Synthesis and Biological Activities of Some New (Nα-Dinicotinoyl)- bis-L-Leucyl Linear and Macrocyclic Peptides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Pharmacological Screening
2.2.1. Antimicrobial Activity
Compound No. | Inhibition Zome (cm) | |||||
---|---|---|---|---|---|---|
Gram+ ve | Gram− ve | Yeast | Fungi | |||
Bacillus subtilis | Bacillus aureus | Staphylococcus aureus | Escherichia coli | Candida albicans | Aspergillus niger | |
3 | 1.46 | 1.65 | 1.76 | 0.62 | - | 1.78 |
4 | 1.85 | 1.92 | 1.80 | 0.80 | 0.92 | 1.56 |
5 | 1.68 | 1.14 | 1.76 | 0.64 | - | 1.72 |
6 | 1.82 | 1.50 | 1.54 | 0.65 | - | 1.75 |
7a | 1.55 | 1.84 | 1.58 | 0.75 | 1.02 | 1.64 |
7b | 1.46 | 1.80 | 1.45 | 0.66 | - | 1.95 |
7c | 1.72 | 1.56 | 1.76 | 0.74 | 0.95 | 1.88 |
8 | 1.90 | 1.94 | 1.95 | 0.90 | 0.98 | 2.00 |
9a | 1.84 | 1.88 | 1.76 | 0.92 | 1.10 | 2.01 |
9b | 1.60 | 1.74 | 1.72 | 0.75 | 1.00 | 1.88 |
9c | 1.72 | 1.22 | 1.66 | 0.60 | - | 1.76 |
10a | 1.56 | 1.45 | 1.56 | 0.66 | - | 1.68 |
10b | 1.80 | 1.95 | 1.85 | 0.78 | 0.95 | 1.56 |
10c | 1.76 | 1.56 | 1.64 | 0.80 | 1.00 | 1.95 |
10d | 1.85 | 2.00 | 1.92 | 0.90 | 0.96 | 2.00 |
10e | 1.65 | 1.96 | 1.80 | 0.78 | 0.94 | 1.48 |
11 | 1.60 | 1.17 | 1.98 | 0.64 | - | 1.75 |
12 | 1.65 | 1.83 | 1.65 | 0.64 | - | 1.58 |
Chloramphenicol | 2.00 | 2.10 | 2.00 | 0.95 | - | - |
Fusidic Acid | - | - | - | - | 1.9 | 1.9 |
2.2.2. Anti-Inflammatory Activity
Purpose and Rational
Compound No. | Dose mg/kg | % Protection against Edema | % Inhibition of Plasma PGE2 |
---|---|---|---|
3 | 2.5 | 86.16 ± 0.052 | 59.45 ± 0.050 |
5.0 | 98.18 ± 0.053 | 81.10 ± 0.056 | |
4 | 2.5 | 93.45 ± 0.074 | 75.66 ± 0.040 |
5.0 | 98.56 ± 0.060 | 80.01 ± 0.058 | |
5 | 2.5 | 85.14 ± 0.056 | 61.16 ± 0.041 |
5.0 | 96.18 ± 0.067 | 77.14 ± 0.036 | |
6 | 2.5 | 92.14 ± 0.076 | 84.18 ± 0.052 |
5.0 | 99.08 ± 0.062 | 86.01 ± 0.030 | |
7a | 2.5 | 97.45 ± 0.054 | 81.30 ± 0.044 |
5.0 | 98.86 ± 0.046 | 82.48 ± 0.052 | |
7c | 2.5 | 91.12 ± 0.064 | 73.48 ± 0.049 |
5.0 | 95.14 ± 0.075 | 78.55 ± 0.035 | |
8 | 2.5 | 78.88 ± 0.090 | 57.57 ± 0.045 |
5.0 | 92.00 ± 0.060 | 76.00 ± 0.035 | |
9a | 2.5 | 82.16 ± 0.076 | 58.96 ± 0.024 |
5.0 | 93.16 ± 0.064 | 74.58 ± 0.040 | |
9b | 2.5 | 79.34 ± 0.081 | 57.90 ± 0.040 |
5.0 | 92.92 ± 0.090 | 77.14 ± 0.052 | |
10a | 2.5 | 90.32 ± 0.035 | 62.12 ± 0.051 |
5.0 | 99.10 ± 0.036 | 83.01 ± 0.049 | |
10d | 2.5 | 81.00 ± 0.072 | 63.14 ± 0.023 |
5.0 | 95.82 ± 0.062 | 79.88 ± 0.031 | |
12 | 2.5 | 90.48 ± 0.090 | 63.16 ± 0.036 |
5.0 | 99.36 ± 0.080 | 86.18 ± 0.071 | |
Diclofenac Potassium | 2.5 | 70.14 ± 0.064 | 54.00 ± 0.041 |
5.0 | 75.23 ± 0.083 | 70.00 ± 0.051 |
2.3. Anticancer Activity
In Vitro Anti-Breast Cancer Activities
Compound No. | IC50 (μM ) for Tested Compounds against Breast Cell Lines | ||||||
---|---|---|---|---|---|---|---|
MCF7 | MDAMB231 | HS578T | MDAMB435 | MDN | BT549 | T47D | |
3 | 0.00029 | 3.23 | 3.34 | 56.38 | 0.00 | 0.00 | 0.00 |
4 | 0.00026 | 2.76 | 2.78 | 45.47 | 0.00 | 0.00 | 0.00 |
5 | 0.00017 | 2.34 | 2.56 | 33.66 | 0.00 | 0.00 | 0.00 |
6 | 0.00075 | 4.56 | 8.89 | 88.76 | 0.00 | 0.00 | 0.00 |
7a | 0.00086 | 7.89 | 9.75 | 89.87 | 0.00 | 0.00 | 0.00 |
7c | 0.00099 | 9.65 | 14.45 | 92.99 | 0.00 | 0.00 | 0.00 |
9a | 0.00097 | 8.65 | 11.43 | 90.98 | 0.00 | 0.00 | 0.00 |
9b | 0.00064 | 3.56 | 7.47 | 78.65 | 0.00 | 0.00 | 0.00 |
10a | 0.00014 | 1.23 | 1.54 | 10.55 | 0.00 | 0.00 | 0.00 |
10d | 0.00035 | 3.67 | 5.67 | 57.47 | 0.00 | 0.00 | 0.00 |
12 | 0.00056 | 3.56 | 6.65 | 68.56 | 0.00 | 0.00 | 0.00 |
Compound No. | Tumor Growth Vt/Vo for Compounds after Times in Days | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | |
Control | 1.00 | 1.57 | 2.11 | 4.87 | 9.67 | 12.55 | 24.34 | 26.45 | 28.30 | 39.90 | 41.12 |
3 | 1.00 | 1.40 | 1.56 | 1.87 | 2.01 | 2.89 | 3.54 | 5.10 | 6.12 | 7.14 | 8.12 |
4 | 1.00 | 1.34 | 1.45 | 1.77 | 1.91 | 2.77 | 3.44 | 4.89 | 5.56 | 6.12 | 7.14 |
5 | 1.00 | 1.21 | 1.28 | 1.65 | 1.81 | 2.67 | 3.21 | 4.45 | 5.22 | 5.77 | 6.23 |
6 | 1.00 | 1.40 | 1.67 | 2.45 | 2.79 | 3.56 | 4.57 | 5.98 | 7.01 | 8.88 | 9.56 |
7a | 1.00 | 1.41 | 1.71 | 2.78 | 3.20 | 3.78 | 4.78 | 6.11 | 7.16 | 8.90 | 9.77 |
7c | 1.00 | 1.42 | 1.72 | 2.98 | 3.40 | 4.00 | 5.01 | 6.18 | 7.28 | 8.99 | 9.99 |
9a | 1.00 | 1.41 | 1.70 | 2.89 | 3.30 | 3.90 | 4.90 | 6.13 | 7.13 | 8.79 | 9.88 |
9b | 1.00 | 1.42 | 1.78 | 2.34 | 2.67 | 3.45 | 4.56 | 5.90 | 6.88 | 8.89 | 9.45 |
10a | 1.00 | 1.14 | 1.24 | 1.56 | 1.76 | 2.54 | 3.11 | 4.32 | 5.12 | 5.89 | 6.12 |
10d | 1.00 | 1.40 | 1.6 | 1.99 | 2.34 | 3.23 | 4.34 | 5.55 | 6.66 | 8.45 | 9.00 |
12 | 1.00 | 1.41 | 1.65 | 2.14 | 2.56 | 3.25 | 4.39 | 5.78 | 6.79 | 8.68 | 9.14 |
3. Experimental Section
3.1. General Information
3.2. Biological Activities
3.2.1. Antimicrobial Activity
3.2.2. Anti-Inflammatory Activity
3.2.2.1. Carrageenan-Induced Edema (Rat Paw Test)
3.2.2.2. Estimation of Plasma Prostaglandin E2 (PGE2)
3.3. Anticancer Activity
3.3.1. In Vitro Anti-Cancer Activities
3.3.2. Human Breast Cancer Xenograft Models and Animal Treatment
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Krakowiak, K.E.; Bradshaw, J.S.; Zamecka-Krakowiak, D.J. Synthesis of aza-crown ethers. Chem. Rev. 1989, 89, 929–972. [Google Scholar]
- Izatt, R.M.; Pawlak, K.; Bradshaw, J.S.; Bruening, R.L.; Tarbet, B.J. Thermodynamic and kinetic data for macrocycle interaction with neutral molecules. Chem. Rev. 1992, 92, 1261–1354. [Google Scholar] [CrossRef]
- Elwahy, A.H.M. New trends in the chemistry of condensed heteromacrocycles Part A: Condensed azacrown ethers and azathiacrown ethers. J. Heterocycl. Chem. 2003, 40, 1–23. [Google Scholar] [CrossRef]
- Hirschmann, R.; Smith, A.B.; Sprengeler, P.A. Some interactions of macromolecules with low molecular weight ligands. Recent advances in peptidomimetic research. In New Perspectives in Drug Design; Academic Press: San Diego, CA, USA, 1995; pp. 1–14. [Google Scholar]
- Bursavich, M.G.; West, C.W.; Rich, D.H. From peptides to non-peptide peptidomimetics: Design and synthesis of new piperidine inhibitors of aspartic peptidases. Org. Lett. 2001, 3, 2317–2320. [Google Scholar] [CrossRef]
- Amr, A.E.; Mohamed, A.M.; Ibrahim, A.A. Synthesis of some new chiral tricyclic and macrocyclic pyridine derivatives as antimicrobial agents. Z. Naturforsch. 2003, 58b, 861–868. [Google Scholar]
- Amr, A.E. Synthesis of some new linear and chiral macrocyclic pyridine carbazides as analgesic and anticonvulsant agents. Z. Naturforsch. 2005, 60b, 990–998. [Google Scholar]
- Abou-Ghalia, M.H.; Amr, A.E.; Abdalah, M.M. Synthesis of some new (Nα-dipicolinoyl)-bis-L-leucyl-DL-norvalyl linear tetra and cyclic octa bridged peptides as new anti-inflammatory agents. Z. Naturforsch. 2003, 58b, 903–910. [Google Scholar]
- Attia, A.; Abdel-Salam, O.I.; Amr, A.E.; Stibor, I.; Budesinsky, M. Synthesis and antimicrobial activity of some new chiral bridged macrocyclic pyridines. Egypt. J. Chem. 2000, 43, 187–201. [Google Scholar]
- Amr, A.E.; Abo-Ghalia, M.H.; Abdalah, M.M. Synthesis of novel macrocyclic peptide-calix[4]arenes and peptido-pyridines as precursors for potential molecular metallacages, chemo-sensors and biologically active candidates. Z. Naturforsch. 2006, 61b, 1335–1345. [Google Scholar]
- Amr, A.E.; Abo-Ghalia, M.H.; Abdalah, M.M. Synthesis of new (Nα-dipicolinoyl)-bis-L-valyl-L-phenylalanyl linear and macrocyclic bridged peptides as anti-inflammatory agents. Arch. Pharm. 2007, 340, 304–309. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Abo-Ghalia, M.H.; Amr, A.E.; Mohamed, A.H.K. Novel lead (II) selective membrane potentiometric sensors based on chiral 2,6-bis-pyridine-carboxamide derivatives. Talanta 2003, 60, 81–91. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Abo-Ghalia, M.H.; Amr, A.E.; Mohamed, A.H.K. Novel thiocyanate-selective membrane sensors based on di-, tetra-, and hexaimide pyridine ionophores. Anal. Chim. Acta 2003, 482, 9–18. [Google Scholar] [CrossRef]
- Abo-Ghalia, M.H.; Abd-El-Hamid, M.; Zweel, M.A.; Amr, A.E.; Moafi, S.A. Synthesis and reactions of new chiral linear and macrocyclic tetra and penta-peptide candidates. Z. Naturforsch. 2012, 67b, 806–818. [Google Scholar] [CrossRef]
- Khalifa, N.M.; Naglah, A.M.; Al-Omar, M.A.; Abo-Ghalia, M.H.; Amr, A.E. Synthesis and reactions of new chiral linear carboxamides with an incorporated peptide linkage using nalidixic acid and amino acids as starting materials. Z. Naturforsch. 2014, 69b, 351–361. [Google Scholar]
- Fakhr, I.M.; Amr, A.E.; Sabry, N.M.; Abdalah, M.M. Anti-inflammatory and analgesic activities of some newly synthesized chiral peptide derivatives using (3-benzoyl-4,5-dioxo-2-phenylpyrrolidin-1-yl)acetic acid ethyl ester as starting material. Arch. Pharm. Chem. Life Sci. 2008, 341, 174–180. [Google Scholar] [CrossRef]
- Abou-Ghalia, M.H.; Amr, A.E. Synthesis and investigation of a new cyclo-(Nα-dipicolinoyl)pentapeptide of a breast and CNS cytotoxic activity and an ionophoric specifity. Amino Acids 2004, 26, 283–289. [Google Scholar]
- Abd El-Salam, O.I.; Al-Omar, M.A.; Fayed, A.A.; Flefel, E.M.; Amr, A.E. Synthesis of new macrocyclic polyamides as antimicrobial agent candidates. Molecules 2012, 17, 14510–14521. [Google Scholar] [CrossRef]
- Ismail, O.A.; Al-Omar, M.A.; Amr, A.E. Facile synthesis of new chiral macrocyclic Schiff-base and tricyclopolyazacarboxamides candidates as antimicrobial agents. Curr. Org. Synth. 2012, 9, 406–412. [Google Scholar] [CrossRef]
- Neupert-Laves, K.; Dobler, M. The crystal structure of a K+ complex of valinomycin. Helv. Chim. Acta 1975, 58, 432–442. [Google Scholar] [CrossRef]
- Collison, M.E.; Aebli, G.V.; Petty, J.; Meyerhoff, M.E. Potentiometric combination ion/carbon dioxide sensors for in vitro and in vivo blood measurements. Anal. Chem. 1989, 61, 2365–2372. [Google Scholar] [CrossRef]
- Boitano, S.; Omoto, C.K. Membrane hyperpolarization activates trout sperm without an increase in intracellular pH. J. Cell. Sci. 1991, 98, 343–349. [Google Scholar]
- Talma, A.G.; Jouin, P.; Vries, J.G.; Troostwijk, C.B.; Buning, G.H. Reductions of activated carbonyl compounds with chiral bridged 1,4-dihydropyridines. An investigation of scope and structural effects. J. Am. Chem. Soc. 1985, 107, 3981–3997. [Google Scholar] [CrossRef]
- Amr, A.; Abd El-Salam, O.; Attia, A.; Stibor, I. Synthesis of new potential bis-intercallators based on chiral pyridine-2,6-dicarbox-amides. Collect. Czech Chem. Commun. 1999, 64, 288–298. [Google Scholar] [CrossRef]
- Roderick, A.B.; Henry, M.F. The Synthesis of the 3,9-diazabicyclo [3.3.1] nonane ring system. J. Am. Chem. Soc. 1953, 75, 975–977. [Google Scholar] [CrossRef]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Herrmann, F.; Lindemann, A.; Gamss, J.; Mertelsmann, R. Cytokine-stimulation of prostaglandin synthesis from endogenous and exogenous arachidonic acids in polymorphonuclear leukocytes involving activation and new synthesis of cyclooxygenase. Eur. J. Immunol. 1999, 20, 2513–2516. [Google Scholar]
- Furtada, G.L.; Medeiros, A.A. Single-disk diffusion testing (Kirby-Bauer) of susceptibility of Proteus mirabilis to chloramphenicol: Significance of the intermediate category. J. Clin. Microbiol. 1980, 12, 550–553. [Google Scholar]
- Jones, R.N.; Ballow, C.H.; Biedenbach, D.J. Multi-laboratory assessment of the linezolid spectrum of activity using the Kirby-Bauer disk diffusion method: Report of the Zyvox Antimicrobial Potency Study (ZAPS) in the United States. Diagn. Microbiol. Infect. Dis. 2001, 40, 59–66. [Google Scholar] [CrossRef]
- Wang, W.; Rayburn, E.R.; Velu, S.E.; Chen, D.; Nadkarni, D.H.; Murugesan, S.; Chen, D.; Zhang, R. A novel synthetic iminoquinone, BA-TPQ, as an anti-breast cancer agent: In vitro and in vivo activity and mechanisms of action. Breast Cancer Res. Treat. 2010, 123, 321–331. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Khayyat, S.; Amr, A.E.-G. Synthesis and Biological Activities of Some New (Nα-Dinicotinoyl)- bis-L-Leucyl Linear and Macrocyclic Peptides. Molecules 2014, 19, 10698-10716. https://doi.org/10.3390/molecules190810698
Khayyat S, Amr AE-G. Synthesis and Biological Activities of Some New (Nα-Dinicotinoyl)- bis-L-Leucyl Linear and Macrocyclic Peptides. Molecules. 2014; 19(8):10698-10716. https://doi.org/10.3390/molecules190810698
Chicago/Turabian StyleKhayyat, Suzan, and Abd El-Galil Amr. 2014. "Synthesis and Biological Activities of Some New (Nα-Dinicotinoyl)- bis-L-Leucyl Linear and Macrocyclic Peptides" Molecules 19, no. 8: 10698-10716. https://doi.org/10.3390/molecules190810698
APA StyleKhayyat, S., & Amr, A. E. -G. (2014). Synthesis and Biological Activities of Some New (Nα-Dinicotinoyl)- bis-L-Leucyl Linear and Macrocyclic Peptides. Molecules, 19(8), 10698-10716. https://doi.org/10.3390/molecules190810698