Elaboration of Stable and Antibody Functionalized Positively Charged Colloids by Polyelectrolyte Complexation between Chitosan and Hyaluronic Acid
Abstract
:1. Introduction
2. Results and Discussions
2.1. Physico-Chemical Properties of Chitosan and Hayluronic Acid
Chitosan | ||||||||
---|---|---|---|---|---|---|---|---|
Low Molar Masses | Medium Molar Masses | High Molar Masses | ||||||
Mw (g/mol) | DA (%) | PI | Mw (g/mol) | DA (%) | PI | Mw (g/mol) | DA (%) | PI |
50 × 103 | 5 | 1.56 | 100 × 103 | 5 | 1.67 | 470 × 103 | 5 | 1.72 |
30 × 103 | 48 | 1.61 | 130 × 103 | 48 | 1.47 | 430 × 103 | 48 | 1.52 |
250 × 103 | 5 | 1.43 | ||||||
200 × 103 | 48 | 1.54 |
2.2. Formation of Polyelectrolyte Complexes
CS-HA | Ratio (n+/n−) | Solid Content (%) | Size(nm) | PI | Zeta potential (mV) | Appearance |
---|---|---|---|---|---|---|
0.5 | 1100 | 1 | Precipitation | |||
Water | 1.5 | 6 | 350 | 0.1 | 30 ± 0.31 | Medium turbidity |
2.5 | 3 | 290 | 0.1 | 35 ± 0.27 | Medium turbidity | |
3.5 | 1 | 271 | 0.1 | 47 ± 0.13 | Low turbidity | |
0.5 | 1220 | 1 | Precipitation | |||
1.5 | 5 | 632 | 0.1 | 31 ± 0.19 | Medium turbidity | |
PBS | 2.5 | 3 | 424 | 0.2 | 48 ± 0.23 | Medium turbidity |
3.5 | 1 | 418 | 0.1 | 49 ± 1.83 | Low turbidity |
2.3. Colloidal Stability
CS-HA In water | Ratio (n+/n−) = 1.5 | Ratio (n+/n−) = 2.5 | Ratio (n+/n−) = 3.5 | |||
---|---|---|---|---|---|---|
Time (days) | Size (nm) | PI | Size (nm) | PI | Size (nm) | PI |
0 | 350 | 0.1 | 291 | 0.1 | 270 | 0.1 |
7 | 332 | 0.1 | 256 | 0.1 | 265 | 0.1 |
14 | 280 | 0.2 | 233 | 0.1 | 204 | 0.1 |
30 | 181 | 0.3 | 204 | 0.2 | 112 | 0.2 |
CS-HA In PBS | Ratio (n+/n−) = 1.5 | Ratio (n+/n−) = 2.5 | Ratio (n+/n−) = 3.5 | |||
Time (days) | Size (nm) | PI | Size (nm) | PI | Size (nm) | PI |
0 | 632 | 0.1 | 424 | 0.2 | 418 | 0.1 |
7 | 621 | 0.1 | 410 | 0.2 | 368 | 0.1 |
14 | 588 | 0.1 | 376 | 0.2 | 340 | 0.1 |
30 | 332 | 0.3 | 243 | 0.2 | 254 | 0.2 |
2.4. IgA Sorption
Time(h) | IgA input in PBS (µg/mL) | IgA input in water (µg/mL) | ||||
---|---|---|---|---|---|---|
12 | 36 | 54 | 8 | 31 | 62 | |
2 | 97 | 93 | 91 | 95 | 93 | 89 |
4 | 99 | 99 | 96 | 99 | 95 | 90 |
6 | 100 | 99 | 98 | 100 | 99 | 95 |
16 | 100 | 100 | 100 | 100 | 100 | 100 |
24 | 100 | 100 | 100 | 100 | 100 | 100 |
3. Experimental
3.1. Materials
3.2. Chitosan Characterization
3.3. Preparation of Polyelectrolyte Solutions
3.4. Polyelectrolyte Complex Formation
3.5. Particle Solid Contents
3.6. Physicochemical Characterization of the Complex Dispersions
3.7. Antibody Sorption onto Colloidal PECs
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Lankalapalli, S.; Kolapalli, V. Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Indian J. Pharm. Sci. 2009, 71, 481–487. [Google Scholar] [CrossRef]
- Sun, W.; Mao, S.; Mei, D.; Kissel, T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and enoxaparin. Eur. J. Pharm. Biopharm. 2008, 69, 417–425. [Google Scholar] [CrossRef]
- Delair, T. Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur. J. Pharm. Biopharm. 2010, 78, 10–18. [Google Scholar] [CrossRef]
- Dautzenberg, H. Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: polyelectrolyte complex formation in the presence of NaCl. Macromol 1997, 30, 7810–7815. [Google Scholar] [CrossRef]
- Schatz, C.; Lucas, J.M.; Viton, C.; Domard, A.; Pichot, C.; Delair, T. Formation and properties of positively charged colloids based on polyelectrolyte complexes of biopolymers. Langmuir 2004, 20, 7766–7778. [Google Scholar] [CrossRef]
- Rinaudo, M.; Domard, A. Chitin and Chitosan; Elsevier Applied Sciences: London, UK, 1989; pp. 71–86. [Google Scholar]
- Vila, A.; Sanchez, A.; Tobıo, M.; Calvo, P.; Alonso, M.J. Design of biodegradable particles for protein delivery. J. Control. Release 2002, 78, 15–24. [Google Scholar] [CrossRef]
- Dodane, V.; Vilivalam, V.D. Pharmaceutical application of chitosan. Pharm. Sci. Technol. Today 1998, 1, 246–253. [Google Scholar] [CrossRef]
- Kean, T.; Thanou, M. Biodegradation, biodistribution and tocixity of chitosan. Adv. Drug. Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef]
- Kima, S.J.; Yoona, S.G.; Leeb, K.B.; Parkb, Y.D.; Kima, S.I. Electrical sensitive behavior of a polyelectrolyte complex composed of chitosan/hyaluronic acid. Solid State Ionics 2003, 164, 199–204. [Google Scholar] [CrossRef]
- Chen, W.B.; Wang, L.F.; Chen, J.S.; Fan, S.Y. Characterization of polyelectrolyte complexes between chondroitin sulfate and chitosan in the solid state. J. Biomed. Mater. Res. Part A 2005, 75, 128–137. [Google Scholar]
- Sæther, H.V.; Holme, H.K.; Maurstad, G.; Smidsrød, O.; Stokke, B. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr. Polym. 2008, 74, 813–821. [Google Scholar] [CrossRef]
- Zhao, Q.; Qian, J.; An, Q.; Gao, C.; Gui, Z.; Jin, H. Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. J. Membrane Sci. 2009, 333, 68–78. [Google Scholar] [CrossRef]
- Hugerth, A.; Caram-Lelham, N.; Sundeliir, L.O. The effect of charge density and conformation on the polyelectrolyte complex formation between carrageenan and chitosan. Carbohydr. Polym. 1997, 34, 149–156. [Google Scholar] [CrossRef]
- Arguelles-Monal, W.; Cabrera, G.; Peniche, C.; Rinaudo, M. Conductimetric study of the interpolyelectrolyte reaction betweenchitosan and polygalacturonic acid. Polym. 2000, 41, 2373–2378. [Google Scholar] [CrossRef]
- Liu, W.G.; Sun, S.J.; Cao, Z.Q.; Xin, Z.; Yao, K.D.; Lu, W.W.; Luk, K.D.K. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 2005, 26, 2705–2711. [Google Scholar] [CrossRef]
- Garg, H.G.; Hales, C.A. Chemistry and Biology of Hyaluronan; Elsevier Science & Technology: London, UK, 2004. [Google Scholar]
- Prestwich, G.D. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J. Control. Release 2011, 155, 193–199. [Google Scholar] [CrossRef]
- Yun, Y.H.; Goetz, D.J.; Yellen, P.; Chen, W. Hyaluronan micropheres for sustained gene delivery and site-specific targeting. Biomaterials 2004, 25, 147–157. [Google Scholar] [CrossRef]
- Eun, J.O.; Park, K.; Ki, S.K.; Jiseok, K.; Jeong, A.Y.; Hoffman, S.; Sei, K.H. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J. Control. Release 2010, 141, 2–12. [Google Scholar] [CrossRef]
- Yamane, S.; Iwasaki, N.; Majima, T.; Funakoshi, T.; Masuko, T.; Harada, K.; Minami, A.; Monde, K.; Nishimura, S. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 2005, 26, 611–619. [Google Scholar] [CrossRef]
- Hahna, S.K.; Hoffmanb, A.S. Preparation and characterization of biocompatible polyelectrolyte complex multilayer of hyaluronic acid and poly-l-lysine. Inter. J. Biol. Macromol. 2005, 37, 227–231. [Google Scholar] [CrossRef]
- Malay, Ö; Yalçın, D.; Batıgün, A.; Bayraktar, O. Characterization of silk fibroin/hyaluronic acid polyelectrolyte complex (PEC) films. J. Therm. Anal. Calorim. 2008, 94, 749–755. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, H.; Wang, K.; Lv, L. Novel hyaluronic acid-chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis. Int. J. Pharm. 2011, 420, 358–365. [Google Scholar] [CrossRef]
- Duceppe, N.; Tabrizian, M. Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Coll. Surfaces A: Physicochem. Eng. Aspects 2005, 257–258, 85–88. [Google Scholar] [CrossRef]
- Verheul, R.; Slütter, B.; Bal, S.M.; Bouwstra, J.A.; Jiskoot, W.; Hennink, W.E. Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. J. Controlled Release 2011, 156, 46–52. [Google Scholar] [CrossRef]
- Chua, P.-H.; Neoh, K.-G.; Kang, E.T.; Wu, W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 2008, 29, 1412–1421. [Google Scholar] [CrossRef]
- Drogoz, A.; David, L.; Rochas, C.; Domard, A.; Delair, T. Polyelectrolyte complexes from polysaccharides: Formation and stoichiometry, monitoring. Langmuir 2007, 23, 10950–10958. [Google Scholar] [CrossRef]
- Miyazaki, T.; Yomota, C.; Okada, S. Ultrasonic depolymerization of hyaluronic acid. Polym. Degrad. Stab. 2001, 74, 77–85. [Google Scholar] [CrossRef]
- Sorlier, P.; Denuziere, A.; Viton, C.; Domard, A. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2001, 2, 765–772. [Google Scholar] [CrossRef]
- Denuziere, A.; Ferrier, D.; Domard, A. Chitosan-Chondroitin sulfate and chitosan-hyaluronate PECs. Physico-chemical aspects. Carbohydr. Polym. 1996, 29, 317–323. [Google Scholar]
- Umerska, A.; Palucha, K.J.; Inkielewicz-Stępniaka, I.; Santos-Martineza, M.J.; Corrigana, O.I.; Medinaa, C.; Tajbera, L. Exploring the assembly process and properties of novel crosslinker-free hyaluronate-based polyelectrolyte complex nanocarriers. Int. J. Pharm. 2012, 436, 75–87. [Google Scholar] [CrossRef]
- Boddohi, S.; Moore, N.; Johnson, P.A.; Kipper, M.J. Polysaccharide-Based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 2009, 10, 1402–1409. [Google Scholar] [CrossRef]
- Coimbra, P.; Alvers, P.; Valente, T.A.M.; Santos, R.; Correia, I.J.; Ferreira, P. Sodium hyaluronate/chitosan polyelectrolyte complex for dental pulp regeneration: Synthesis and characterization. Int. J. Biol. Macromol. 2011, 49, 573–579. [Google Scholar] [CrossRef]
- Bigucci, F.; Luppi, B.; Cerchiara, T.; Sorrenti, M.; Bettinetti, G.; Rodriguez, L. Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur. J. Pharm. Sci. 2008, 35, 435–441. [Google Scholar] [CrossRef]
- Sarmento, B.; Ribeiro, A.; Veiga, F.; Ferreira, D. Development and characterization of new insulin containing polysaccharide nanoparticles. Coll. Surfaces B Biointerfaces 2006, 53, 193–202. [Google Scholar] [CrossRef]
- Martins, A.F.; Pereira, A.G.B.; Fajardo, A.R.; Rubira, A.F. Characterization of polyelectrolytes complexes based on N,N,N-trimethyl chitosan/heparin prepared at different pH conditions. Carbohydr. Polym. 2011, 86, 1266–1272. [Google Scholar] [CrossRef]
- Vachoud, L.; Zydowicz, N.; Domard, A. Formation and characterisation of a physical chitin gel. Carbohydr. Res. 1997, 302, 169–177. [Google Scholar] [CrossRef]
- Schatz, C.; Domard, A.; Viton, C.; Pichot, C.; Delair, T. Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules 2004, 5, 1882–1892. [Google Scholar] [CrossRef]
- Popa-Nita, S.; Lucas, J.-M.; Ladaviere, C.; David, L.; Domard, A. Mechanisms involved during the ultrasonically induced depolymerization of chitosan: Characterization and control. Biomacromolecules 2009, 10, 1203–1211. [Google Scholar] [CrossRef]
- Hirai, A.; Odami, H. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym. Bull. 1991, 26, 87–94. [Google Scholar] [CrossRef]
- Coombes, A.G.A.; Scholes, P.D.; Davies, M.C.; Illum, L.; Davis, S.S. Resorbable polymeric microspheres for drug-delivery- Production and simultaneous surface modification using Peo-Ppo surfactants. Biomaterials 1994, 15, 673–680. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Polexe, R.C.; Delair, T. Elaboration of Stable and Antibody Functionalized Positively Charged Colloids by Polyelectrolyte Complexation between Chitosan and Hyaluronic Acid. Molecules 2013, 18, 8563-8578. https://doi.org/10.3390/molecules18078563
Polexe RC, Delair T. Elaboration of Stable and Antibody Functionalized Positively Charged Colloids by Polyelectrolyte Complexation between Chitosan and Hyaluronic Acid. Molecules. 2013; 18(7):8563-8578. https://doi.org/10.3390/molecules18078563
Chicago/Turabian StylePolexe, Ramona C., and Thierry Delair. 2013. "Elaboration of Stable and Antibody Functionalized Positively Charged Colloids by Polyelectrolyte Complexation between Chitosan and Hyaluronic Acid" Molecules 18, no. 7: 8563-8578. https://doi.org/10.3390/molecules18078563
APA StylePolexe, R. C., & Delair, T. (2013). Elaboration of Stable and Antibody Functionalized Positively Charged Colloids by Polyelectrolyte Complexation between Chitosan and Hyaluronic Acid. Molecules, 18(7), 8563-8578. https://doi.org/10.3390/molecules18078563