3.1. Reagents
Catechin hydrate (C, purity ≥ 99%) and gallocatechin (GC, purity ≥ 98%) were purchased from Nagara Science Co., Ltd. (Gifu, Japan). Epicatechin (EC) and epigallocatechin (EGC) (purity > 98%) were purchased from Winherb Medical Science (Shanghai, China) Procyanidin B1 (P-B1) and procyanidin B3 (P-B3) were isolated and structurally elucidated in our lab before (purity > 95%). The Aβ42 peptide was produced by Bachem AG (Bubendrof, Switzerland) with purity greater than 95%, as determined by HPLC. Thioflavin T (ThT), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and dimethyl sulfoxide (DMSO) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Trifluoroacetic acid (TFA) was purchased from International Laboratory (San Francisco, CA, USA).
3.2. Polymerization Assay and Destabilization Assay
The polymerization assay was performed as previously described in the literature [
2]. For single compounds, the reaction mixture contained 25 μM Aβ42, 0.3, 1.0, 3.0, 10, or 30 μM C, EC, GC, EGC, P-B
1, or P-B
3, 1% DMSO, 50 mM phosphate buffer (pH 7.5) and 100 mM NaCl. Prior to being tested, the compounds were dissolved in DMSO at concentrations of 30, 100 and 300 μM, and 1.0 and 3.0 mM, and then added to the reaction mixture to final concentrations 0.3, 1.0, 3.0, 10, and 30 μM, respectively. For the extract and its fractions, different concentration sequences were incubated in the reaction mixture. With the exception of one sequence (
i.e., 3.0, 10, 30, 100 and 200 μg/mL) for
Fr. Ts and another (
i.e., 0.3, 1.0, 3.0, 10, 30 μg/mL) for
Fr. Ps, one concentration sequence (
i.e., 1.0, 3.0, 10, 30 and 100 μg/mL) was used for the extract and all of the other fractions.
The destabilization assay used to evaluate the activities of the polyphenolic compounds towards the destabilization of preformed fibrils was performed as described by Ono
et al. [
4]. Briefly, a reaction mixture containing 25 μM Aβ42 and 50 mM phosphate buffer (pH 7.5 and 100 mM NaCl) was incubated on a PCR system for 24 h at 37 °C to form fibrils. All of the test compounds (
i.e., C, EC, GC, EGC, P-B
1, and P-B
3) were initially dissolved in DMSO at concentrations of 30, 100 and 300 μM, and 1 and 3 mM, before being added to the reaction mixture to give final concentrations of 0.3, 1.0, 3.0, 10, and 30 μM, respectively. The resulting mixtures were continued the incubation of 24 h at 37 °C, and then subjected to fluorescent measurements as in the polymerization assay.
The fluorescence measurements were recorded on an Envision® 2104 Multilabel Reader (Perkin Elmer, Waltham, MA, USA), with optimized excitation and emission wavelengths of 430 (BW 24 nm) and 470 nm (BW 24 nm), respectively. The reaction mixture contained 5 μM ThT and 50 mM of glycine-NaOH buffer (pH 8.5). The IC50 and EC50 values were calculated using the GraphPad Prism 5 software. All results were expressed as the mean ± SEM, and statistical analyses were performed using the Student’s t test.
3.3. Quantitative Analysis of the Catechins and Procyanidins in Ginkgo Extracts by UPLC-Q-TOF-MS
Mixed stock solutions containing C (50 µg/mL), EC (10 µg/mL), GC (5 µg/mL), EGC (50 µg/mL), P-B1 (10 µg/mL) and P-B3 (5 µg/mL) were prepared in 20% methanol (with 1 mM ascorbic acid). Working standard solutions for the calibration curves were prepared by diluting the stock solution with 20% methanol to the following concentrations: 0.01–0.5 µg/mL for GC, P-B3; 0.02–1.0 µg/mL for P-B1; 0.05–1.6 µg/mL for C and EGC; and 0.01–1.0 µg/mL for EC. The standard solutions were stored at −20 °C prior to be analyzed.
A portion (50 mg) of the Ginkgo extract was accurately weighed into a 2 mL tube followed by 1 mL of 20% methanol, and the resulting mixture was briefly agitated to allow for mixing. The mixture was then sonicated for 10 min and filtered through a 0.22 µm PTFE filter to yield a sample solution for analysis.
UPLC was performed on an Acquity UPLC system (Waters Corp, Milford, MA, USA) equipped with a binary solvent delivery system and a sample manager. The UPLC system was coupled to a Bruker MicroTOF mass spectrometer with an ESI source (Bruker Daltonics, Billerica, MA, USA). Data acquisition and analysis were performed using the Hystar software (Bruker).
UPLC analysis was performed on an Acquity UPLC HSS C18 column (2.1 × 150 mm, 1.8 μm) with a mobile phase consisting of 0.1% (v/v) formic acid in water (A) and 0.1% (v/v) formic acid in acetonitrile (B). The chromatography was performed according to the following gradient elution procedure: 0–2 min, 6.0%–7.8% B; 2–15 min, 7.8%–40% B; 15.1–18 min, 100% B; 18.1–20 min, 6% B. The flow rate for the UPLC analysis was set at 0.35 mL/min, with a column temperature of 40 °C. An injection volume of 5 µL was used for quantitative analysis.
The ESI-MS data were acquired in the negative ion mode using the following MS parameters: end plate offset, −500 V; capillary voltage, 4500 V; collision energy, 6.0 eV; nebulizing gas (N2) pressure, 2.0 bar; drying gas (N2) flow rate, 8.0 L/min; drying gas temperature, 180 °C; and Mass range, m/z = 100–1600.
The presence of C, EC, EGC, GC, P-B1 or P-B3 in the sample was identified by comparing its retention time and the mass spectrum with those of the standards. The extracted ion chromatograms (EICs) at the m/z 305.06 for the [M–H]− ions of GC and EGC, m/z 577.13 for the [M–H]− ions of P-B1 and P-B3, and m/z 289.07 for the [M–H]− ions of C and EC were integrated and the peak areas were used for quantification.
3.4. Preparation of Fractions containing Catechins and Procyanidins from EGb761
The extract of Ginkgo biloba leaves (S7, 3.0 g) was purified by column chromatography over MCI-gel CHP 20P (75–100 mm, Mitsubishi Chemical Co., Ltd., Tokyo, Japan). The column was successively eluted with water containing 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% MeOH, which resulted in four fractions (Fr. A–D) being collected. Catechins and procyanidins were found in Fr. B (15%–40% MeOH eluent) and the FGs were mainly found in Fr. C (40%–70% MeOH eluent). The TTLs were found in both Fr. B and Fr. C.
Fr. B (200 mg) was purified over a ODS (Davisil, 35–60 μm, Grace, Columbia, MD, USA) column eluting with an increasing gradient of methanol in water (from 0%–80% MeOH). Catechins and procyanidins were found in Fr. B2 (from 20%–35% MeOH). Fraction B2 (151 mg) was further purified over a Toyopearl HW-40F (Tosoh Corporation, Japan) column eluting with an increasing gradient of methanol in water (from 0%–60% MeOH). Fraction Fr. B2-2 was eluted with a 40%–60% mixture of MeOH to give a fraction abundant in catechins and procyanidins (Fr. Ps, 27 mg).
Fr. C (205 mg) and
Fr. B2-1 (40 mg, a portion of the material eluted with 5%–40% MeOH) were combined and purified over a Grace C-18 column eluting with an increasing gradient of methanol in water (from 0%–80% MeOH).
Fr. C5 (from the 50%–65% MeOH eluent) was enriched in FGs (
Fr. Fs, 94 mg), whereas
Fr. C3 (
i.e., the combination of fractions from the 30%–40% and 40%–50% MeOH eluents) was enriched in TTLs.
Fr. C3 (76 mg) was purified over a Toyopearl HW-40F column eluting with an increasing gradient of methanol in water (
i.e., from 5%–50% MeOH) to remove some flavonoid compounds.
Fr. C3-3 (eluted with 35%–45% MeOH) mainly consisted ginkgolides A and B, and bilobalide, whereas
Fr. C3-2 (eluted with 25%–35% MeOH) contained of bilobalide, ginkgolide C and some flavonoids. This fraction was then purified over a Sephadex LH-20 (Aldrich Chemical Co., Inc., Milwaukee, WI, USA) column eluting with methanol and water to give pure bilobalide and ginkgolide C.
Fr. C3-2a and
Fr. C3-3 were combined to give the TTLs (
Fr. Ts, 21 mg) (
Figure 5).
Figure 5.
Flowchart showing the fractionation of catechins and procyanidins, FGs and TTLs from EGb. (CC: column chromatography; Fr.: fraction).
Figure 5.
Flowchart showing the fractionation of catechins and procyanidins, FGs and TTLs from EGb. (CC: column chromatography; Fr.: fraction).
Thin layer chromatography (TLC) and UPLC-Q-TOF-MS analysis were used for the detection of the targeted compounds. TLC was conducted on silica gel 60 F254 HPTLC aluminium sheets (Merck, Darmstadt, Germany) while UPLC-Q-TOF-MS analyses were performed on the same equipment as that used above for the quantitative analyses, as well as being conducted under the same parameters, except for the gradient elution procedure. The gradient elution procedure for the qualitative analysis was as follows: 0–2 min, 6.0%–7.8% B; 2.0–12 min, 7.8%–18% B; 12–13 min, 18%–100% B; 18–20 min, 6.0% B. The polyphenolic compounds in the samples were identified by comparing their retention times and mass spectra with those of the standards. EICs at m/z 305.06 for the [M–H]− ions of GC and EGC, m/z 577.13 for the [M–H]− ions of P-B1 and P-B3, and m/z 289.07 for the [M–H]− ions of C and EC were integrated. EICs at m/z 609.12 for the [M–H]− ion of the dimer of GC or EGC (i.e., GC-GC, EGC-EGC or GC-EGC), and m/z 593.13 for the [M–H]− ion of the dimers of C(EC)-GC(EGC) were selected for the identification of possible procyanidins in EGb761.