Bio and Nanomaterials Based on Fe3O4
Abstract
:1. Introduction
2. Methods for Preparation of Fe3O4 Nanoparticles
Methods | Advantages | Disadvantages | |
---|---|---|---|
Physical methods | Electron beam lithography | well controlled inter-particle spacing | expensive and highly complex machines requiring |
Gas-phase deposition | easy to perform | difficult to control the particle size | |
Mechanical techniques | no chemicals involved | highly complex machines requiring and time-consuming | |
Wet chemical preparation methods | Sol-gel synthesis | precisely controlled in size, aspect ratio, and internal structure | weak bonding, low wear-resistance, high permeability |
Oxidation method | uniform size and narrow size distribution | small-sized ferrite colloids | |
Reduction method | simple | high reaction temperature | |
Chemical coprecipitation | simple and efficient | not suitable for the preparation of high pure, accurate stoichiometric phase | |
Hydrothermal reactions | easy to control particle size and shapes | high reaction temperature, high pressure | |
Solvothermal method | easy to control particle size and shape | high reaction temperature | |
Thermal decomposition method | easy to control particle size and shape | involve multiple steps | |
Flow injection synthesis | good reproducibility and high mixing homogeneity together with a precise control of the process | need continuous or segmented mixing of reagents under a laminar flow regime in a capillary reactor | |
Electrochemical method | easy to control particle size | bad reproducibility | |
Aerosol/vapor phase method | high yields | extremely high temperatures | |
Sonochemical decomposition reactions | narrow particle size distribution | mechanism not still understood | |
Supercritical fluid method | efficient control of the particle size, no organic solvents involved | critical pressure and temperature | |
Synthesis using nanoreactors | precisely control the particle size | complex condition | |
Microbial methods | Microbial incubation | environmental friendly, high yield, good reproducibility, and good scalability, low cost | time-consuming |
3. Modification of Fe3O4 Magnetic Nanoparticles
Methods | Interactions | Advantages | Disadvantages |
---|---|---|---|
Physical immobilization | physical absorption, electrostatic interaction, hydrogen bonds, van der Waals forces, and hydrophobic interactions | easy to perform and recycle, no additional coupling reagents and surface treatment are required | nonspecificity, the binding stability is highly affected by environmental conditions |
Covalent conjugation | covalent interaction | the binding process can be rationally regulated with specific functional groups | nonspecificity, the support can’t be recycled |
Biologically mediated specific interaction | biologically mediated specific interaction | site-specific | site-selective attachment is desired |
4. Applications of Fe3O4 Nanoparticles
4.1. Protein Immobilization
4.2. Bioseparation
4.3. Environmental Treatment
4.4. Biomedical Usage
4.4.1. Targeted Drug Delivery
4.4.2. Biosensor
4.4.3. Magnetic Resonance Imaging
4.4.4. Hyperthermia
4.4.5. Tissue Engineering
4.4.6. Magnetofection
4.5. Food Analysis
5. Concluding Remarks and Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galan, C.; Berenguer-Murcia, A.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Romdhane, I.B.B.; Romdhane, Z.B.; Gargouri, A.; Belghith, H. Esterification activity and stability of Talaromyces thermophilus lipase immobilized onto chitosan. J. Mol. Catal. B Enzym. 2011, 68, 230–239. [Google Scholar] [CrossRef]
- Peng, H.P.; Liang, R.P.; Qiu, J.D. Facile synthesis of Fe3O4@Al2O3 core–shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry. Biosens. Bioelectron. 2011, 26, 3005–3011. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Zhou, L.L.; Zhang, H.J.; Guo, J.; Mei, X.; Zhang, C.; Yuan, J.Y.; Xing, X.H. Direct affinity immobilization of recombinant heparinase I fused to maltose binding protein on maltose-coated magnetic nanoparticles. Biochem. Eng. J. 2014, 90, 170–177. [Google Scholar] [CrossRef]
- Xu, J.K.; Ju, C.X.; Sheng, J.; Wang, F.; Zhang, Q.; Sun, G.L.; Sun, M. Synthesis and characterization of magnetic nanoparticles and its application in lipase immobilization. Bull. Korean Chem. Soc. 2013, 34, 2408–2012. [Google Scholar] [CrossRef]
- Baghayeri, M.; Zare, E.N.; Lakouraj, M.M. Novel superparamagnetic PFu@Fe3O4 conductive nanocomposite as a suitable host for hemoglobin immobilization. Sens. Actuators B Chem. 2014, 202, 1200–1208. [Google Scholar] [CrossRef]
- Peng, H.P.; Liang, R.P.; Zhang, L.; Qiu, J.D. Sonochemical synthesis of magnetic core-shell Fe3O4@ZrO2 nanoparticles and their application to the highly effective immobilization of myoglobin for direct electrochemistry. Electrochim. Acta 2011, 56, 4231–4236. [Google Scholar] [CrossRef]
- Xu, L.X.; Kim, M.J.; Kim, K.D.; Cho, Y.H.; Kim, H.T. Surface modified Fe3O4 nanoparticles as a protein delivery vehicle. Colloids Surf. A Physicochem. Eng. Asp. 2009, 350, 8–12. [Google Scholar] [CrossRef]
- Can, K.; Ozmen, M.; Ersoz, M. Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloids Surf. B 2009, 71, 154–159. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Ahmed, S.B.; Osman, M.M.; Abdel-Fattah, T.M. A novel composite of nanomagnetite-immobilized-baker’s yeast on the surface of activated carbon for magnetic solid phase extraction of Hg (II). Fuel 2015, 139, 614–621. [Google Scholar] [CrossRef]
- Cui, Y.R.; Hong, C.; Zhou, Y.L.; Li, Y.; Gao, X.M.; Zhang, X.X. Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation. Talanta 2011, 85, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Guo, C.; Guan, Y.; Liu, H. Isolation of lactoferrin from acid whey by magnetic affinity separation. Sep. Sci. Technol. 2007, 56, 168–174. [Google Scholar]
- Ma, Z.; Liu, X.; Guan, Y.; Liu, H. Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins. Colloids Surf. A Physicochem. Eng. Asp. 2006, 275, 87–91. [Google Scholar] [CrossRef]
- Hou, Y.H.; Han, X.Y.; Chen, J.; Li, Z.L.; Chen, X.C.; Gai, L.G. Isolation of PCR-ready genomic DNA from Aspergillus niger cells with Fe3O4/SiO2 microspheres. Sep. Purif. Technol. 2013, 116, 101–106. [Google Scholar] [CrossRef]
- Liu, X.F.; Lu, X.; Huang, Y.; Liu, C.W.; Zhao, S.L. Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Talanta 2014, 119, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.Y.; Jiang, W.; Gu, J.J.; Zhou, S.; Lu, Y.; Xie, T. Synthesis of P (St-DVB)/Fe3O4 microspheres and application for oil removal in aqueous environment. Appl. Surf. Sci. 2014, 317, 787–793. [Google Scholar] [CrossRef]
- Xu, J.; Tang, J.; Baig, S.A.; Lv, X.S.; Xu, X.H. Enhanced dechlorination of 2,4-dichlorophenol by Pd/Fe—Fe3O4 nanocomposites. J. Hazard. Mater. 2013, 244–245, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Du, B.; Wei, Q.; Yang, J.; Hu, L.H.; Yan, L.G.; Xu, W.Y. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. J. Hazard. Mater. 2014, 278, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, Z.W.; Shao, P.H.; Cui, F.Y. Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation. Chem. Eng. J. 2015, 262, 854–861. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.Z.; Wu, Y.; Chen, X.H.; Leng, L.J.; Wang, H.; Li, H.; Zeng, G.M. Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem. Eng. J. 2015, 262, 597–606. [Google Scholar] [CrossRef]
- Song, W.C.; Liu, M.C.; Hu, R.; Tan, X.L.; Li, J.X. Water-soluble polyacrylamide coated-Fe3O4 magnetic composites for high-efficient enrichment of U(VI) from radioactive waste water. Chem. Eng. J. 2014, 246, 268–276. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Kong, J.L. Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater. 2011, 193, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Souza, K.C.; Ardisson, J.D.; Sousa, E.M.B. Study of mesoporous silica/magnetite systems in drug controlled release. J. Mater. Sci. Mater. Med. 2009, 20, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.P.; Liang, R.P.; Zhang, L.; Qiu, J.D. Facile preparation of novel core-shell enzyme-Au-polydopamine-Fe3O4 magnetic bionanoparticles for glucose sensor. Biosens. Bioelectron. 2013, 42, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Baghayeri, M.; Zare, E.N.; Lakouraj, M.M. A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens. Bioelectron. 2014, 55, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yuan, M.; Qiao, L.J.; Guo, R. An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens. Bioelectron. 2014, 52, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Veiseh, O.; Gunn, J.; Fang, C.; Hansen, S.; Lee, D.; Sze, R.; Ellenbogen, R.G.; Olson, J.; Zhang, M. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small 2008, 4, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Ko, S.P.; Wu, J.H.; Jung, M.H.; Min, J.H.; Lee, J.H.; An, B.H.; Kim, Y.K. One-pot polyol synthesis of monosize PVP-coated sub-5 nm Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater. 2007, 310, 815–817. [Google Scholar] [CrossRef]
- Singh, S.; Barick, K.C.; Bahadur, D. Inactivation of bacterial pathogens under magnetic hyperthermia using Fe3O4–ZnO nanocomposite. Powder Technol. 2015, 269, 513–519. [Google Scholar] [CrossRef]
- Sadat, M.E.; Patel, R.; Sookoor, J.; Bud’ko, S.L.; Ewing, R.C.; Zhang, J.M.; Xu, H.; Wang, Y.L.; Pauletti, G.M.; Mast, D.B.; et al. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater. Sci. Eng. C 2014, 42, 52–63. [Google Scholar] [CrossRef]
- Bai, L.Z.; Zhao, D.L.; Xu, Y.; Zhang, J.M.; Gao, Y.L.; Zhao, L.Y.; Tang, J.T. Inductive heating property of graphene oxide–Fe3O4 nanoparticles hybrid in an AC magnetic field for localized hyperthermia. Mater. Lett. 2012, 68, 399–401. [Google Scholar] [CrossRef]
- Shete, P.B.; Patil, R.M.; Thorat, N.D.; Prasad, A.; Ningthoujam, R.S.; Ghosh, S.J.; Pawar, S.H. Magnetic chitosan nanocomposite for hyperthermia therapy application: Preparation, characterization and in vitro experiments. Appl. Surf. Sci. 2014, 288, 149–157. [Google Scholar] [CrossRef]
- Devkota, J.; Mai, T.T.T.; Stojak, K.; Ha, P.T.; Pham, H.N.; Nguyen, X.P.; Mukherjee, P.; Srikanth, H.; Phan, M.H. Synthesis, inductive heating, and magnetoimpedance-based detection of multifunctional Fe3O4 nanoconjugates. Sens. Actuators B Chem. 2014, 190, 715–722. [Google Scholar] [CrossRef]
- Shete, P.B.; Patil, R.M.; Tiwale, B.M.; Pawar, S.H. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater. 2015, 377, 406–410. [Google Scholar] [CrossRef]
- Kumari, S.; Singh, R.P. Glycolic acid-g-chitosan–Pt–Fe3O4 nanoparticles nanohybrid scaffold for tissue engineering and drug delivery. Int. J. Biol. Macromol. 2012, 51, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.S.; Zhou, Y.L.; Meng, X.M.; Tang, T.T.; Ai, S.Y.; Zhu, L.S. Electrochemical behaviour of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples. Food Chem. 2011, 127, 1348–1353. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.G.; Cai, M.Q.; Chen, X.H.; Pan, S.D.; Yao, S.S.; Jin, M.C. Analysis of nine food additives in wine by dispersive solid-phase extraction and reversed-phase high performance liquid chromatography. Food Res. Int. 2013, 52, 350–358. [Google Scholar] [CrossRef]
- Zhao, Q.; Wei, F.; Xiao, N.; Yu, Q.W.; Yuan, B.F.; Feng, Y.Q. Dispersive microextraction based on water-coated Fe3O4 followed by gas chromatography–mass spectrometry for determination of 3-monochloropropane-1, 2-diol in edible oils. J. Chromatogr. A 2012, 1240, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Mashhadizadeh, M.H.; Amoli-Diva, M.; Shapouri, M.R.; Afruzi, H. Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles. Food Chem. 2014, 151, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, L.; Zeng, J.; Gao, Y.; Tang, Z. Superparamagnetic nano-immunobeads toward food safety insurance. J. Nanoparticle Res. 2013, 15, 1796. [Google Scholar] [CrossRef]
- Speroni, F.; Elviri, L.; Careri, M.; Mangia, A. Magnetic particles functionalized with PAMAM-dendrimers and antibodies: A new system for an ELISA method able to detect Ara h3/4 peanut allergen in foods. Anal. Bioanal. Chem. 2010, 397, 3035–3042. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.P.; Zhu, X.S. Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples. Spectrochim. Acta A 2015, 137, 456–462. [Google Scholar] [CrossRef]
- Taherimaslak, Z.; Amoli-Diva, M.; Allahyary, M.; Pourghazi, K. Magnetically assisted solid phase extraction using Fe3O4 nanoparticles combined with enhanced spectrofluorimetric detection for aflatoxin M1 determination in milk samples. Anal. Chim. Acta 2014, 842, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Rishton, A.; Lu, Y.; Altman, R.A.; Marley, A.C.; Bian Hahnes, C.; Viswanathan, R.; Xiao, G.; Gallagher, W.J.; Parkin, S.S.P. Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography. Microelectron. Eng. 1997, 35, 249–252. [Google Scholar] [CrossRef]
- Reddy, L.H.; Arias, J.L.; Nicolas, j.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, R.G.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, G.M.; de Grave, E.; de Bakker, P.M.A.; Vandenberghe, R.E.J. Synthesis and characterization of some iron oxides by sol-gel method. Solid State Chem. 1994, 113, 405–412. [Google Scholar] [CrossRef]
- Itoh, H.; Sugimoto, T.J. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid Interface Sci. 2003, 265, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, Y.; Arakaki, A.; Staniland, S.S.; Tanaka, T.; Matsunaga, T. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 2007, 28, 5381–5389. [Google Scholar] [CrossRef] [PubMed]
- Vereda, F.; Rodríguez-González, B.; de Vicente, J.; Hidalgo-Álvarez, R.J. Evidence of direct crystal growth and presence of hollow microspheres in magnetite particles prepared by oxidation of Fe(OH)2. J. Colloid Interface Sci. 2008, 318, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Chueh, Y.L.; Lai, M.W.; Liang, J.Q.; Chou, L.J.; Wang, Z.L. Systematic study of the growth of aligned arrays of a-Fe2O3 and Fe3O4 nanowires by a vapor–solid process. Adv. Funct. Mater. 2006, 16, 2243–2251. [Google Scholar] [CrossRef]
- Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247–1248. [Google Scholar] [CrossRef]
- Estévez, M.; Vargas, S.; Castaño, V.M.; Rodríguez, J.R.; Lobland, H.E.H.; Brostow, W. Novel wear resistant and low toxicity dental obturation materials. Mater. Lett. 2007, 61, 3025–3029. [Google Scholar] [CrossRef]
- Khollam, Y.B.; Dhage, S.R.; Potdar, H.S.; Deshpande, S.B.; Bakare, P.P.; Kulkarni, S.D.; Date, S.K. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater. Lett. 2002, 56, 571–577. [Google Scholar] [CrossRef]
- Chen, F.; Gao, Q.; Hong, G.; Ni, J. Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method. J. Magn. Magn. Mater. 2008, 320, 1775–1780. [Google Scholar] [CrossRef]
- Li, Y.F.; Jiang, R.L.; Liu, T.Y.; Lv, H.; Zhou, L.; Zhang, X.Y. One-pot synthesis of grass-like Fe3O4 nanostructures by a novel microemulsion-assisted solvothermal method. Ceram. Int. 2014, 40, 1059–1063. [Google Scholar] [CrossRef]
- Liu, X.H.; Guo, Y.; Wang, Y.G.; Ren, J.W.; Wang, Y.Q.; Guo, Y.L.; Guo, Y.; Lu, G.Z.; Wang, Y.S.; Zhang, Z.G. Direct synthesis of mesoporous Fe3O4 through citric acid-assisted solid thermal decomposition. J. Mater. Sci. 2010, 45, 906–910. [Google Scholar] [CrossRef]
- Salazar-Alvarez, G.; Muhammed, M.; Zagorodni, A.A. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci. 2006, 61, 4625–4633. [Google Scholar] [CrossRef]
- Cabrera, L.; Gutierrez, S.; Menendes, N.; Morales, M.P.; Herrasti, P. Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochim. Acta 2008, 53, 3436–3441. [Google Scholar] [CrossRef]
- Marques, R.F.C.; Garcia, C.; Lecante, P.; Ribeiro, J.L.; Noé, L.; Silva, N.J.O.; Amaral, V.S.; Millan, A.; Verelst, M. Electro-precipitation of Fe3O4 nanoparticles in ethanol. J. Magn. Magn. Mater. 2008, 320, 2311–2315. [Google Scholar] [CrossRef]
- Strobel, R.; Pratsinis, S.E. Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv. Powder Technol. 2009, 20, 190–194. [Google Scholar] [CrossRef]
- Ghanbari, D.; Salavati-Niasari, M.; Ghasemi-Kooch, M. A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J. Ind. Eng. Chem. 2014, 20, 3970–3974. [Google Scholar] [CrossRef]
- Dang, F.; Enomoto, N.; Hojo, J.; Enpuku, K. Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent. Ultrason. Sonochem. 2009, 16, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Eckert, C.A.; Knutson, B.L.; Debenedetti, P.G. Supercritical fluids as solvents for chemical and materials processing. Nature 1996, 383, 313–318. [Google Scholar] [CrossRef]
- Teng Lam, U.; Mammucari, R.; Suzuki, K.; Foster, N.R. Processing of iron oxide nanoparticles by supercritical fluids. Ind. Eng. Chem. Res. 2008, 47, 599–614. [Google Scholar] [CrossRef]
- Breulmann, M.; Colfen, H.; Hentze, H.P.; Antonietti, M.; Walsh, D.; Mann, S. Elastic magnets: Template-controlled mineralization of iron oxide colloids in a sponge-like gel matrix. Adv. Mater. 1998, 10, 237–240. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliver. Rev. 2011, 63, 24–46. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010, 156, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.W.; Roh, Y.; Lauf, R.J.; Vali, H.; Yeary, L.W.; Phelps, T.J. Microbial preparation of metal-substituted magnetite nanoparticles. J. Microbiol. Methods 2007, 70, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.W.; Rawn, C.J.; Rondinone, A.J.; Love, L.J.; Roh, Y.; Everett, S.M.; Lauf, R.J.; Phelps, T.J.J. Large-scale production of magnetic nanoparticles using bacterial fermentation. Ind. Microbiol. Biotechnol. 2010, 37, 1023–1031. [Google Scholar] [CrossRef]
- Kolinko, I.; Lohße, A.; Borg, S.; Raschdorf, O.; Jogler, C.; Tu, Q.; Pósfai, M.; Tompa, É.; Plitzko, J.M.; Brachmann, A.; et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 2014, 9, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.K.; Sun, J.J.; Wang, Y.J.; Sheng, J.; Wang, F.; Sun, M. Application of iron magnetic nanoparticles in protein immobilization. Molecules 2014, 19, 11465–11486. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, Z.; Dai, H.; Zhang, S. Facile sythesis and magnetic properties of monodisperse Fe3O4/silica nanocomposite microspheres with embedded structures via a direct solution-based route. J. Alloys Compd. 2010, 497, 221–227. [Google Scholar] [CrossRef]
- Jadhav, V.N.; Prasad, A.I.; Kumar, A.; Mishra, R.; Dhara, S.; Babuc, K.R.; Prajapat, C.L.; Misra, N.L.; Ningthoujam, R.S.; Pandey, B.N.; et al. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloid Surf. B Biointerfaces 2013, 108, 158–168. [Google Scholar] [CrossRef]
- Mamani, J.B.; Costa-Filho, A.J.; Cornejo, D.R.; Vieira, E.D.; Gamarra, L.F. Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Mater. Charact. 2013, 81, 28–36. [Google Scholar] [CrossRef]
- Naeimi, H.; Nazifi, Z.S. A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives. J. Nanoparticle Res. 2013, 15, 1–11. [Google Scholar] [CrossRef]
- Sahoo, Y.; Pizem, H.; Fried, T.; Golodnitsky, D.; Burstein, L.; Sukenik, C.N.; Markovich, G. Alkyl phosphonate/phosphate coating on magnetite nanoparticles: A comparison with fatty acids. Langmuir 2001, 17, 7907–7911. [Google Scholar] [CrossRef]
- Yang, J.; Zou, P.; Yang, L.; Cao, J.; Sun, Y.; Han, D.; Yang, S.; Wang, Z.; Chen, G.; Wang, B.; et al. A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 2014, 303, 425–432. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.Y.; Ma, S.; Zhang, Y.J.; Zhao, X.; Zhang, X.D.; Zhang, Z.D. Synthesis of PVP-coated ultra-small Fe3O4 nanoparticles as a MRI contrast agent. J. Mater. Sci. Mater. Med. 2010, 21, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-H.; Thomas, J.L.; Ho, M.-H.; Yuan, C.; Lin, H.-Y. Synthesis of magnetic molecularly imprinted poly (ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction and sensing of target molecules in urine. ACS Appl. Mater. Interfaces 2010, 2, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Grumezescu, V.; Holban, A.M.; Grumezescu, A.M.; SocoL, G.; Ficai, A.; Vasile, B.S.; Truscă, R.; Bleotu, C.; Lazar, V.; Chifiriuc, C.M.; et al. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization. Biofabrication 2014, 6, 035002. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, E.; Kim, D.K.; Jang, N.K.; Jeong, Y.Y.; Jon, S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J. Am. Chem. Soc. 2006, 128, 7383–7389. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Tang, F. Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles. J. Colloid Interface Sci. 2004, 275, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, M.P.; Sanz, B.; Raffa, V.; Riggio, C.; Ibarra, M.R.; Goya, G.F. The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake. Biomaterials 2014, 35, 6389–6399. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.L.; Xiong, Z.C.; Qin, H.Q.; Huang, G.; Liu, J.; Ye, M.L.; Feng, S.; Zou, H.F. One-pot synthesis of magnetic colloidal nanocrystal clusters coated with chitosan for selective enrichment of glycopeptides. Anal. Chim. Acta 2014, 841, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.M.; Liu, G.; Wang, Y.M.; Hong, R.Y. Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv. Powder Technol. 2010, 21, 461–467. [Google Scholar] [CrossRef]
- Lüdtke-Buzug, K.; Biederer, S.; Sattel, T.; Knopp, T.; Buzug, T.M. Preparation and characterization of dextran-covered Fe3O4 nanoparticles for magnetic particle imaging. IFMBE Proc. 2009, 22, 2343–2346. [Google Scholar]
- Gaihre, B.; Aryal, S.; Khil, M.S.; Kim, H.Y. Encapsulation of Fe3O4 in gelatin nanoparticles: Effect of different parameters on size and stability of the colloidal dispersion. J. Microencapsul. 2008, 25, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Tao, K.; Sun, K.; Dou, H.; Xu, B. Facile synthesis of magnetic microcapsules by synchronous formation of magnetite nanoparticles. Colloid Polym. Sci. 2010, 288, 353–357. [Google Scholar] [CrossRef]
- Dung, T.T.; Danh, T.M.; Hoa, L.T.M.; Chien, D.M.; Duc, N.H. Structural and magnetic properties of starch-coated magnetite nanoparticles. J. Exp. Nanosci. 2009, 4, 259–267. [Google Scholar] [CrossRef]
- Widder, K.J.; Morris, R.M.; Poore, G.; Howard, D.P., Jr.; Senyei, A.E. Tumor remission in Yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc. Natl. Acad. Sci. USA 1981, 78, 579–581. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, K.; Imai, Y.; Koumoto, K.; Kaiden, T.; Kono, K.; Aoshima, S. Magnetoresponsive on-demand release of hybrid liposomes formed from Fe3O4 nanoparticles and thermosensitive block copolymers. Small 2011, 7, 1683–1689. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Cheng, G.; Zhang, H.; Pang, X. Preparation and characteristics of tryptophan-imprinted Fe3O4/P(TRIM) composite microspheres with magnetic susceptibility by inverse emulsion–suspension polymerization. J. Appl. Polym. Sci. 2006, 99, 3241–3250. [Google Scholar] [CrossRef]
- Bahrami, A.; Hejazi, P. Electrostatic immobilization of pectinase on negatively charged AOT-Fe3O4 nanoparticles. J. Mol. Catal. B Enzym. 2013, 93, 1–7. [Google Scholar] [CrossRef]
- Li, S.K.; Hou, X.C.; Huang, F.Z.; Li, C.H.; Kang, W.J.; Xie, A.J.; Shen, Y.H. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres. J. Nanoparticle Res. 2013, 15, 2013. [Google Scholar] [CrossRef]
- Valdes-Solis, T.; Rebolledo, A.F.; Sevilla, M.; Valle-Vigon, P.; Bomati-Miguel, O.; Fuertes, A.B.; Tartaj, P. Preparation, characterization, and enzyme immobilization capacities of superparamagnetic silica/iron oxide nanocomposites with mesostructured porosity. Chem. Mater. 2009, 21, 1806–1814. [Google Scholar] [CrossRef]
- Ranjbakhsh, E.; Bordbar, A.K.; Abbasi, M.; Khosropour, A.R.; Shams, E. Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles. Chem. Eng. J. 2012, 179, 272–276. [Google Scholar] [CrossRef]
- Long, J.; Jiao, A.; Wei, B.; Wu, Z.; Zhang, Y.; Xu, X.; Jin, Z. A novel method for pullulanase immobilized onto magneticchitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. J. Mol. Catal. B Enzym. 2014, 109, 53–61. [Google Scholar] [CrossRef]
- Wang, J.Z.; Zhao, G.H.; Li, Y.F.; Liu, X.; Hou, P.P. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl. Microbiol. Biotechnol. 2013, 97, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, T.; Palvannan, T.; Kim, D.H.; Park, S.M. Optimized immobilization of peracetic acid producing recombinantacetyl xylan esterase on chitosan coated-Fe3O4 magnetic nanoparticles. Process Biochem. 2014, 49, 1920–1928. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, R.; Wang, H.; Zhao, W.; Ding, L. Immobilization of glucose oxidase on Fe3O4/SiO2 magnetic nanoparticles. Biotechnol. Lett. 2010, 32, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Cui, Y.; Nie, Y.; Xia, G.M.; Sun, G.X.; Han, J.T. Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase. Colloids Surf. B Biointerfaces 2012, 93, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Gong, P.J.; Xu, D.M.; Dong, L.; Yao, S.D. Stabilization of α-chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel. J. Biotechnol. 2007, 128, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Sonn, C.H.; Wu, J.H.; Lee, K.-M.; Kim, Y.K. Synthesis of streptavidin-FITC-conjugated core–shell Fe3O4-Au nanocrystals and their application for the purification of CD4t lymphocytes. Biomaterials 2008, 29, 4003–4011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Q.; Nakajima, H.; Soh, N.; Nakano, K.; Masadome, T.; Nagata, K.; Sakamoto, K.; Imato, T. Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads. Anal. Chim. Acta 2007, 600, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Nidumolu, B.G.; Urbina, M.C.; Hormes, J.; Kumar, C.S.; Monroe, W.T. Functionalization of Gold and Glass Surfaces with Magnetic Nanoparticles Using Biomolecular Interactions. Biotechnol. Prog. 2006, 22, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.S.S.; Al-Salamah, A.A.; El-Toni, A.M.; El-Tayeb, M.A.; Elbadawi, Y.B. Cyclodextrin glucanotransferase immobilization onto functionalized magnetic double mesoporous core–shell silica nanospheres. Electron. J. Biotechnol. 2014, 17, 55–64. [Google Scholar] [CrossRef]
- Pan, C.; Hu, B.; Li, W.; Sun, Y.; Ye, H.; Zeng, X. Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J. Mol. Catal. B Enzym. 2009, 61, 208–215. [Google Scholar] [CrossRef]
- Cui, Y.; Li, Y.; Yang, Y.; Liu, X.; Lei, L.; Zhou, L.; Pan, F. Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization. J. Biotechnol. 2010, 150, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Saiyed, Z.M.; Sharma, S.; Godawat, R.; Telang, S.D.; Ramchand, C.N. Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). J. Biotechnol. 2007, 131, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.H.; Liu, Y.C.; Chang, C.M.J.; Chen, J.H.; Chang, C.; Shieh, C.J. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr. Polym. 2012, 87, 2538–2545. [Google Scholar] [CrossRef]
- Ju, H.Y.; Kuo, C.H.; Too, J.R.; Huang, H.Y.; Twu, Y.K.; Chang, C.M.J.; Liu, Y.C.; Shieh, C.J. Optimal covalent immobilization of α-chymotrypsin on Fe3O4- chitosan nanoparticles. J. Mol. Catal. B Enzym. 2012, 78, 9–15. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Luo, G.; Dai, Y. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour. Technol. 2009, 100, 3459–3464. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Yuan, D.H.; Gao, Z.Q.; Xiao, D.L.; He, H.; Dai, H.; Peng, J.; Li, N. Mixed hemimicelles solid-phase extraction based on ionic liquid-coated Fe3O4/SiO2 nanoparticles for the determination of flavonoids in bio-matrix samples coupled with high performance liquid chromatography. J. Chromatogr. A 2014, 1324, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Su, Y.; Rao, S.; Yang, Y. Separation of lysozyme using superparamagnetic carboxymethyl chitosan nanoparticles. J. Chromatogr. B 2011, 879, 2194–2200. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, Q.; Li, N.; Li, K.; Liu, F. Tris(hydroxymethyl) aminomethane-modified magnetic microspheres for rapid affinity purification of lysozyme. Talanta 2011, 83, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Chen, D. Fast and efficient adsorption/desorption of protein by a novel magnetic nano-adsorbent. Biotechnol. Lett. 2002, 24, 1913–1917. [Google Scholar] [CrossRef]
- Başar, N.; Uzun, L.; Güner, A.; Denizli, A. Lysozyme purification with dye-affinity beads under magnetic field. Int. J. Biol. Macromol. 2007, 41, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Hansen, D.B.; Gomes, C.S.G.; Hobley, T.J.; Thomas, O.R.T.; Franzreb, M. Demonstration of a strategy for product purification by high-gradient magnetic fishing: Recovery of superoxide dismutase from unconditioned whey. Biotechnol. Prog. 2005, 21, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Liao, M.; Chen, D. Fast and efficient recovery of lipase by polyacrylic acid-coatedmagnetic nano-adsorbent with high activity retention. Sep. Sci. Technol. 2006, 51, 113–117. [Google Scholar]
- Sahu, S.K.; Chakrabarty, A.; Bhattacharya, D.; Ghosh, S.K.; Pramanik, P. Single step surface modification of highly stable magnetic nanoparticles for purification of His-tag proteins. J. Nanoparticle Res. 2011, 13, 2475–2484. [Google Scholar] [CrossRef]
- Ma, W.F.; Zhang, Y.; Li, L.L.; You, L.J.; Zhang, P.; Zhang, Y.T.; Li, J.M.; Yu, M.; Guo, J.; Lu, H.J.; et al. Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano 2012, 6, 3179–3188. [Google Scholar] [CrossRef] [PubMed]
- Song, M.M.; Nie, H.L.; Zhou, Y.T.; Zhu, L.M.; Bao, J.Y. Affinity adsorption of bromelain on reactive red 120 immobilized magnetic composite particles. Sep. Sci. Technol. 2011, 46, 473–482. [Google Scholar] [CrossRef]
- Rao, A.; Bankar, A.; Kumar, A.R.; Gosavi, S.; Zinjarde, S. Removal of hexavalent chromiumions by Yarrowia lipolytica cells modified with phyto-inspired Fe°/Fe3O4 nanoparticles. J. Contam. Hydrol. 2013, 146, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, D.; Wu, G.; Yang, N.; Wu, A. Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water. J. Hazard. Mater. 2013, 244–245, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Bai, C.; Jiang, Y.; Hu, M; Li, S.; Zhai, Q. Well-defined bioarchitecture for immobilization of chloroperoxidase on magnetic nanoparticles and its application in dye decolorization. Chem. Eng. J. 2015, 259, 640–646. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, P.; Luo, S.; Luo, X.; Tu, X.; Cao, Q.; Zhou, Y.; Zhang, W. Synthesis of novel biocompatible composite Fe3O4/ZrO2/chitosan and its application for dye removal. J. Inorg. Organomet. Polym. Mater. 2013, 23, 393–400. [Google Scholar] [CrossRef]
- Hakami, O.; Zhang, Y.; Banks, C.J. Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res. 2012, 46, 3913–3922. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Zhang, H.; Fan, T.; Chen, J.; Duan, X. Nearly monodispersed core–shell structural Fe3O4@DFUR–LDH submicro particles for magnetically controlled drug delivery and release. Chem. Commun. 2011, 47, 908–910. [Google Scholar] [CrossRef]
- Li, L.; Chen, D.; Zhang, Y.; Deng, Z.; Ren, X.; Meng, X.; Tang, F.; Ren, J.; Zhang, L. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology 2007, 18, 405102. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Liu, D.; Wang, X.; Song, S.; Zhou, L.; Zhang, H. Synthesis of 3D Hierarchical Fe3O4/Graphene Composites with High Lithium Storage Capacity and for Controlled Drug Delivery. J. Phys. Chem. C 2011, 115, 21567–21573. [Google Scholar] [CrossRef]
- Zhu, Y.; Fang, Y.; Kaskel, S. Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery. J. Phys. Chem. C 2010, 114, 16382–16388. [Google Scholar] [CrossRef]
- Zhu, Y.; Ikoma, T.; Hanagata, N.; Kaskel, S. Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres as Carriers for Drug Delivery. Small 2010, 6, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zhu, Y.; Ma, M.-Y.; Li, L.; Zhang, L. Hierarchically Nanostructured Magnetic Hollow Spheres of Fe3O4 and γ-Fe2O3: Preparation and Potential Application in Drug Delivery. J. Phys. Chem. C 2008, 112, 1851–1856. [Google Scholar] [CrossRef]
- Chen, F.H.; Gao, Q.; Ni, J.Z. The grafting and release behavior of doxorubincin from Fe3O4@SiO2 core–shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery. Nanotechnology 2008, 19, 165103. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.Y.; Li, J.H.; Luo, Z.; Hu, Y.; Hou, Y.H.; Ding, X.W. β-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem. Commun. 2011, 47, 7719–7721. [Google Scholar] [CrossRef]
- Luo, Z.; Cai, K.Y.; Hu, Y.; Li, J.H.; Ding, X.W.; Zhang, B.L.; Xu, D.W.; Yang, W.H.; Liu, P. Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv. Mater. 2012, 24, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tao, G.; Meng, Y. A novel CdSe/CdS quantum dot-based competitive fluoroimmunoassay for the detection of clenbuterol residue in pig urine using magnetic core/shell Fe3O4/Au nanoparticles as a solid carrier. Anal. Sci. 2009, 25, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Shen, X; Cui, S.; Fan, M.; Li, Y. Fluorescence-Functionalized Magnetic Nanocomposites as Tracking and Targeting Systems: Their Preparation and Characterizations. Curr. Nanosci. 2011, 7, 563–567. [Google Scholar] [CrossRef]
- Guo, S.; Dong, S.; Wang, E. A General Route to Construct Diverse Multifunctional Fe3O4/Metal Hybrid Nanostructures. Chem. Eur. J. 2009, 15, 2416–2424. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-M.; Guo, J.-W.; Gu, H.-Y. Direct electrochemical behavior of hemoglobin at surface of Au@Fe3O4 magnetic nanoparticles. Microchim. Acta 2009, 166, 215–220. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Wang, J.; Wang, J.; Yu, A.; Zhang, H.; Song, D. Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles. Colloids Surf. B Biointerfaces 2011, 84, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Won, Y.-H.; Aboagye, D.; Jang, H.S.; Jitianu, A.; Stanciu, L.A. Core/shell nanoparticles as hybrid platforms for the fabrication of a hydrogen peroxide biosensor. J. Mater. Chem. 2010, 20, 5030–5034. [Google Scholar] [CrossRef]
- Villalonga, R.; Villalonga, M.L.; Díeza, P.; Pingarrón, J.M. Decorating carbon nanotubes with polyethylene glycol-coated magnetic nanoparticles for implementing highly sensitive enzyme biosensors. J. Mater. Chem. 2011, 21, 12858–12864. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Xie, D.; Chen, G. Polyaniline-Coated Fe3O4 Nanoparticle–Carbon-Nanotube Composite and its Application in Electrochemical Biosensing. Small 2008, 4, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ren, X.; Tang, F.; Zhang, L. A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film. Biosens. Bioelectron. 2009, 25, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Tseng, W.L. Oxidase-functionalized Fe3O4 nanoparticles for fluorescence sensing of specific substrate. Anal. Chim. Acta 2011, 703, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.Y.; Feng, B.; Chen, L.L.; Liu, G.H.; Li, H.Z.; Zheng, Y.; Wei, D.G. Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem. Eng. J. 2008, 42, 290–300. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, Y.; Shen, J.; Wei, J.; Yu, C.; Kong, B.; Liu, W.; Yang, H.; Yang, S.; Wang, W. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 2014, 35, 7470–7478. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, G.; Zhuang, Y.; Wu, D.; Zhang, H.; Yang, H.; Hu, H.; Yang, S. The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe3O4 hybrid MRI contrast agents. Biomaterials 2011, 32, 4867–4876. [Google Scholar] [CrossRef] [PubMed]
- Yi, P.; Chen, G.; Zhang, H.; Tian, F.; Tan, B.; Dai, J.; Wang, Q.; Deng, Z. Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials 2013, 34, 3010–3019. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.L.; Neoh, K.G.; Kang, E.T.; Shuter, B.; Wang, S.C. Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: Synthesis, characterization and cellular uptake. Biomaterials 2007, 28, 5426–5436. [Google Scholar] [CrossRef] [PubMed]
- Luderer, A.A.; Borrelli, N.F.; Panzarino, J.N.; Mansfield, G.R.; Hess, D.M.; Brown, J.L.; Barnett, E.H. Glass-ceramic-mediated, magneticfield-induced localized hyperthermia: Response of a murine mammary carcinoma. Radiat. Res. 1983, 94, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C.F.; Kirpotin, D.B.; Bunn, P.A., Jr. Synthesis and evaluation of colloidal magnetic iron oxides for the site specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater. 1993, 122, 374–378. [Google Scholar] [CrossRef]
- Ghosh, R.; Pradhan, L.; Devi, Y.P.; Meena, S.S.; Tewari, R.; Kumar, A.; Sharma, S.; Gajbhiye, N.S.; Vatsa, R.K.; Pandey, B.N.; et al. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J. Mater. Chem. 2011, 21, 13388–13398. [Google Scholar] [CrossRef]
- Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Griffith, L.G.; Naughton, G. Tissue engineering-current challenges and expanding opportunities. Science 2002, 295, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Santo, V.E.; Rodrigues, M.T.; Gomes, M.E. Contributions and future perspectives on the use of magnetic nanoparticles as diagnostic and therapeutic tools in the field of regenerative medicine. Expert Rev. Mol. Diagn. 2013, 13, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.A.; Yim, H.; Heo, J.; Kim, H.; Jung, G.; Hwang, N.S. Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch. Pharm. Res. 2014, 37, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Sensenig, R.; Sapir, Y.; MacDonald, C.; Cohen, S.; Polyak, B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine 2012, 7, 1425–1442. [Google Scholar] [CrossRef] [PubMed]
- Ino, K.; Ito, A.; Honda, H. Cell patterning using magnetite nanoparticles and magnetic force. Biotechnol. Bioeng. 2007, 97, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Kato, R.; Ino, K.; Honda, H. Magnetic manipulation device for the optimization of cell processing conditions. J. Biosci. Bioeng. 2010, 109, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Ito, A.; Fujita, H.; Nagamori, E.; Kawabe, Y.; Kamihira, M. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique. Tissue Eng. Part A 2011, 17, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Sapir, Y.; Cohen, S.; Friedman, G.; Polyak, B. The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 2012, 33, 4100–4109. [Google Scholar] [CrossRef] [PubMed]
- Morishita, N.; Nakagami, H.; Morishita, R.; Takeda, S.; Mishima, F.; Terazono, B.; Nishijima, S.; Kaneda, Y.; Tanaka, N. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem. Biophys. Res. Commun. 2005, 334, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Ino, K.; Kawasumi, T.; Ito, A.; Honda, H. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet. Biotechnol. Bioeng. 2008, 100, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Li, Z.; Wang, J.; Ge, W.; Yue, T.; Li, R. Food related applications of magnetic iron oxide nanoparticles: Enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Technol. 2012, 27, 47–56. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.-K.; Zhang, F.-F.; Sun, J.-J.; Sheng, J.; Wang, F.; Sun, M. Bio and Nanomaterials Based on Fe3O4. Molecules 2014, 19, 21506-21528. https://doi.org/10.3390/molecules191221506
Xu J-K, Zhang F-F, Sun J-J, Sheng J, Wang F, Sun M. Bio and Nanomaterials Based on Fe3O4. Molecules. 2014; 19(12):21506-21528. https://doi.org/10.3390/molecules191221506
Chicago/Turabian StyleXu, Jia-Kun, Fang-Fang Zhang, Jing-Jing Sun, Jun Sheng, Fang Wang, and Mi Sun. 2014. "Bio and Nanomaterials Based on Fe3O4" Molecules 19, no. 12: 21506-21528. https://doi.org/10.3390/molecules191221506
APA StyleXu, J. -K., Zhang, F. -F., Sun, J. -J., Sheng, J., Wang, F., & Sun, M. (2014). Bio and Nanomaterials Based on Fe3O4. Molecules, 19(12), 21506-21528. https://doi.org/10.3390/molecules191221506