Montmorillonite Clay-Promoted, Solvent-Free Cross-Aldol Condensations under Focused Microwave Irradiation
Abstract
:1. Introduction
2. Results and Discussion
Entry | 1a/2a | T (°C) | Time | KSF/substrate ratio (g/mol) | Yield (%) a |
---|---|---|---|---|---|
1 | 1/1 | 100 °C | 60 min | 0.30 | 8 |
2 | 1/1 | 120 °C | 60 min | 0.30 | 23 |
3 | 1/1 | 150 °C | 60 min | 0.30 | 88 |
4 | 1/1 | 160 °C | 60 min | 0.30 | 88 |
5 | 1/1 | 150 °C | 60 min | 0.06 | 5 |
6 | 1/1 | 150 °C | 60 min | 0.12 | 81 |
7 | 1/1 | 150 °C | 60 min | 0.24 | 97 |
8 | 1/1 | 150 °C | 60 min | 0.30 | 88 |
9 | 1/1 | 150 °C | 40 min | 0.24 | 74 |
10 | 1/1 | 150 °C | 20 min | 0.24 | 50 |
11 | 2/1 | 150 °C | 60 min | 0.24 | 86 |
12 | 1/1 | 160 °C | 60 min | 0.24 | 78 b |
13 | 1/1 | 150 °C | 20 h | 0.29 | 16 c |
Entry | Ar1 | Ar2 | Compound | Yield (%) a | |||
---|---|---|---|---|---|---|---|
1 | C6H5 | C6H5 | 3a | 97 | |||
2 | C6H5 | 4-MeOC6H4 | 3b | 85 | |||
3 | C6H5 | 4-MeC6H4 | 3c | 55 | |||
4 | C6H5 | 4-ClC6H4 | 3d | 74 | |||
5 | C6H5 | 2-ClC6H4 | 3e | 77 | |||
6 | C6H5 | 4-BrC6H4 | 3f | 69 | |||
7 | C6H5 | 2-NO2C6H4 | 3g | 51 | |||
8 | C6H5 | 3-NO2C6H4 | 3h | 44 | |||
9 | C6H5 | 4-NO2C6H4 | 3i | 43 (57) b | |||
10 | 4-MeOC6H4 | C6H5 | 3j | 91 | |||
11 | 4-MeOC6H4 | 4-MeOC6H4 | 3k | 83 | |||
12 | 4-MeOC6H4 | 4-BrC6H4 | 3l | 73 | |||
13 | 4-MeC6H4 | C6H5 | 3m | 95 | |||
14 | 4-MeOC6H4 | 4-NO2C6H4 | 3n | 55 | |||
15 | 4-MeC6H4 | 2-MeOC6H4 | 3o | 93 | |||
16 | 4-MeC6H4 | 4-MeC6H4 | 3p | 77 | |||
17 | 4-MeC6H4 | 4-BrC6H4 | 3q | 76 | |||
18 | 4-MeC6H4 | 2-NO2C6H4 | 3r | 66 | |||
19 | 4-ClC6H4 | C6H5 | 3s | 54 | |||
20 | 4-ClC6H4 | 3-OMeC6H4 | 3t | 78 | |||
21 | 4-ClC6H4 | 4-BrC6H4 | 3u | 64 | |||
22 | 4-ClC6H4 | 2-NO2C6H4 | 3v | 48 | |||
23 | 4-BrC6H4 | C6H5 | 3w | 60 | |||
24 | 4-BrC6H4 | 4-BrC6H4 | 3x | 86 | |||
25 | 4-BrC6H4 | 4-NO2C6H4 | 3y | 49 | |||
26 | 4-NO2C6H4 | C6H5 | 3z | 65 c | |||
27 | 4-NO2C6H4 | 4-OMeC6H4 | 3aa | 64 c | |||
28 | 4-NO2C6H4 | 4-MeC6H4 | 3ab | 77 c | |||
29 | 4-NO2C6H4 | 4-BrC6H4 | 3ac | 68 c | |||
30 | 4-NO2C6H4 | 4-NO2C6H4 | 3ad | 60 c | |||
31 | C6H5 | 3ae | 57 | ||||
32 | C6H5 | 3af | 63 | ||||
33 | 4-MeC6H4 | 3ag | 54 | ||||
34 | 4-MeC6H4 | 3ah | 64 | ||||
35 | 4-BrC6H4 | 3ai | 48 | ||||
36 | C6H5 | 3aj | 85 | ||||
37 | C6H5 | 3ak | 60 | ||||
38 | 3al | 97 | |||||
39 | 2-NO2C6H4 | 3am | 45 | ||||
40 | C6H5 | 3an | 54 | ||||
41 | C6H5 | 3ao | 78 | ||||
42 | 3ap | 92 |
3. Experimental Section
3.1. General Information
3.2. General Procedure for Cross Aldol Condensations
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Dimmock, J.R.; Elias, D.W.; Beazely, M.A.; Kandepu, N.M. Bioactivity of chalcones. Curr. Med. Chem. 1999, 6, 1125–1149. [Google Scholar]
- Batovska, D.I.; Todorova, I.T. Trends in the utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol. 2010, 5, 1–29. [Google Scholar] [CrossRef]
- Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem. 2012, 19, 209–225. [Google Scholar] [CrossRef]
- Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 2007, 42, 125–137. [Google Scholar] [CrossRef]
- Cabrera, M.; Simoens, M.; Falchi, G.; Lavaggi, M.L.; Piro, O.E.; Castellano, E.E.; Vidal, A.; Azqueta, A.; Monge, A.; López de Ceráin, A.; et al. Synthetic chalcones, flavanones, and flavones as antitumoral agents: Biological evaluation and structure-activity relationships. Bioorg. Med. Chem. 2007, 15, 3356. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, Z.Y.; Xia, P.; Bastow, K.F.; Nakanishi, Y.; Lee, K.H. Antitumor agents. Part 202: Novel 2'-amino chalcones: Design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2000, 10, 699–701. [Google Scholar] [CrossRef]
- Nam, N.H.; Kim, Y.; You, Y.J.; Hong, D.H.; Kim, H.M.; Ahn, B.Z. Cytotoxic 2',5'-dihydroxychalcones with unexpected antiangiogenic activity. Eur. J. Med. Chem. 2003, 38, 179–187. [Google Scholar] [CrossRef]
- Wu, X.; Wilairat, P.; Go, M.L. Antimalarial activity of ferrocenyl chalcones. Bioorg. Med. Chem. Lett. 2002, 12, 2299–2302. [Google Scholar] [CrossRef]
- Wu, J.H.; Wang, X.H.; Yi, Y.H.; Lee, K.H. Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg. Med. Chem. Lett. 2003, 13, 1813–1815. [Google Scholar] [CrossRef]
- Hu, G.; Li, X.; Zhang, X.; Li, Y.; Ma, L.; Yang, L.-M.; Liu, G.; Li, W.; Huang, J.; Shen, X.; et al. Discovery of inhibitors to block interactions of HIV-1 integrase with human LEDGF/p75 via structure-based virtual screening and bioassays. J. Med. Chem. 2012, 55, 10108–10117. [Google Scholar] [CrossRef]
- Nagwanshi, R.; Bakhru, M.; Jain, S. Comparative antimicrobial activities of chalcones and their photoproducts. Med. Chem. Res. 2012, 21, 1587–1596. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Sastry, V.G.; Bano, N.; Anwer, S.; Kumaraswamy, G. Antioxidant and antibacterial activities of some novel chalcone derivatives and their synthesis by conventional and microwave irradiation methods. J. Chem. Pharm. Res. 2011, 3, 710–717. [Google Scholar]
- Talukdar, J.I.; Kachroo, M.; Razdan, R. Anti-inflammatory activity of some newly synthesized chalcones. Int. J. Pharm. 2013, 3, 728–733. [Google Scholar]
- Basnet, A.; Thapa, P.; Karki, R.; Na, Y.; Jahng, Y.; Jeong, B.-S.; Jeong, T.C.; Leec, C.-S.; Lee, E.-S. 2,4,6-Trisubstituted pyridines: Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship. Bioorg. Med. Chem. 2007, 15, 4351–4359. [Google Scholar] [CrossRef]
- Nepal, K.; Singh, G.; Turan, A.; Agarwal, A.; Sapra, S.; Kumar, R.; Banerjee, U.C.; Verma, P.K.; Satti, N.K.; Gupta, M.K.; et al. A rational approach for the design and synthesis of 1-acetyl-3,5-diaryl-4,5-dihydro(1H)pyrazoles as a new class of potential non-purine xanthine oxidase inhibitors. Bioorg. Med. Chem. 2011, 19, 1950–1958. [Google Scholar] [CrossRef]
- Kurth, E.F. The preparation of the polyhydroxychalcones. J. Am. Chem. Soc. 1939, 81, 861–862. [Google Scholar] [CrossRef]
- Smith, H.E.; Paulson, M.C. The preparation of chalcones from hydroxy and methoxy aldehydes and ketones. J. Am. Chem. Soc. 1954, 76, 4486–4487. [Google Scholar] [CrossRef]
- Zurd, L.; Horowitz, R.M. Spectral studies on flavonoid compounds. III. Polyhydroxychalcones. J. Org. Chem. 1961, 26, 2561–2563. [Google Scholar] [CrossRef]
- Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev. 2000, 100, 1025–1074. [Google Scholar] [CrossRef]
- Tanaka, K. Solvent-free Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. Chem. Rev. 2009, 109, 4140–4182. [Google Scholar]
- Zhang, W.; Cue, B.W.; Mack, J.; Muthukrishnan, S. Green Techniques for Organic Synthesis and Medicinal Chemistry; Zhang, W., Cue, B.W., Eds.; Wiley: Chichester, UK, 2012; Chapter 11. [Google Scholar]
- Tierney, J.; Lindstrom, P. Microwave Assisted Organic Synthesis; Blackwell: Oxford, UK, 2004. [Google Scholar]
- Kappe, C.O. Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6284. [Google Scholar] [CrossRef]
- Van der Eycken, E.; Kappe, C.O. (Eds.) Microwave-assisted Synthesis of Heterocycles; Springer Verlag: Berlin, Germany, 2006.
- De la Hoz, A.; Díaz-Ortiz, A.; Moreno, A.; Sánchez-Mingallón, A.; Prieto, P.; Carrillo, J.R.; Vázquez, E.; Gómez, M.V.; Herrero, M.A. Microwave-assisted reactions in heterocyclic compounds with applications in medicinal and supramolecular chemistry. Comb. Chem. High Throughput Screen. 2007, 10, 877–902. [Google Scholar] [CrossRef]
- Sharma, A.; Appukkuttan, P.; van der Eycken, E. Microwave-assisted synthesis of medium-sized heterocycles. Chem. Commun. 2012, 48, 1623–1637. [Google Scholar]
- Zhu, J.; Pallavkar, S.; Chen, M.; Yerra, N.; Luo, Z.; Colorado, H.A.; Lin, H.; Haldolaarachchige, N.; Khasanov, A.; Ho, T.C.; et al. Magnetic carbon nanostructures: Microwave energy-assisted pyrolysis vs. conventional pyrolysis. Chem. Commun. 2013, 49, 258–260. [Google Scholar] [CrossRef]
- For a recent example involving experimental measurements of energy consumption for standard and microwave-assisted conditions, see: Prasanna, P.; Balamurugan, K.; Perumal, S.; Menéndez, J.C. A facile, three-component domino protocol for the microwave-assisted synthesis of functionalized naphtho[2,3-b]furan-4,9-diones in water. Green Chem. 2011, 13, 2123–2129. [Google Scholar] [CrossRef]
- Strauss, C.R.; Varma, R.S. Microwaves in green and sustainable chemistry. Top. Curr. Chem. 2006, 266, 199–231. [Google Scholar] [CrossRef]
- Varma, R.S. Clay and clay-supported reagents in organic synthesis. Tetrahedron 2002, 58, 1235–1255. [Google Scholar] [CrossRef]
- Nagendrappa, G. Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 2011, 53, 106–138. [Google Scholar] [CrossRef]
- Kaur, N.; Kishore, D. Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis. J. Chem. Pharm. Res. 2012, 4, 991–1015. [Google Scholar]
- Sridharan, V.; Menéndez, J.C. Two-step stereocontrolled synthesis of densely functionalized cyclic β-aminoesters containing four stereocenters, based on a new cerium(IV) ammonium nitrate catalyzed sequential three-component reaction. Org. Lett. 2008, 10, 4303–4306. [Google Scholar] [CrossRef]
- Tenti, G.; Ramos, M.T.; Menéndez, J.C. One-pot access to a library of structurally diverse nicotinamide derivatives via a three-component formal aza [3+3] cycloaddition. ACS Comb. Sci. 2012, 14, 551–557. [Google Scholar] [CrossRef]
- Tenti, G.; Egea, J.; Villarroya, M.; León, R.; Fernández, J.C.; Padín, J.F.; Sridharan, V.; Ramos, M.T.; Menéndez, J.C. Identification of 4,6-diaryl-1,4-dihydropyridines as a new class of neuroprotective agents. Med. Chem. Commun. 2013, 4, 590–594. [Google Scholar] [CrossRef]
- Rocchi, D.; González, J.F.; Menéndez, J.C. Microwave-assisted, sequential four-component synthesis of polysubstituted 5,6-dihydroquinazolinones from acyclic precursors and an oxidant-free method for their aromatization under focused microwave irradiation. Green Chem. 2013, 15, 511–517. [Google Scholar]
- Tenti, G.; Parada, E.; León, R.; Egea, J.; Martínez-Revelles, S.; Briones, A.M.; Sridharan, V.; López, M.G.; Ramos, M.T.; Menéndez, J.C. New 5-unsubstituted dihydropyridines with improved CaV1.3 selectivity as potential neuroprotective agents against ischemic injury. J. Med. Chem. 2014, 57, 4313–4323. [Google Scholar]
- Ballini, R.; Bosica, G.; Maggi, R.; Ricciutelli, M.; Righi, P.; Sartori, G.; Sartorio, R. Clay-catalysed solventless synthesis of trans-chalcones. Green Chem. 2001, 3, 178–180. [Google Scholar] [CrossRef]
- Dintzner, M.R.; Little, A.J.; Pacilli, M.; Pileggi, D.J.; Osner, Z.R.; Lyons, T.W. Montmorillonite clay-catalyzed hetero-Diels–Alder reaction of 2,3-dimethyl-1,3-butadiene with benzaldehydes. Tetrahedron Lett. 2007, 48, 1577–1579. [Google Scholar] [CrossRef]
- For precedent of a clay-promoted Knoevenagel reaction, see: Martín, R.M.; Ortega, E.; Rojas, M.L.; Vicente, M.A.; Banares, M.A. Ultrasound-activated Knoevenagel condensation of malononitrile with carbonylic compounds catalysed by alkaline-doped saponites. J. Chem. Technol. Biotechnol. 2005, 80, 234–238. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds described in this paper are available from the authors.
© 2014 by the authors. licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rocchi, D.; González, J.F.; Menéndez, J.C. Montmorillonite Clay-Promoted, Solvent-Free Cross-Aldol Condensations under Focused Microwave Irradiation. Molecules 2014, 19, 7317-7326. https://doi.org/10.3390/molecules19067317
Rocchi D, González JF, Menéndez JC. Montmorillonite Clay-Promoted, Solvent-Free Cross-Aldol Condensations under Focused Microwave Irradiation. Molecules. 2014; 19(6):7317-7326. https://doi.org/10.3390/molecules19067317
Chicago/Turabian StyleRocchi, Damiano, Juan F. González, and J. Carlos Menéndez. 2014. "Montmorillonite Clay-Promoted, Solvent-Free Cross-Aldol Condensations under Focused Microwave Irradiation" Molecules 19, no. 6: 7317-7326. https://doi.org/10.3390/molecules19067317
APA StyleRocchi, D., González, J. F., & Menéndez, J. C. (2014). Montmorillonite Clay-Promoted, Solvent-Free Cross-Aldol Condensations under Focused Microwave Irradiation. Molecules, 19(6), 7317-7326. https://doi.org/10.3390/molecules19067317