipin Kexue 2006, 27, 36–40. [Google Scholar]
- Yao, M.M.; Ren, A.N.; Dong, Z.C. RP-HPLC determination of HSYA and safflor yellow A in Carthamus tinctorius L. Yaowu Fenxi Zazhi 2010, 30, 263–265. [Google Scholar]
- Li, Y.; Zhang, Z.Y.; Zhang, J.L. Determination of hydroxysafflor yellow A in rat plasma and tissue by high-performance liquid chromatography after oral administration of safflower extract or safflor yellow. Biomed. Chromatogr. 2007, 21, 326–334. [Google Scholar] [CrossRef]
- Yang, Z.F.; Yang, J.; Jia, Y.Y.; Tian, Y.; Wen, A.D. Pharmacokinetic properties of hydroxysafflor yellow A in healthy Chinese female volunteers. J. Ethnopharmacol. 2009, 124, 635–638. [Google Scholar] [CrossRef]
- Jia, Y.Y.; Yang, J.; Wang, J.W.; Tian, Y.; Wen, A.D.; Yang, Z.F. The effect of blood stasis syndrome on the pharmacokinetics of hydroxysafflor yellow A in human. Afr. J. Pharm. Pharmacol. 2013, 7, 240–244. [Google Scholar]
- Tian, Y.; Yang, Z.F.; Li, Y.; Qiao, Y.; Yang, J.; Jia, Y.Y.; Wen, A.D. Pharmacokinetic comparisons of hydroxysafflower yellow A in normal and blood stasis syndrome rats. J. Enthnopharmacol. 2010, 129, 1–4. [Google Scholar] [CrossRef]
- Li, G.B.; Zhang, H.Y.; Fan, Y.Q.; Zhao, L.; Hu, Z.D. Migration behavior and separation of active components in Glycyrrhiza uralensis Fisch and its commercial extract by micellar electrokinetic capillary chromatography. J. Chromatogr. A 1999, 863, 105–114. [Google Scholar] [CrossRef]
- Watanabe, T.; Hasegawa, N.; Yamamoto, A.; Nagai, S.; Terabe, S. Separation and determination of yellow and red safflower pigments in food by capillary electrophoresis. Biosci. Biotechnol. Biochem. 1997, 61, 1179–1183. [Google Scholar] [CrossRef]
- Jiang, T.F.; Lv, Z.H.; Wang, Y.H. Separation and determination of chalcones from Carthamus tinctorius L. and its medicinal preparation by capillary zone electrophoresis. J. Sep. Sci. 2005, 28, 1244–1247. [Google Scholar] [CrossRef]
- Inoue, K.; Nomura, C.; Mizuno, Y.; Yoshimi, Y.; Tsutsumiuchi, K.; Hino, T.; Oka, H. Separation of major safflowers from Carthamus yellow using High-Speed Countercurrent Chromatography. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 1047–1059. [Google Scholar] [CrossRef]
- Meselhy, M.R.; Kadota, S.; Hattori, M.; Namba, T. Metabolism of safflor yellow B by human intestinal bacteria. J. Nat. Prod. 1993, 56, 39–45. [Google Scholar] [CrossRef]
- Jiang, J.S. Studies on the chemical constituents and bioactivities of Carthamus tinctorius L. Ph.D. Dissertation, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China, 2008. [Google Scholar]
- Yin, H.B.; He, Z.S. A novel semi-quinone chalcone sharing a pyrrole ring C-glycoside from Carthamus tinctorius. Tetrahedron Lett. 2000, 41, 1955–1958. [Google Scholar] [CrossRef]
- Guo, M.L.; Fu, L.B.; Zhang, Z.Y.; Zhang, H.M.; Su, Z.W. Determination of safflower, polysaccharide and adenosine in Carthamus tinctorius by UV and HPLC. Zhongguo Yaoxue Zazhi 1999, 34, 550–552. [Google Scholar]
- Sato, S.; Kusakari, T.; Suda, T.; Kasai, T.; Kumazawa, T.; Onodera, J.I.; Obara, H. Efficient synthesis of analogs of safflower yellow B, carthamin, and its precursor: Two yellow and one red dimeric pigment in safflower petals. Tetrahedron 2005, 61, 9630–9636. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, X.L.; Shi, H.; Xiao, Y.S.; Ke, Y.X.; Xue, X.Y.; Zhang, F.F.; Liang, X.M. Characterization of C-glycosyl quinochalcones in Carthamus tinctorius L. by ultraperformance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Commun. Mass Spectrom. 2008, 22, 1275–1287. [Google Scholar] [CrossRef]
- Zong, X.F.; Zhang, H.R.; Li, B.; Li, L. Study on pigments in plant extracts from Carthamus tinctorius L. by ESI-MSn. Zhipu Xuebao 2012, 33, 357–262. [Google Scholar]
- Fan, L.; Pu, R.; Zhao, H.Y.; Liu, X.; Ma, C.; Wang, B.R.; Guo, D.A. Stability and degradation of hydroxysafflor yellow A and anhydrosafflor yellow B in the Safflower injection studied by HPLC-DAD-ESI-MSn. Zhongguo Yaoxue 2011, 20, 47–56. [Google Scholar]
- Zang, B.X.; Jin, M.; Si, N.; Zhang, Y.; Wu, W.; Piao, Y.Z. Antagonistic effect of hydroxysafflor yellow A on the platelet activating factor receptor. Yaoxue Xuebao 2002, 37, 696–699. [Google Scholar]
- Jia, F.F.; Cai, Q.Y.; Jia, J.; Zhang, L.W. Study on the antithrombotic effect of safflower yellow B. Shanxi Zhongyi Xueyuan Xuebao 2009, 10, 13–15. [Google Scholar]
- Reiter, R.J.; Tan, D.X. Melatonin: A novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc. Res. 2003, 58, 10–19. [Google Scholar] [CrossRef]
- Ji, D.B.; Zhang, L.Y.; Li, C.L.; Ye, J.; Zhu, H.B. Effect of hydroxysafflor yellow A on human umbilical vein endothelial cells under hypoxia. Vascul. Pharmacol. 2009, 50, 137–145. [Google Scholar] [CrossRef]
- Ji, D.B.; Zhu, M.C.; Zhu, B.; Zhu, Y.Z.; Li, C.L.; Ye, J.; Zhu, H.B. Hydroxysafflor yellow A enhances survival of vascular endothelial cells under hypoxia via upregulation of the HIF-1a-VEGF pathway and regulation of Bcl-2/Bax. J. Cardiovasc. Pharmacol. 2008, 52, 191–202. [Google Scholar] [CrossRef]
- Liu, S.X.; Zhang, Y.; Wang, Y.F.; Li, X.C.; Xiang, M.X.; Bian, C.; Chen, P. Upregulation of heme oxygenase-1 expression by hydroxysafflor yellow A conferring protection from anoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes. Int. J. Cardiol. 2012, 160, 95–101. [Google Scholar] [CrossRef]
- Zhou, M.X.; Fu, J.H.; Zhang, Q.; Wang, J.Q. The effect of hydroxy safflower yellow A on inflammatory reaction in myocardium of the rats after acute myocardial infarction. Afr. J. Pharm. Pharmacol. 2013, 7, 643–649. [Google Scholar]
- Jin, Z.; Zhang, W.H.; Chai, W.R.; Zheng, Y.Q.; Zhi, J.M. Antibodies against AT1 receptors are associated with vascular endothelial and smooth muscle function impairment: Protective effects of hydroxysafflor yellow A. PLoS One 2013, 8, e67020. [Google Scholar]
- Meselhy, M.R.; Momose, Y.; Hatakeyama, N.; Kadota, S.; Hattori, M.; Namba, T. Effect of tinctormine on contraction and Ca2+ currents in single cardiac myocytes from dog. Phytomedicine 1995, 4, 277–281. [Google Scholar]
- Wang, C.Y.; Zhang, S.P.; Xu, Y.; Yang, M.; Jiang, W.G.; Luan, H.Y. Effect of safflor yellow B on vascular endothelial cells injury induced by angiotensin-II. Yaoxue Xuebao 2012, 47, 811–815. [Google Scholar]
- Duan, J.L.; Wang, J.W.; Guan, Y.; Yin, Y.; Wei, G.; Cui, J.; Zhou, D.; Zhu, Y.R.; Quan, W.; Xi, M.M.; et al. Safflor yellow A protects neonatal rat cardiomyocytes against anoxia/reoxygenation injury in vitro. Acta Pharmacol. Sin. 2013, 34, 487–495. [Google Scholar] [CrossRef]
- Wei, X.B.; Liu, H.Q.; Sun, X.; Fu, F.H.; Zhang, X.M.; Wang, J.; An, J.; Ding, H. Hydroxysafflor yellow A protects rat brains against ischemia-reperfusion injury by antioxidant action. Neurosci. Lett. 2005, 385, 58–62. [Google Scholar] [CrossRef]
- Fan, L.H.; Dang, X.Q.; Shi, Z.B.; Zhang, C.; Wang, K.Z. Hydroxysafflor yellow A protects PC12 cells against the apoptosis induced by oxygen and glucose deprivation. Cell. Mol. Neurobiol. 2011, 31, 1187–1194. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.Y.; Lu, M.R.; Chen, Z.B.; Chen, C.; Han, L.J.; Zhang, M.J.; Xu, Y. Hydroxysafflor yellow A suppresses inflammatory responses of BV2 microglia after oxygen–glucose deprivation. Neurosci. Lett. 2013, 535, 51–56. [Google Scholar] [CrossRef]
- Ye, S.Y.; Gao, W.Y. Hydroxysafflor yellow A protects neuron against hypoxia injury and suppresses inflammatory responses following focal ischemia reperfusion in rats. Arch. Pharm. Res. 2008, 31, 1010–1015. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.F.; Liu, S.B.; Zhang, X.N.; Hou, Y.; Li, X.Q.; Wu, Y.M.; Wen, A.D.; Zhao, M.G. Neuroprotective effects of hydroxysafflor yellow A against excitotoxic neuronal death partially through down-regulation of NR2B-containing NMDA receptors. Neurochem. Res. 2010, 35, 1353–1360. [Google Scholar] [CrossRef]
- Zhu, H.B.; Zhang, L.; Wang, Z.H.; Tian, J.W.; Fu, F.H.; Liu, K.; Li, C.L. Therapeutic effects of hydroxysafflor yellow A on focal cerebral ischemic injury in rats and its primary mechanisms. J. Asian Nat. Prod. Res. 2005, 7, 607–613. [Google Scholar] [CrossRef]
- Tian, J.W.; Li, G.S.; Liu, Z.F.; Fu, F.H. Hydroxysafflor yellow A inhibits rat brain mitochondrial permeability transition pores by a free radical scavenging action. Pharmacology 2008, 82, 121–126. [Google Scholar] [CrossRef]
- Sun, X.; Wei, X.B.; Qu, S.F.; Zhao, Y.X.; Zhang, X.M. Hydroxysafflor Yellow A suppresses thrombin generation and inflammatory responses following focal cerebral ischemia–reperfusion in rats. Bioorg. Med. Chem. Lett. 2010, 20, 4120–4124. [Google Scholar] [CrossRef]
- Pan, Y.; Zheng, D.Y.; Liu, S.M.; Meng, Y.; Xu, H.Y.; Zhang, Q.; Gong, J.; Xia, Z.L.; Chen, L.B.; Li, H.Y. Hydroxysafflor yellow A attenuates lymphostatic encephalopathy-induced brain injury in rats. Phytother. Res. 2012, 26, 1500–1506. [Google Scholar]
- Liu, Y.Y.; Lian, Z.Q.; Zhu, H.B.; Wang, Y.H.; Yu, S.S.; Chen, T.T.; Qu, J.; Li, J.B.; Ma, S.G.; Chen, X.H. A systematic, integrated study on the neuroprotective effects of hydroxysafflor yellow A revealed by 1H NMR-based metabonomics and the NF-kB pathway. Evid. Based Complement. Alternat. Med. 2013, 2013, 1–14. [Google Scholar]
- Han, B.; Hu, J.; Shen, J.Y.; Gao, Y.L.; Lu, Y.; Wang, T. Neuroprotective effect of hydroxysafflor yellow A on 6-hydroxydopamine-induced Parkinson’s disease in rats. Eur. J. Pharmacol. 2013, 714, 83–88. [Google Scholar] [CrossRef]
- Wang, C.Y.; Ma, H.M.; Zhang, S.P.; Wang, Y.F.; Liu, J.T.; Xiao, X.H. Safflor yellow B suppresses pheochromocytoma cell (PC12) injury induced by oxidative stress via antioxidant system and Bcl-2 /Bax pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2009, 380, 135–142. [Google Scholar] [CrossRef]
- Song, L.J.; Zhu, Y.; Jin, M.; Zang, B.X. Hydroxysafflor yellow A inhibits lipopolysaccharide-induced inflammatory signal transduction in human alveolar epithelial A549 cells. Fitoterapia 2013, 84, 107–114. [Google Scholar] [CrossRef]
- Wu, S.C.; Yue, Y.; Tian, H.; Li, Z.K.; Li, X.F.; He, W.; Ding, H. Carthamus red from Carthamus tinctorius L. exerts antioxidant and hepatoprotective effect against CCl4-induced liver damage in rats via theNrf2 pathway. J. Ethnopharmacol. 2013, 148, 570–578. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Guo, J.; Dong, H.Y.; Zhao, X.M.; Zhou, L.; Li, X.Y.; Liu, J.C.; Niu, Y.C. Hydroxysafflor yellow A protects against chronic carbon tetrachloride-induced liver fibrosis. Eur. J. Pharm. 2011, 660, 438–444. [Google Scholar] [CrossRef]
- Li, C.C.; Yang, C.Z.; Li, X.M.; Zhao, X.M.; Zou, Y.; Fan, L.; Zhou, L.; Liu, J.C.; Niu, Y.C. Hydroxysafflor yellow A induces apoptosis in activated hepatic stellate cells through ERK1/2 pathway in vitro. Eur. J. Pharm. Sci. 2012, 46, 397–404. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, Q.; Huang, Q.X.; Liu, J.T.; He, Y.H.; Lu, J.J.; Bai, X.Y. Activation of PPARγ is required for hydroxysafflor yellow A of Carthamus tinctorius to attenuate hepatic fibrosis induced by oxidative stress. Phytomedicine 2013, 20, 592–599. [Google Scholar] [CrossRef]
- Nie, P.H.; Zhang, L.; Zhang, W.H.; Rong, W.F.; Zhi, J.M. The effects of hydroxysafflor yellow A on blood pressure and cardiac function. J. Ethnopharmacol. 2012, 139, 746–750. [Google Scholar] [CrossRef]
- Fu, F.H.; Su, C.F.; Liu, K. Effect of safflower yellow A on the blood pressure in dog and man. Am. J. Hypertens. 2005, 18, 59. [Google Scholar]
- Xi, S.Y.; Zhang, Q.; Xie, H.; Liu, L.T.; Liu, C.Y.; Gao, X.M.; Zhang, J.J.; Wu, L.K.; Qian, L.L.; Deng, X.Y. Effects of hydroxyl safflor yellow A on blood vessel and mRNA expression with VEGF and bFGF of transplantation tumor with gastric adenocarcinoma cell line BGC-823 in nude mice. Zhongguo Zhongyao Zazhi 2009, 34, 605–610. [Google Scholar]
- Xi, S.Y.; Zhang, Q.; Liu, C.Y.; Sun, H.M.; Ge, G.L.; Cui, W.; Xie, H.; Liu, L.T.; Gao, X.M. Inhibitory effect of hydroxyl safflor yellow A on transplantation tumor of human gastric adenocarcinoma cell line BGC-823 in nude mice. Beijing Zhongyiyao Daxue Xuebao 2009, 32, 331–336. [Google Scholar]
- Xi, S.Y.; Zhang, Q.; Liu, C.Y.; Xie, H.; Yue, L.F.; Zhao, Y.F.; Zang, B.X.; Gao, X.M. Effects of HSYA on expression of bFGF protein and MMP-9 in BGC-823 transplantation tumor of nude mice. Zhongguo Zhongyao Zazhi 2010, 35, 2877–2881. [Google Scholar]
- Xi, S.Y.; Zhang, Q.; Liu, C.Y.; Xie, H.; Yue, L.F.; Li, W.D.; Zang, B.X.; Gao, X.M. Effects of HSYA on protein and mRNA expression of KDR, HIF-1α and protein expression of VEGF in nude mice with BGC-823 transplantation tumor. Zhonghua Zhongyiyao Zazhi 2012, 27, 82–87. [Google Scholar]
- Wu, Z.Y.; Jia, Y.L.; Zhao, F.R.; Li, P.; Yi, Y.L. Proliferation inhibition and induced differentiation effects of carthamin on leukemic cells. Anhui Nongye Kexue 2012, 40, 5165–5166. [Google Scholar]
- Bucala, R.; Makita, Z.; Koschinsky, T.; Cerami, A.; Vlassara, H. Lipid advanced glycosylation: Pathway for lipid oxidation in vivo. Proc. Natl. Acad. Sci. USA 1993, 90, 6434–6438. [Google Scholar] [CrossRef]
- Ni, Z.Z.; Zhuge, Z.B.; Li, W.L.; Xu, H.M.; Zhang, Z.M.; Dai, H.B. Inhibitory effects of hydroxysafflor yellow A on the formation of advanced glycation end products in vitro. Biol. Pharm. Bull. 2012, 35, 2050–2053. [Google Scholar] [CrossRef]
- Li, W.L; Liu, J.; He, P.; Ni, Z.Z.; Hu, Y.M.; Xu, H.M.; Dai, H.B. Hydroxysafflor yellow A protects methylglyoxal-induced injury in the cultured human brain microvascular endothelial cells. Neurosci. Lett. 2013. [Google Scholar] [CrossRef]
- Kong, S.Z.; Shi, X.G.; Feng, X.X.; Li, W.J.; Liu, W.H.; Chen, Z.W.; Xie, J.H.; Lai, X.P.; Zhang, X.J.; Su, Z.R. Inhibitory effect of hydroxysafflor yellow A on mice skin photoaging induced by UV irradiation. Rejuvenation Res. 2013. [Google Scholar] [CrossRef]
- Sun, C.Y.; Pei, C.Q.; Zang, B.X.; Wang, L.; Jin, M. The ability of hydroxysafflor yellow a to attenuate lipopolysaccharide-induced pulmonary inflammatory injury in mice. Phytother. Res. 2010, 24, 1788–1795. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Jin, M.; Zang, B.X. Hydroxysafflor yellow A alleviates early inflammatory response of bleomycin-induced mice lung injury. Biol. Pharm. Bull. 2012, 35, 515–522. [Google Scholar] [CrossRef]
- Payton, F.; Sandusky, P.; Alworth, W.L. NMR study of the solution structure of Curcumin. J. Nat. Prod. 2007, 70, 143–146. [Google Scholar] [CrossRef]
- Weeks, C.L.; Singh, S.; Madzelan, P.; Banerjee, R.; Spiro, T.G. Heme regulation of human cystathionine β-synthase activity: Insights from fluorescence and raman spectroscopy. J. Am. Chem. Soc. 2009, 131, 12809–12816. [Google Scholar] [CrossRef]
- Henry, B.S.; Francis, F.J. Natural Food Colors, Less Common Natural Colorants. In Natural Food Colorants, 2nd ed.; Chapman & Hall: London, UK, 1996; pp. 40–79, 310–341. [Google Scholar]
- Agarwal, K.; Mukherjee, A.; Chakrabarti, J. In vivo cytogenetic studies on mice exposed to natural food colourings. Food Chem. Toxicol. 1994, 32, 837–838. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yue, S.; Tang, Y.; Li, S.; Duan, J.-A. Chemical and Biological Properties of Quinochalcone C-Glycosides from the Florets of Carthamus tinctorius. Molecules 2013, 18, 15220-15254. https://doi.org/10.3390/molecules181215220
Yue S, Tang Y, Li S, Duan J-A. Chemical and Biological Properties of Quinochalcone C-Glycosides from the Florets of Carthamus tinctorius. Molecules. 2013; 18(12):15220-15254. https://doi.org/10.3390/molecules181215220
Chicago/Turabian StyleYue, Shijun, Yuping Tang, Shujiao Li, and Jin-Ao Duan. 2013. "Chemical and Biological Properties of Quinochalcone C-Glycosides from the Florets of Carthamus tinctorius" Molecules 18, no. 12: 15220-15254. https://doi.org/10.3390/molecules181215220
APA StyleYue, S., Tang, Y., Li, S., & Duan, J. -A. (2013). Chemical and Biological Properties of Quinochalcone C-Glycosides from the Florets of Carthamus tinctorius. Molecules, 18(12), 15220-15254. https://doi.org/10.3390/molecules181215220