Magnetically Recoverable Ruthenium Catalysts in Organic Synthesis
Abstract
:1. Introduction
2. MNP-Supported Ru Catalysts for Organic Synthesis
2.1. Olefin Metathesis
2.2. Azide-Alkyne Cycloaddition
2.3. Hydrogenation
2.4. Oxidation
2.5. Nitrile Hydration
2.6. Other Reactions
3. Conclusions and Perspectives
Acknowledgments
Conflicts of Interest
References
- Anastas, P.T.; Warner, J.C. Green Chemistry Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Matlack, A.S. Introduction to Green Chemistry; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
- Clark, J.H.; Macquarrie, D.J. Handbook of Green Chemistry and Technology; Blackwell Publishing: Abingdon, UK, 2002. [Google Scholar]
- Lu, F.; Ruiz, J.; Astruc, D. Palladium-dodecanethiolate nanoparticles as stable and recyclable catalysts for the Suzuki-Miyaura reaction of aryl halides under ambient conditions. Tetrahedron Lett. 2004, 45, 9443–9445. [Google Scholar] [CrossRef]
- Astruc, D.; Lu, F.; Ruiz, J. Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872. [Google Scholar] [CrossRef]
- Transition-Metal Nanoparticles in Catalysis; Astruc, D. (Ed.) Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008.
- Wang, D.; Astruc, D. Dendritic catalysis—Basic concepts and recent trends. Coord. Chem. Rev. 2013, 257, 2317–2334. [Google Scholar] [CrossRef]
- Lu, A.-H.; Salabas, E.L.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef]
- Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2010, 49, 3428–3459. [Google Scholar] [CrossRef]
- Zhu, Y.; Stubbs, L.P.; Ho, F.; Liu, R.; Ship, C.P.; Maguire, J.A.; Hosmane, N.S. Magnetic Nanocomposites: A New Perspective in Catalysis. Chem. Cat. Chem. 2010, 2, 365–374. [Google Scholar]
- Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.-M. Magnetically Recoverable Nanocatalysts. Chem. Rev. 2011, 111, 3036–3075. [Google Scholar] [CrossRef]
- Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. 2013, 49, 752–770. [Google Scholar] [CrossRef]
- Trost, B.M.; Toste, F.D.; Pinkerton, A.B. Non-Metathesis Ruthenium-Catalyzed C-C Bond Formation. Chem. Rev. 2001, 101, 2067–2096. [Google Scholar] [CrossRef]
- Trost, B.M.; Frederiksen, M.U.; Rudd, M.T. Ruthenium-Catalyzed Reactions—A Treasure Trove of Atom-Economic Transformations. Angew. Chem. Int. Ed. 2005, 44, 6630–6666. [Google Scholar] [CrossRef]
- Arockiam, P.B.; Bruneau, C.; Dixneuf, P.H. Ruthenium(II)-Catalyzed C−H Bond Activation and Functionalization. Chem. Rev. 2012, 112, 5879–5918. [Google Scholar] [CrossRef]
- Dragutan, V.; Dragutan, I.; Delaude, L.; Demonceau, A. NHC–Ru complexes—Friendly catalytic tools for manifold chemical transformations. Coord. Chem. Rev. 2007, 251, 765–794. [Google Scholar] [CrossRef]
- Handbook of Metathesis; Grubbs, R.H. (Ed.) Wiley-VCH: Weinheim, Germany, 2003; Volume 1.
- Handbook of Metathesis; Grubbs, R.H. (Ed.) Wiley-VCH: Weinheim, Germany, 2003; Volume 2.
- Handbook of Metathesis; Grubbs, R.H. (Ed.) Wiley-VCH: Weinheim, Germany, 2003; Volume 3.
- Chauvin, Y. Olefin Metathesis: The Early Days. Angew. Chem. Int. Ed. 2006, 45, 3741–3747. [Google Scholar] [CrossRef]
- Grubbs, R.H. Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials. Angew. Chem. Int. Ed. 2006, 45, 3760–3765. [Google Scholar] [CrossRef]
- Schrock, R.R.; Hoveyda, A.H. Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts. Angew. Chem. Int. Ed. 2006, 45, 3832–3844. [Google Scholar] [CrossRef]
- Metathesis- Theory and Practice ; Grela, K. (Ed.) Wiley: Hoboken, NJ, USA, 2014.
- Van Otterlo, W.A.L.; de Koning, C.B. Metathesis in the Synthesis of Aromatic Compounds. Chem. Rev. 2009, 109, 3743–3782. [Google Scholar] [CrossRef]
- Buchmeiser, M.R. Polymer-Supported Well-Defined Metathesis Catalysts. Chem. Rev. 2009, 109, 303–321. [Google Scholar] [CrossRef]
- Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts. Chem. Rev. 2010, 110, 1746–1787. [Google Scholar] [CrossRef]
- Kress, S.; Blechert, S. Asymmetric catalysts for stereocontrolled olefin metathesis reactions. Chem. Soc. Rev. 2012, 41, 4389–4408. [Google Scholar] [CrossRef]
- Deraedt, C.; D’Halluin, M.; Astruc, D. Metathesis Reactions: Recent Trends and Challenges. Eur. J. Inorg. Chem. 2013, 2013, 4881–4908. [Google Scholar]
- Banks, R.L.; Bailey, G.C. Olefin disproportionation: A new catalytic process. Ind. Eng. Chem. Prod. Res. Dev. 1964, 3, 170–173. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Johnson, L.K.; Grubbs, R.H.; Ziller, J.W. Ring-Opening Metathesis Polymerization (ROMP) of Norbornene by a Group VIII Carbon Complex in Protic Media. J. Am. Chem. Soc. 1992, 114, 3974–3975. [Google Scholar] [CrossRef]
- Schwab, P.; France, M.B.; Ziller, J.W.; Grubbs, R.H. A Series of Well-Defined Metathesis Catalysts-Synthesis of [RuCl2(=CHR')(PR3)2] and Its Reactions Reactions. Angew. Chem. Int. Ed. Engl. 1995, 34, 2039–2041. [Google Scholar] [CrossRef]
- Wu, Z.; Nguyen, S.T.; Grubbs, R.H.; Ziller, J.W. Reactions of Ruthenium Carbenes of the Type (PPh3)2(X)2Ru=CH-CH=CPh2 (X = Cl and CF3COO) with Strained Acyclic Olefins and Functionalized Olefins. J. Am. Chem. Soc. 1995, 117, 5503–5511. [Google Scholar]
- Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1999, 1, 953–956. [Google Scholar] [CrossRef]
- Kingsbury, J.S.; Harrity, J.P.A.; Bonitatebus, P.J.; Hoveyda, A.H. A Recyclable Ru-Based Metathesis Catalyst. J. Am. Chem. Soc. 1999, 121, 791–799. [Google Scholar]
- Garber, S.B.; Kingsbury, J.S.; Gray, B.L.; Hoveyda, A.H. Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 2000, 122, 8168–8179. [Google Scholar] [CrossRef]
- Love, J.A.; Morgan, J.P.; Trnka, T.M.; Grubbs, R.H. A Practical and Highly Active Ruthenium-Based Catalyst that Effects the CrossMetathesis of Acrylonitrile. Angew. Chem. Int. Ed. 2002, 41, 4035–4037. [Google Scholar] [CrossRef]
- Choi, T.L.; Grubbs, R.H. Controlled Living Ring-Opening-Metathesis Polymerization by a Fast-Initiating Ruthenium Catalyst. Angew. Chem. Int. Ed. 2003, 42, 1743–1746. [Google Scholar] [CrossRef]
- Mayr, M.; Wang, D.; Kröll, R.; Schuler, N.; Prühs, S.; Fürstner, A.; Buchmeiser, M.R. Monolithic Disk-Supported Metathesis Catalysts for Use in Combinatorial Chemistry. Adv. Synth. Catal. 2005, 347, 484–492. [Google Scholar] [CrossRef]
- Michalek, F.; Mädge, D.; Rühe, J.; Bannwarth, W. The activity of covalently immobilized Grubbs–Hoveyda type catalyst is highly dependent on the nature of the support material. J. Organomet. Chem. 2006, 691, 5172–5180. [Google Scholar] [CrossRef]
- Mayr, M.; Buchmeiser, M.R.; Wurst, K. Synthesis of a Silica-Based Heterogeneous Second Generation Grubbs Catalyst. Adv. Synth. Catal. 2002, 344, 712–719. [Google Scholar]
- Allen, D.P.; Wingerden, M.M.V.; Grubbs, R.H. Well-Defined Silica-Supported Olefin Metathesis Catalysts. Org. Lett. 2009, 11, 1261–1264. [Google Scholar]
- Monge-Marcet, A.; Pleixats, R.; Cattoën, X.; Man, M.W.C. Sol–gel immobilized Hoveyda–Grubbs complex through the NHC ligand: A recyclable metathesis catalyst. J. Mol. Catal. A 2012, 357, 59–66. [Google Scholar]
- Yao, Q. A Soluble Polymer-Bound Ruthenium Carbon Complex: A Robust and Reusable Catalyst for Ring-Closing Olefin Metathesis. Angew. Chem. Int. Ed. 2000, 39, 3896–3898. [Google Scholar]
- Yao, Q.; Motta, A.R. Immobilization of the Grubbs second-generation ruthenium-carbene complex on poly(ethylene glycol): A highly reactive and recyclable catalyst for ring-closing and cross-metathesis. Tetrahedron Lett. 2004, 45, 2447–2451. [Google Scholar]
- Mennecke, K.; Grela, K.; Kunz, U.; Kirschning, A. Immobilsation of the Grubbs III Olefin Metathesis Catalyst with Polyvinyl Pyridine (PVP). Syn. Lett. 2005, 19, 2948–2952. [Google Scholar]
- Clavier, H.; Grela, K.; Kirschning, A.; Mauduit, M.; Nolan, S.P. Sustainable Concepts in Olefin Metathesis. Angew. Chem. Int. Ed. 2007, 46, 6786–6801. [Google Scholar]
- Zhu, Y.; Loo, K.; Ng, H.; Li, C.; Stubbs, L.P.; Chia, F.S.; Tan, M.; Peng, S.C. Magnetic Nanoparticles Supported Second Generation Hoveyda-Grubbs Catalyst for Metathesis of Unsaturated Fatty Acid Esters. Adv. Synth. Catal. 2009, 351, 2650–2656. [Google Scholar]
- Che, C.; Li., W.; Lin, S.; Chen, J.; Zheng, J.; Wu, J.-C.; Zheng, Q.; Zhang, G.; Yang, Z.; Jiang, B. Magnetic nanoparticle-supported Hoveyda-Grubbs catalysts for ring-closing metathesis reactions. Chem. Commun. 2009, 5990–5992. [Google Scholar]
- Samanta, D.; Kratz, K.; Zhang, X.; Emrick, T. A Synthesis of PEG- and Phosphorylcholine-Substituted Pyridines To Afford Water-Soluble Ruthenium Benzylidene Metathesis Catalysts. Macromolecules 2008, 41, 530–532. [Google Scholar]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I) Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar]
- Tornøe, C.W.; Christensen, C.; Meldal, M. Petidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. [Google Scholar]
- Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azide. J. Am. Chem. Soc. 2005, 127, 15998–15999. [Google Scholar]
- Boren, B.C.; Narayan, S.; Rasmussen, L.K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V.V. Ruthenium-Catalyzed Azide-Alkyne Cycloaddition: Scope and Mechanism. J. Am. Chem. Soc. 2008, 130, 8923–8930. [Google Scholar]
- Rasmussen, L.K.; Boren, B.C.; Fokin, V.V. Ruthenium-Catalyzed Cycloaddition of Aryl Azides and Alkynes. Org. Lett. 2007, 9, 5337–5339. [Google Scholar]
- Johansson, J.R.; Lincoln, P.; Nordén, B.; Kann, N. Sequential One-Pot Ruthenium-Catalyzed Azide-Alkyne Cycloaddition from Primary Alkyl Halides and Sodium Azide. J. Org. Chem. 2011, 76, 2355–2359. [Google Scholar]
- Wang, D.; Salmon, L.; Ruiz, J.; Astruc, D. A recyclable ruthenium(II) complex supported on magnetic nanoparticles: A regioselective catalyst for alkyne–azide cycloaddition. Chem. Commun. 2013, 49, 6956–6958. [Google Scholar]
- Hu, A.; Yee, G.T.; Lin, W.; Nicolaou, K.C.; Edmonds, D.J.; Bulger, P.G. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones. J. Am. Chem. Soc. 2005, 127, 12486–12487. [Google Scholar]
- Wu, L.; He, Y.-M.; Fan, Q.-H. Controlled Reversible Anchoring of η6-Arene/TsDPENRuthenium(II) Complex onto Magnetic Nanoparticles: A New Strategy for Catalyst Separation and Recycling. Adv. Synth. Catal. 2011, 353, 2915–2919. [Google Scholar]
- Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by Chiral Ruthenium(II) Complexes. J. Am. Chem. Soc. 1995, 117, 7562–7563. [Google Scholar]
- Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. Asymmetric Transfer Hydrogenation of Imines. J. Am. Chem. Soc. 1996, 118, 4916–4917. [Google Scholar]
- Li, J.; Zhang, Y.; Han, D.; Gao, Q.; Li, C. Asymmetric transfer hydrogenation using recoverable ruthenium catalyst immobilized into magnetic mesoporous silica. J. Mol. Catal. A Chem. 2009, 298, 31–35. [Google Scholar]
- Baruwati, B.; Polshettiwar, V.; Varma, R.S. Magnetically recoverable supported ruthenium catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds. Tetrahedron Lett. 2009, 50, 1215–1218. [Google Scholar]
- Baig, R.B.N.; Varma, R.S. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds. ACS Sustain. Chem. Eng. 2013, 1, 805–809. [Google Scholar]
- Kotani, M.; Koike, T.; Yamaguchi, K.; Mizuno, N. Ruthenium hydroxide on magnetite as a magnetically separable heterogeneous catalyst for liquid-phase oxidation and reduction. Green Chem. 2006, 8, 735–741. [Google Scholar]
- Costa, V.V.; Jacinto, M.J.; Rossi, L.M.; Landers, R.; Gusevskaya, E.V. Aerobic oxidation of monoterpenic alcohols catalyzed by ruthenium hydroxide supported on silica-coated magnetic nanoparticles. J. Catal. 2011, 282, 209–214. [Google Scholar]
- Podolean, I.; Kuncser, V.; Gheorghe, N.; Macovei, D.; Parvulescu, V.I.; Coman, S.M. Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem. 2013, 15, 3077–3082. [Google Scholar]
- Jacinto, M.J.; Santos, O.H.C.F.; Jardim, R.F.; Landers, R.; Rossi, L.M. Preparation of recoverable Ru catalysts for liquid-phase oxidation and hydrogenation reactions. Appl. Catal. A 2009, 360, 177–182. [Google Scholar]
- Polshettiwar, V.; Varma, R.S. Nanoparticle-Supported and Magnetically Recoverable Ruthenium Hydroxide Catalyst: Efficient Hydration of Nitriles to Amides in Aqueous Medium. Chem. Eur. J. 2009, 15, 1582–1586. [Google Scholar]
- Baig, R.B.N.; Varma, R.S. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides. Chem. Commun. 2012, 48, 6220–6222. [Google Scholar]
- Scolaro, C.; Bergamo, A.; Brescacin, L.; Delfino, R.; Cocchietto, M.; Laurenczy, G.; Geldbach, T.J.; Sava, G.; Dyson, P.J. In Vitro and in Vivo Evaluation of Ruthenium(II)-Arene PTA Complexes. J. Med. Chem. 2005, 48, 4161–4171. [Google Scholar]
- Phillips, A.D.; Gonsalvi, L.; Romerosa, A.; Vizza, F.; Peruzzini, M. Coordination chemistry of 1,3,5-triaza-7-phosphaadamantane (PTA) Transition metal complexes and related catalytic, medicinal and photoluminescent applications. Coord. Chem. Rev. 2004, 248, 955–993. [Google Scholar]
- Hartinger, C.G.; Dyson, P.J. Bioorganometallic chemistry-from teaching paradigms to medicinal applications. Chem. Soc. Rev. 2009, 38, 391–401. [Google Scholar]
- García-Garrido, S.E.; Francos, J.; Cadierno, V.; Basset, J.-M.; Polshettiwar, V. Chemistry by Nanocatalysis: First Example of a Solid-Supported RAPTA Complex for Organic Reactions in Aqueous Medium. Chem. Sus. Chem. 2011, 4, 104–111. [Google Scholar]
- Vaquer, L.; Riente, P.; Sala, X.; Jansat, S.; Benet-Buchholz, J.; Llobet, A.; Pericàs, M.A. Molecular ruthenium complexes anchored on magnetic nanoparticles that act as powerful and magnetically recyclable stereospecific epoxidation catalysts. Catal. Sci. Technol. 2013, 3, 706–714. [Google Scholar]
- Hirakawa, T.; Tanaka, S.; Usuki, N.; Kanzaki, H.; Kishimoto, M.; Kitamura, M. A Magnetically Separable Heterogeneous Deallylation Catalyst: [CpRu(η3-C3H5)(2-pyridinecarboxylato)]PF6 Complex Supported on a Ferromagnetic Microsize Particle Fe3O4@SiO2. Eur. J. Org. Chem. 2009, 2009, 789–792. [Google Scholar]
- Torki, M.; Tangestaninejad, S.; Mirkhani, V.; Moghadam, M.; Mohammadpoor-Baltork, I. RuIII(OTf)SalophenCH2–NHSiO2–Fe: An efficient and magnetically recoverable catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane. Appl. Organomet. Chem. 2014, 28, 304–309. [Google Scholar]
- Xu, D.; Liu, Z.; Yang, H.; Yang, Q.; Zhang, J.; Fang, J.; Zou, S.; Sun, K. Solution-Based Evolution and Enhanced Methanol Oxidation Activity of Monodisperse Platinum-Copper Nanocubes. Angew. Chem. Int. Ed. 2009, 48, 4217–4221. [Google Scholar]
- Singh, S.K.; Xu, Q. Bioimaging of targeting cancers using aptamer-conjugated carbon nanodots. Chem. Commun. 2010, 46, 6543–6545. [Google Scholar]
- Chen, G.; Desinan, S.; Nechache, R.; Rosei, R.; Rosei, F.; Ma, D. Bifunctional catalytic/magnetic Ni@Ru core–shell nanoparticles. Chem. Commun. 2011, 47, 6308–6310. [Google Scholar]
- Sample Availability: Samples of the compounds 11, 12, 13, 17, 18 are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, D.; Astruc, D. Magnetically Recoverable Ruthenium Catalysts in Organic Synthesis. Molecules 2014, 19, 4635-4653. https://doi.org/10.3390/molecules19044635
Wang D, Astruc D. Magnetically Recoverable Ruthenium Catalysts in Organic Synthesis. Molecules. 2014; 19(4):4635-4653. https://doi.org/10.3390/molecules19044635
Chicago/Turabian StyleWang, Dong, and Didier Astruc. 2014. "Magnetically Recoverable Ruthenium Catalysts in Organic Synthesis" Molecules 19, no. 4: 4635-4653. https://doi.org/10.3390/molecules19044635
APA StyleWang, D., & Astruc, D. (2014). Magnetically Recoverable Ruthenium Catalysts in Organic Synthesis. Molecules, 19(4), 4635-4653. https://doi.org/10.3390/molecules19044635