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Abstract: In the past 20 years, synthetic combinatorial methods have fundamentally 

advanced the ability to synthesize and screen large numbers of compounds for drug 

discovery and basic research. Mixture-based libraries and positional scanning deconvolution 

combine two approaches for the rapid identification of specific scaffolds and active 

ligands. Here we present a quantitative assessment of the screening of 32 positional 

scanning libraries in the identification of highly specific and selective ligands for two 

formylpeptide receptors. We also compare and contrast two mixture-based library 

approaches using a mathematical model to facilitate the selection of active scaffolds and 

libraries to be pursued for further evaluation. The flexibility demonstrated in the differently 

formatted mixture-based libraries allows for their screening in a wide range of assays. 

Keywords: combinatorial libraries; mixture-based libraries; harmonic mean mixture 

model; mathematical modeling; formylpeptide receptors 
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1. Introduction 

Mixture-based combinatorial libraries, reviewed in [1–3], are an efficient and effective way to 

explore large, dense areas of the chemical space in an exponentially smaller number of samples In a 

positional scanning mixture-based combinatorial library, mixtures are systematically arranged and 

tested in order to determine those most likely to contain active compounds [4,5]. These data are then 

used to deconvolute the library by making the individual compounds from the functionalities of the 

most active mixtures. Recent advances in the numerical modeling of mixture-based combinatorial 

libraries [6] has led to a greater understanding of how the Harmonic Mean model, in conjunction with 

the presence of multiple structural analogs within each mixture, leads to the differentiation of mixtures 

containing active compounds from those that do not. Such models have also led to impressive 

estimates of the robustness of a mixture’s activity to variations in the equimolarity of that mixture’s 

constituent compounds [7]. Over the last 20 years the number of new positional scanning libraries, 

including scaffolds comprised of peptides, peptidomimetics, heterocycles, and other classes of small 

molecules, has increased and the total number of samples available for testing is in the thousands.  

In an effort to further increase efficiency and utility as this collection of libraries increases, we 

previously developed a strategy termed scaffold ranking for the rapid identification and ranking of 

active library scaffolds [3]. Figure 1 shows a simplified illustration of the screening process using 

mixture-based combinatorial libraries. In a scaffold ranking library, all compounds in the library are 

simultaneously present as a mixture in a single sample; Figure 1(A) shows two 27-compound scaffold 

ranking library samples, with the colors red, blue and yellow representing three choices of 

functionality at each of three positions. In general, scaffold ranking library samples can result from 

mixing the cleaved products of the complete positional scanning library or may be synthesized directly 

as a single mixture. The objective of using scaffold ranking libraries is to prioritize library scaffolds for 

future analysis, including positional scanning; as shown in Figure 1(A,B), the scaffold which includes 

the black active compound (represented by a triangle) is chosen for positional scanning because its 

scaffold ranking mixture is relatively more active when compared to the other scaffold shown 

(represented by a circle). Only a single positional scanning library is then tested [Figure 1(B)] and 

deconvoluted (by picking the most active mixtures at each position) in order to find the active 

compound [Figure 1(C)]. This process can be advantageous in low-throughput assays that would make 

numerous positional scanning library screenings impractical. The relative efficacy of the scaffold 

ranking approach provides clear support for its use in low-throughput assays, or costly assays 

including in vivo screening. The format in which scaffold ranking or positional scanning libraries are 

used in a particular lead discovery effort will depend on the resources and throughput of the assay. The 

flexibility of these two screening formats of mixture-based libraries represents a clear advantage for 

the rapid identification of active lead compounds. 

The use of both positional scanning libraries and scaffold ranking have been previously  

reported [3,8–11], but there has heretofore never been a comprehensive study comparing scaffold 

ranking results to positional scanning results across a large number of libraries. In particular, because 

screening all positional scanning libraries may not be practical in all assays, determining the 

information both present and absent in a scaffold ranking, relative to positional scanning, is vital for 

proper usage of the scaffold ranking approach. 
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Figure 1. A schematic tracing an active compound (black) through the combinatorial 

library screening process, from scaffold ranking (A) to positional scanning (B) to 

individual compound synthesis (C). 
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Herein, we present such a study based on the screening of mixture-based libraries against the 

formylpeptide receptor (FPR1) and formylpeptide-like1 receptor (FPR2) targets, two receptors that 

have been implicated in both cancer [12] and inflammatory responses [13]. Thirty-two positional 

scanning libraries (Figure 2 and Table S1) were tested in their entirety (for a total of 4,304 samples), 

along with the corresponding 32 scaffold ranking samples. Detailed methodologies and analyses of 

structures and activities of the individual compounds discovered in this campaign will be presented 

elsewhere [14,15]. In this study, we present and demonstrate quantitative tools that analyze and use the 

information present in a positional scanning library screening most important to increasing the 

likelihood of a successful deconvolution. We also focus on comparing and contrasting the scaffold 

ranking and positional scanning screening approaches from a mathematical modeling perspective. The 

results presented here demonstrate that the scaffold ranking library samples lead to effective selection 

of active positional scanning libraries; consequently, determining the relative activities of the libraries 

as the first step of a screening campaign does not require the use of the complete collection of 

positional scanning libraries. This strategy greatly reduces the time and resources required by testing a 

fraction of the samples with equivalent accuracy. However, it will be also shown that use of the complete 

collection of positional scanning libraries provides screening data that offers important information, 

beyond activity alone, which increases the likelihood of the successful deconvolution of a library. 

2. Results and Discussion 

2.1. Comparison of Scaffold Ranking and Positional Scanning Using the Harmonic Mean  

A positional scanning library is systematically arranged so that, at each position of diversity, every 

individual compound in the library appears in exactly one mixture in an approximately equimolar 

fashion. Because of this, an equimolar combination of all of the mixtures in one position of a positional 

scanning library will result in an equimolar mixture of all the compounds within that library, i.e., the 

scaffold ranking mixture associated with that library. As previously described, the Harmonic Mean 

Model accurately describes the activity of a mixture given the activity of its constituents in a simple 

independent binding assay, such as the data in this study [6]. Thus, for a positional scanning library the 

harmonic mean model would suggest that: 50ܥܫௌௗோெ௫௧௨ ൌ ܰ∑ 50,ேୀଵܥܫ1  
(1)

Here 50ܥܫ,  is the IC50 of the ݅௧  mixture of the ݇௧  position, with ܰ total functionalities, of a 
positional scanning library, and 50ܥܫௌௗோெ௫௧௨  is the 50ܥܫ  of the scaffold ranking 

mixture associated with that library. 
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Figure 2. Thirty two small-molecule libraries tested against FPR1 and FPR2. 
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Figure 2. Cont. 
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In a high throughput screening (HTS) assay, it is not typical to have dose-response curves for all 

samples. Such was the case in this study, in which each positional scanning library sample was tested 

for inhibition of a fluorescent ligand binding to either FPR1 or FPR2 in duplicate at 10 μg/mL and 

averaged [14]. Each of the scaffold ranking samples was tested in duplicate at 10 μg/mL and 5 μg/mL. 

Because the Harmonic Mean Model uses the IC50s of samples, it was necessary to extrapolate IC50s for 

samples using the equation:  50ܥܫݔ ൌ min ൬ሾݔሿ ൬ 100%ூ െ 1൰ , 1,000൰ (2)

Here ሾݔሿ  is the concentration tested and %ூ  is the percent inhibition value obtained at that 

concentration. Because %ூ  values close to zero (or negative) could result in arbitrarily high  

(or negative) 50ܥܫݔ values, 1,000 (i.e., the value obtained when %ூ ൎ 1% at ሾݔሿ ൌ 10) was chosen 

as an upper bound. Obviously, these values are extrapolations and not a substitute for actual 

experimentally determined ݏ50ܥܫ, but they are sufficient for order-of-magnitude estimation. 

All averaged percent inhibition data from all positions of all the positional scanning libraries tested 

were converted to ݏ50ܥܫݔ and the harmonic mean was taken by position for both receptor targets. The 

four measured percent inhibitions for each scaffold ranking sample were converted to ݏ50ܥܫݔ and their 

average and standard error were calculated. The results are illustrated in Table 1 and Figure 3. The 

most immediate observation is that the most active library, 19, is detected equally well using either 

technique; when purely viewed as a method of determining the most potentially active scaffold, using 

the scaffold ranking libraries is equally effective to using the positional scanning libraries but requires 

testing of less than one percent of the samples (32 samples versus 4,304 samples).  

Table 1. Scaffold Ranking ݏ50ܥܫݔ , compared to the Harmonic Means of Positional 

Scanning ݏ50ܥܫݔ. Library 19 (red) is the most active in both. 

Library 

FPR1 FPR2 

Scaffold 

Ranking 

Harmonic Means of Positional 

Scanning xIC50s 

Scaffold 

Ranking 

Harmonic Means of Positional 

Scanning xIC50s 

xIC50 SEM P1 P2 P3 P4 AVG xIC50 SEM P1 P2 P3 P4 AVG 

1 708 175 489 540 NA NA 514 609 226 349 353 NA NA 351 

2 1000 0 540 666 601 NA 602 563 252 259 381 402 NA 347 

3 862 85 334 500 458 NA 431 720 200 437 257 260 NA 318 

4 389 166 623 521 662 NA 602 123 37 494 393 324 NA 404 

5 73 13 191 195 547 515 362 183 41 250 273 463 478 366 

6 361 214 336 287 188 190 250 399 206 393 257 273 284 302 

7 1000 0 583 451 575 NA 536 136 42 117 264 149 NA 177 

8 308 232 145 160 200 NA 168 65 27 131 131 149 NA 137 

9 268 165 456 666 491 NA 538 384 215 660 952 516 NA 709 

10 786 214 707 820 551 NA 692 1000 0 977 901 440 NA 773 

11 628 216 690 764 431 NA 628 291 236 365 315 392 NA 358 

12 1000 0 725 666 470 NA 620 798 202 287 467 311 NA 355 

13 744 165 406 344 417 NA 389 1000 0 276 288 234 NA 266 

14 823 177 638 452 400 NA 497 1000 0 321 354 260 NA 312 

15 1000 0 462 523 538 NA 508 781 219 555 652 672 NA 626 
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Table 1. Cont. 

Library 

FPR1 FPR2 

Scaffold 

Ranking 

Harmonic Means of Positional 

Scanning xIC50s 

Scaffold 

Ranking 

Harmonic Means of Positional 

Scanning xIC50s 

xIC50 SEM P1 P2 P3 P4 AVG xIC50 SEM P1 P2 P3 P4 AVG 

16 779 221 456 612 520 NA 529 1000 0 525 615 819 NA 653 

17 1000 0 538 773 909 NA 740 1000 0 510 478 646 NA 545 

18 803 197 581 799 1000 538 730 764 236 274 319 566 396 389 

19 15 4 77 49 112 90 82 29 8 74 82 137 100 98 

20 1000 0 206 368 545 431 387 640 218 184 319 424 331 315 

21 1000 0 405 134 200 488 307 215 184 314 188 306 485 323 

22 1000 0 197 500 487 640 456 1000 0 162 577 479 521 435 

23 790 210 424 394 685 NA 501 1000 0 262 469 430 NA 387 

24 44 12 174 273 188 NA 212 1000 0 433 627 512 NA 524 

25 839 161 284 341 711 NA 445 771 229 424 508 579 NA 504 

26 871 129 912 994 717 NA 874 332 223 424 397 316 NA 379 

27 1000 0 705 772 389 NA 622 660 218 411 420 334 NA 388 

28 588 242 593 361 684 NA 546 349 223 469 475 581 NA 508 

29 1000 0 455 351 510 NA 439 1000 0 227 359 497 NA 361 

30 1000 0 688 696 849 NA 744 866 134 606 509 421 NA 512 

31 782 218 630 614 584 NA 609 1000 0 329 357 364 NA 350 

32 144 12 97 70 141 NA 102 800 200 277 407 418 NA 367 

Considering the inherent inaccuracy of single-dose 50ܥܫ  extrapolations one would not expect 

perfect correspondences between scaffold ranking ݏ50ܥܫݔ  and the harmonic mean of a position’s ݏ50ܥܫݔ . In general, however, scaffold ranking activities corresponded well to those obtained by 

harmonic meaning each position; only three comparisons resulted in even a four-fold disparity against 

the average harmonic mean of its positional scanning library, and 41 of the 64 total comparisons had 

under a two-fold disparity. Many differences were the result of the scaffold ranking 50ܥܫݔ being 

1,000, and the positional scanning harmonic means being lower; this is unsurprising, since by 

imposing a cap on 50ܥܫݔ values, errors would necessarily be one-sided. The three largest deviations, 

however, were all overestimates: Libraries 5, 19, and 24 against FPR1. Library 19 had the highest error 

(over five-fold more active than the average harmonic mean of its positional scanning library) but was 

the most active library against FPR1 in either case. Libraries 5 and 24, while showing above-average 

activity in their positional scanning samples, were not actually the second- and third- most active 

libraries against FPR1; library 32, whose scaffold ranking 50ܥܫݔ and positional scanning harmonic 

means corresponded quite well, was actually the second-most active overall. It should be noted, 

however, libraries 5 and 24 do not exhibit substantially less active positional scanning harmonic means 

than library 32. 
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Figure 3. Comparison of the extrapolated scaffold ranking 50ܥܫ  of each library  

(SR, shown as red stars), and the harmonic means of the extrapolated ݏ50ܥܫ of each position 

of the positional scanning libraries samples (P1, P2, P3 and P4, shown as blue circles). 

 

2.2. Analysis of Positional Scanning Profiles  

As shown above, scaffold ranking is equally capable of gauging the overall activity of a given 

library. However, when the assay throughput rate allows, there is a wealth of additional information 

present in a full screening of all positional scanning libraries that can aid in choosing the most 

promising libraries to deconvolute. One of the most important aspects of a positional scanning activity 

profile is the level of activity differentiation of samples at each position. Given the same overall library 

activity, a positional scanning activity profile that shows few mixtures at each position that are much 

more active than the rest is likelier to have compounds that are more active than one with little 
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differentiation. To see why this is the case, consider a library with a scaffold ranking sample 50ܥܫ of 

100 μM containing inactive compounds with ݏ50ܥܫ of 1,000 μM and an unknown percentage of active 

compounds of fixed unknown activity. Under the assumptions of the Harmonic Mean model, such a 

library could theoretically have a composition of compounds ranging from 100% of compounds with ݏ50ܥܫ  of 100 μM each, to 0.01% of compounds with an 50ܥܫ  of 11 nM each, to even smaller 

percentages of even more active compounds. If, in such a library, a position contained only one 

mixture that exhibited activity higher than that of an inactive compound (therefore being a well-

differentiated profile), then that mixture would need to have a very high relative activity (so that the 

harmonic mean of that position would come out to 100 μM), and thus the vast majority of the active 

compounds would be mathematically required to be within that mixture. Since that mixture represents 

only a fraction of the total library, this in turn puts an upper bound on the percentage of active 

compounds that could be in the library; as presented above, the lower the percentage of active 

compounds, the greater the required activity of each active compound. In contrast, if a position 

contained mixtures all with approximately the same activity, then these mixtures’ ݏ50ܥܫ  must be 

approximately 100 μM each in order for their harmonic mean to be 100 μM. Thus each mixture would 

be required to have approximately the same number of active compounds, and so no upper bound can 

be placed on the overall percentage of active compounds. 

In an effort to quantify the activity profile of a positional scanning library position that models activity 

differentiation, the following procedure was developed. For a given position with ݊ functional groups, 

let ሼݔሽୀଵ  be the rank-ordered activities of the mixtures in that position, so that ݔଵ is the most active 

mixture’s activity, ݔଶ is the second-most active mixture’s activity, etc. In this study, percentage inhibition 

values were used for the activities; since we are attempting to compare the differentiation of positional 

scanning profiles within a single study, absolute scaling issues are irrelevant so long as they are consistent, 

and so long as higher numbers correspond to greater activity. Next, the maximum drop in activity: ݉ ൌ maxୀଵ,…,ିଵሺݔ െ ାଵሻ (3)ݔ

was calculated. This represents the maximum sequential activity difference within the position; clearly, 

the more difference between active and inactive mixtures, the greater ݉. The value of ݇ for which the 

largest drop occurs, ܭ, is calculated as well:  ܭ ൌ argmaxୀଵ,…,ିଵሺݔ െ ାଵሻ (4)ݔ

For an ideally differentiated positional scanning library activity profile, then, one would see high 

activity differences between active and inactive mixtures (i.e., a high value of ݉) in a relatively small 

number of mixtures (i.e., a low value of ܭ). To this end, the index of differentiation of a positional 

scanning position’s profile is defined as: ܫூிி ؠ ݉2ିଵ (5)

The values of ܫூிி for each position of each of the 32 libraries in this study are shown in Table 2. 

Selected profiles illustrating high and low differentiation are shown in Figure 4. Note that ܫூிி can 

vary greatly from position to position in a given library; this is unsurprising, since specific 

functionalities at certain positions will inevitably be more important to the activity potential of a 

compound than others. Library 32 exhibited by far the highest average index of differentiation for 
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FPR1, having the highest single position ܫூிி , and two remaining positions ranking 6th and 11th. 

Libraries 20, 21, and 24 showed relatively high differentiation in some positions, but not all, and had 

the next highest average ܫூிி. For FPR2, library 19 had the highest average ܫூிி, followed closely by 

libraries 20 and 29; all three exhibited high-ranking differentiation in two of their positions. 

Table 2. Indices of Differentiation and Deconvolutability for the 32 libraries against both 

targets. The most differentiated positions and the most deconvolutable libraries are shown 

in red. 

Library 

FPR1 FPR2 

IDIFF 
IDECON 

IDIFF 
IDECON 

P1 P2 P3 P4 AVG P1 P2 P3 P4 AVG 

1 4.55 1.01 NA NA 2.78 5.41 2.55 2.05 NA NA 2.30 6.56 
2 3.70 0.65 0.80 NA 1.72 2.85 10.60 1.00 1.40 NA 4.33 12.47 
3 0.15 1.00 1.30 NA 0.82 1.90 1.80 4.10 0.55 NA 2.15 6.77 
4 3.60 3.30 1.70 NA 2.87 4.76 4.50 1.40 0.09 NA 2.00 4.95 
5 6.00 0.26 0.15 6.10 3.13 8.64 0.80 0.38 0.70 0.13 0.50 1.37 
6 1.85 15.20 14.10 4.70 8.96 35.82 1.65 4.60 15.70 9.50 7.86 26.03 
7 0.09 1.15 1.40 NA 0.88 1.64 9.10 0.26 10.95 NA 6.77 38.33 
8 0.07 0.58 0.00 NA 0.21 1.27 8.30 0.68 0.44 NA 3.14 22.89 
9 1.80 1.50 1.00 NA 1.43 2.67 1.05 0.15 2.20 NA 1.13 1.60 

10 0.90 2.30 7.00 NA 3.40 4.91 0.60 3.70 10.50 NA 4.93 6.38 
11 0.04 2.70 0.00 NA 0.91 1.45 0.03 0.43 0.70 NA 0.38 1.07 
12 1.30 0.00 0.00 NA 0.43 0.70 0.17 0.12 3.80 NA 1.36 3.84 
13 0.18 2.85 0.58 NA 1.20 3.09 1.45 0.00 5.05 NA 2.17 8.14 
14 0.48 0.00 3.55 NA 1.34 2.70 4.85 4.80 0.23 NA 3.29 10.57 
15 0.00 0.11 2.05 NA 0.72 1.42 0.03 0.53 0.31 NA 0.29 0.46 
16 1.65 0.16 0.83 NA 0.88 1.66 2.60 0.95 0.20 NA 1.25 1.91 
17 2.75 1.85 5.23 NA 3.28 4.43 3.60 1.80 0.00 NA 1.80 3.31 
18 0.05 2.55 0.00 0.44 0.76 1.04 2.05 0.00 0.29 0.00 0.58 1.50 
19 15.23 0.10 5.38 1.29 5.50 67.09 41.45 36.85 0.74 0.18 19.81 201.44
20 25.05 0.85 0.90 19.70 11.63 30.00 36.35 0.00 0.01 23.50 14.96 47.54 
21 4.25 43.85 0.00 0.63 12.18 39.72 0.03 24.95 1.15 0.14 6.57 20.30 
22 8.38 0.02 1.70 1.75 2.96 6.49 13.78 0.56 2.75 1.05 4.53 10.43 
23 3.65 0.01 1.30 NA 1.65 3.30 0.01 0.80 2.70 NA 1.17 3.02 
24 21.95 4.30 13.20 NA 13.15 62.15 2.45 0.02 1.25 NA 1.24 2.36 
25 4.60 1.70 0.88 NA 2.39 5.37 2.10 0.00 0.01 NA 0.70 1.40 
26 2.75 0.65 0.07 NA 1.16 1.32 0.93 0.04 1.50 NA 0.82 2.17 
27 0.02 0.46 0.53 NA 0.34 0.54 0.40 0.00 0.02 NA 0.14 0.36 
28 0.19 0.00 0.85 NA 0.35 0.64 1.70 1.60 0.00 NA 1.10 2.17 
29 1.45 1.60 0.63 NA 1.23 2.79 41.00 1.45 7.35 NA 16.60 46.00 
30 2.80 0.09 0.85 NA 1.25 1.67 0.04 0.68 4.50 NA 1.74 3.40 
31 0.20 0.00 0.80 NA 0.33 0.55 2.30 0.01 2.85 NA 1.72 4.92 
32 12.35 57.70 18.40 NA 29.48 287.89 3.00 0.74 0.60 NA 1.45 3.94 
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Figure 4. Examples of very high differentiation (Library 32, Position 2, for FPR1) and 

little differentiation (Library 19, Position 2, for FPR1) in positional scanning profiles, as 

defined in Equation (5). Note that overall, Library 19 exhibits more activity, but Library 32 

is clearly more well-differentiated. Additional zero percent inhibition values have been 

removed from Library 32’s profile for clarity. 

 

As reasoned above, high differentiation is very important for potentiating the discovery of highly 

active compounds in a positional scanning screening profile. Such differentiation in the absence of 

overall activity, however, may only result in varying degrees of inactive compounds. Therefore, the 

overall potentiation index of deconvolutability of a library is better quantified as: ܫாைே ؠ ݁݃ܽݎ݁ݒܣ ூிிܫ ݎ݁ݒܱ ݈݈ܣ ܿ݅݊݉ݎܽܪ ݁݃ܽݎ݁ݒܣݏ݊݅ݐ݅ݏܲ ݊ܽ݁ܯ ݂ ݏ50ܥܫݔ ݎ݁ݒܱ ݈݈ܣ (6) ݏ݊݅ݐ݅ݏܲ

The values of ܫாைே for each library are in Table 2 and graphed in Figure 5. As is evident, each 

receptor has one standout library: library 32 for FPR1, because of high relative activity and very high 

relative differentiation, and library 19 for FPR2 (which had the second highest score in FPR1 as well), 

because of very high relative activity and high relative differentiation. Indeed, these libraries were the 

two chosen in this study for deconvolution, and both proved to lead to the identification of highly 

active individual compounds with nanomolar Ki values [14]. 
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Figure 5. Indices of Deconvolutability for each library, as defined in Equation (6), against 

both targets. 

 
  



Molecules 2013, 18 6421 

 

2.3. Selectivity in Scaffold Ranking and Positional Scanning  

In the event that selectivity is a desirable endpoint in a study, as it was in this study, additional 

important lessons can be learned about the relative utility of screening scaffold ranking libraries versus 

complete positional scanning libraries. As has already been noted, library 19 showed the highest level 

of overall scaffold ranking activity in both receptors. Library 32, in contrast, only showed substantial 

scaffold ranking activity against the FPR1 target. Using this information to infer that library 19 could 

not include selective compounds, however, would not be an appropriate use of the activity of the 

scaffold ranking samples. The absence of activity in FPR2 for library 32 did indeed imply, both in its 

positional scanning profile and its eventual deconvolution, an absence of FPR2-active individual 

compounds. The reverse, however, proved not to be true, as is evident from a closer inspection of 

library 19’s positional scanning activity profile (Figure 6). Although library 19 exhibits overall high 

activity against both targets, the mixtures at each position that exhibit that activity vary greatly; FPR2 

shows greater differentiation in the first two positions (as evidenced by its higher index of 

differentiation as described above), and the mixtures of maximum activity do not correspond to those 

of FPR1. These patterns persisted when individual compounds were tested. Thus, positional scanning 

libraries should be selected and screened even if the scaffold ranking screening does not show the 

desired selectivity. Positional scanning libraries offer a window into the possibility of additional 

selectivity of individual compounds that would not be evident in the analysis of the scaffold ranking 

library’s activity alone. 

Figure 6. The full positional scanning profile of Library 19. Notice that there are many 

instances of different mixtures among the most active at the FPR1 target not being active at the 

FPR2 target, and vice versa. This indicates the potential selectivity that was eventually found. 
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Figure 6. Cont. 

 

 

3. Conclusions  

In the past, scaffold ranking has been used as a first step for determining which library will be tested 

using positional scanning. With the side-by-side data presented in this study, we have shown for the 

first time that scaffold ranking is indeed sufficient for accurately demonstrating the overall activity of a 

library, with each library presenting essentially the same activity levels in its scaffold ranking format 

as in its full positional scanning format. However, we have also demonstrated that, when feasible, 

complete screening of all positional scanning libraries allows for additional analyses of the 

differentiation and selectivity that can drastically increase the likelihood of a successful deconvolution. 

If only the scaffold ranking samples had been tested, library 19 surely would have been chosen, based 

on the basis of its activity, to screen the complete positional scanning library; as we have shown in this 

study, to exclude a library on the grounds of selectivity using only scaffold ranking information is a 

mistake. The potential of identifying selective compounds is only revealed from analysis of its 

positional scanning profile. As will be presented in a complementary study, 106 individual compounds 

were synthesized and tested from library 19 [14]. Nineteen compounds had Ki values ≤ 100 nM for 

FPR1, of which 15 were FPR1 selective (Ki values for FPR2 are more than 100-fold greater); 23 

compounds had Ki values ≤ 100 nM for FPR2, of which 12 were selective for FPR2. Furthermore, 

Library 32, with less activity exhibited in the scaffold ranking than other libraries, may not have been 

explored at all, had its impressively differentiated profile not been determined through screening its 

positional scanning library. Deconvolution of library 32 resulted in the synthesis of only eight 

individual compounds, of which four had Ki values ≤ 20 nM in FPR1 and were highly selective. 

Additional libraries (library 24 for FPR1, and libraries 20 and 29 for FPR2) that have not yet been 
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deconvoluted show about the same indices of deconvolutability as the successfully deconvoluted 

library 19 for FPR1; these are clearly a possible direction for future research. By having the scaffold 

ranking data in tandem with the positional scanning data, one is better able to see the strengths and 

weaknesses of each approach, and use this knowledge to further increase the effectiveness of already-

effective mixture-based combinatorial library screening.  
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Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/18/6/6408/s1. 
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