Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production
Abstract
:1. Introduction
2. Background of Mead Production
3. Yeasts Used in Mead Production
4. Steps Involved on Mead Production
4.1. Honey-Water Mixture and Additives
Country | Must Preparation | Fermentation Length (Days) | Yeast | Temp. (°C) | Ref |
---|---|---|---|---|---|
India | C6H12O6, yeast extract, peptone, MgSO4, ZnSO4 and KH2PO4 | ˃90 | S. cerevisiae | 18–30 | [16] |
Portugal | (NH4)2HPO4 | 5 | S. cerevisiae (QA23 and ICV D47) | 25 | [24] |
Portugal | Supplement 1: commercial nutrients (Enovit®) and C4H6O6. Supplement 2: NH4H2PO4; KNaC4H4O6·4H2O; MgSO4·7H2O, CaSO4, SO2, C4H6O6 and bentonite sodium. | 8–13 | S. cerevisiae | 27 | [2] |
Portugal | K2C4H4O6, malic acid and (NH4)2HPO4 | 11–14 | S. cerevisiae UCD522 | 25 | [8] |
Portugal | Commercial nutrients and SO2 | 15 | S. cerevisiae ph.r. bayanus PB2002 | 20, 25 and 30 | [23] |
Slovenia | (NH4)2SO4 , KH2PO4 , MgCl2, C6H8O7, NaH2C6H5O7 , Vit. B7, Vit. B6, myo-inositol, Vit. B5, Vit. B1and peptone | S. bayanus strain R2 (Lalvin) | 15 | [41] | |
Slovak | Vitamon Ultra salt® | S. cerevisiae C11-3 | 25–30 | [6] | |
Poland | (NH4)2HPO4 and C6H8O7 | 25–30 | S. cerevisiae, Johannisberg-Riesling (JR) | 20–22 | [27] |
USA | A honey analog (38% fructose, 30% glucose, 10% maltose, and 2% sucrose) diluted with H2O and ethanol | 28–42 | (S. cerevisiae) (LD Carlson) | 22 | [5] |
Portugal | K2C4H4O6, malic acid and (NH4)2HPO4 | S. cerevisiae Lalvin QA23 and S. cerevisiae Lalvin ICV D47 | 22 | [3] | |
Nigeria | H2SO3 and SO2 | 21 | Packaged dried bakers’ yeast | 25–26 | [42] |
Slovak | Not additives | 60–90 | Saccharomyces | 15–22 | [43] |
Spain | K2S2O5 and pollen | S. cerevisiae, ENSIS-LE5® | 25 | [1] |
4.2. Mead Fermentation Progress
5. Postfermentation Conditions
6. Mead Quality Procedures
7. Problems Associated with the Mead Production
8. Cells Immobilization
9. Conclusions
Acknowledgments
Conflicts of Interest
References
- Roldán, A.; van Muiswinkel, G.C.J.; Lasanta, C.; Caro, I. Influence of pollen addition on mead elaboration: Physicochemical and sensory characteristics. Food Chem. 2011, 126, 574–582. [Google Scholar] [CrossRef]
- Pereira, A.P.; Dias, T.; Andrade, J.; Ramalhosa, E.; Estevinho, L.M. Mead production: Selection and characterization assays of Saccharomyces cerevisiae strains. Food Chem. Toxicol. 2009, 47, 2057–2063. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. High-cell-density fermentation of Saccharomyces cerevisiae for the optimisation of mead production. Food Microbiol. 2013, 33, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Gupta, J.; Sharma, R. Production technology and quality characteristics of mead and fruit-honey wines: A review. Nat. Prod. Rad. 2009, 8, 345–355. [Google Scholar]
- Wintersteen, C.L.; Andrae, L.M.; Engeseth, N.J. Effect of Heat treatment on antioxidant capacity and flavor volatiles of mead. J. Food Sci. 2005, 70, C119–C126. [Google Scholar] [CrossRef]
- Navrátil, M.; Sturdík, E.; Gemeiner, P. Batch and continuous mead production with pectate immobilised, ethanol–tolerant yeast. Biotechnol. Lett. 2001, 23, 977–982. [Google Scholar] [CrossRef]
- Ramalhosa, E.; Gomes, T.; Pereira, A.P.; Dias, T.; Estevinho, L.M. Mead production: Tradition versus modernity. Adv. Food Nutr. Res. 2011, 63, 101–118. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; Cosme, F.; Barbosa, C.; Falco, V.; Inês, A.; Mendes-Faia, A. Optimization of honey-must preparation and alcoholic fermentation by Saccharomyces cerevisiae for mead production. Int. J. Food Microbiol. 2010, 144, 193–198. [Google Scholar] [CrossRef]
- Bayon, J. Mead of the Celts: A celestial liquor. ArMen 1997, 86, 30–37. [Google Scholar]
- Digby, K. The Closet of the Eminently Learned Sir Kenelm Digby Kt Opened; Brome, H., Ed.; Philip Lee Warner: London, UK, 1669; reprinted in Philip Lee Warner: London, UK, 1910. [Google Scholar]
- Jorczyk, A.; Wzorek, W. Fruit and Fruit Wines. In Economic Microbiology, Alcoholic Beverages; Rose, A.H., Ed.; Academic Press: London, UK, 1977; Volume 1. [Google Scholar]
- Adams, S.L.; Nielsen, G.V. Honey Beverage and Process for Making It. U.S. Patent 3100705 A, 13 August 1963. [Google Scholar]
- Maugenet, J. L’hydromel. Ann. Abeille 1964, 7, 165–179. [Google Scholar] [CrossRef]
- Steinkraus, K.H.; Morse, R.A. Factors influencing the fermentation of honey and mead production. J. Apic. Res. 1966, 5, 17–16. [Google Scholar]
- Kime, R.W.; McLellan, M.R.; Lee, C.Y. Ultra-filtration of honey for mead production. Agric. Res. 1991, 15, 517–521. [Google Scholar]
- Qureshi, N.; Tamhane, D.V. Production of mead by immobilized whole cells of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1985, 21, 280–281. [Google Scholar]
- The Meadery Homepage. Available online: http://www.themeadery.net (accessed on 30 July 2014).
- Mullan, W.M.A. Starter Cultures Importance of Selected Genera. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 515–521. [Google Scholar]
- Chen, C.H.; Wu, Y.L.; Lo, D.; Wu, M.C. Physicochemical property changes during the fermentation of longan (Dimocarpus longan) mead and its aroma composition using multiple yeast inoculations. J. Inst. Brew. 2013, 119, 303–308. [Google Scholar] [CrossRef]
- Wzorek, W.; Konieczna, E.; Szymanska, K.; Bugajewska, A. Optimization of honey wort fermentation in double mead technology. Pol. J. Food Nutr. 1993, 2, 57–65. [Google Scholar]
- Teramoto, Y.; Sato, R.; Ueda, S. Characteristics of fermentation yeast isolated from traditional Ethiopian honey wine, ogol. Afr. J. Biotechnol. 2005, 4, 160–163. [Google Scholar]
- Qureshi, N.; Tamhane, D.V. Mead production by continuous series reactors using immobilized yeast cells. Appl. Microbiol. Biotechnol. 1986, 23, 438–439. [Google Scholar] [CrossRef]
- Gomes, T.; Barradas, C.; Dias, T.; Verdial, J.; Morais, J.S.; Ramalhosa, E.; Estevinho, L.M. Optimization of mead production using response surface methodology. Food Chem. Toxicol. 2013, 59, 680–686. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Effect of Saccharomyces cerevisiae cells immobilisation on mead production. LWT Food Sci. Technol. 2014, 56, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Jackowetz, J.N.; Dierschke, S.; Mira de Orduña, R. Multifactorial analysis of acetaldehyde kinetics during alcoholic fermentation by Saccharomyces cerevisiae. Food Res. Int. 2011, 44, 310–316. [Google Scholar] [CrossRef]
- McConnell, D.; Schramm, K. Mead success: Ingredients, processes and techniques. Zymurgy Spring 1995, 4, 33–39. [Google Scholar]
- Sroka, P.; Tuszyński, T. Changes in organic acid contents during mead wort fermentation. Food Chem. 2007, 104, 1250–1257. [Google Scholar] [CrossRef]
- Law-Decree n° 214/2003. Republic Diary, 1st Series A, 18 September 2003.
- Iurlina, M.O.; Fritz, R. Characterization of microorganisms in Argentinean honeys from different sources. Int. J. Food Microbiol. 2005, 105, 297–304. [Google Scholar] [CrossRef]
- Erejuwa, O.; Sulaiman, S.; Wahab, M. Honey: A novel antioxidant. Molecules 2012, 17, 4400–4423. [Google Scholar] [CrossRef]
- Gomes, S.; Dias, L.G.; Moreira, L.L.; Rodrigues, P.; Estevinho, L. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 2010, 48, 544–548. [Google Scholar] [CrossRef]
- Estevinho, L.M.; Afonso, S.E.; Feás, X. Antifungal effect of lavender honey against Candida albicans, Candida krusei and Cryptococcus neoformans. J. Food Sci. Technol. 2011, 48, 640–643. [Google Scholar] [CrossRef]
- Estevinho, L.M.; Feás, X.; Seijas, J.A.; Vázquez-Tato, M.P. Organic honey from Trás-Os-Montes region (Portugal): Chemical, palynological, microbiological and bioactive compounds characterization. Food Chem. Toxicol. 2012, 50, 258–264. [Google Scholar] [CrossRef]
- Iglesias, A.; Feás, X.; Rodrigues, S.; Seijas, J.A.; Vázquez-Tato, M.P.; Dias, L.G.; Estevinho, L.M. Comprehensive study of honey with protected denomination of origin and contribution to the enhancement of legal specifications. Molecules 2012, 17, 8561–8577. [Google Scholar] [CrossRef]
- Erejuwa, O.; Sulaiman, S.; Wahab, M. Fructose might contribute to the hypoglycemic effect of honey. Molecules 2012, 17, 1900–1915. [Google Scholar] [CrossRef]
- Gomes, T.; Feás, X.; Iglesias, A.; Estevinho, L. Study of organic honey from the northeast of Portugal. Molecules 2011, 16, 5374–5386. [Google Scholar] [CrossRef]
- Feás, X.; Iglesias, A.; Rodrigues, S.; Estevinho, L. Effect of erica sp. honey against microorganisms of clinical importance: Study of the factors underlying this biological activity. Molecules 2013, 18, 4233–4246. [Google Scholar] [CrossRef]
- Pons, M.-N.; Schutze, S. On–line monitoring of volatile compounds in honey fermentation. J. Ferment. Bioeng. 1994, 78, 450–454. [Google Scholar] [CrossRef]
- Joshi, V.; Attri, B.; Gupta, J.; Chopra, S. Comparative fermentation behaviour. Indian J. Hortic. 1990, 47, 49–54. [Google Scholar]
- Pereira, A.P.; Mendes-Ferreira, A.; Estevinho, L.M.; Mendes-Faia, A. Mead’s production: Fermentative performance of yeasts entrapped in different concentrations of alginate. J. Inst. Brew. 2014, in press. [Google Scholar]
- Vidrih, R.; Hribar, J. Studies on the sensory properties of mead and the formation of aroma compounds related to the type of honey. Acta Aliment. 2007, 36, 151–162. [Google Scholar] [CrossRef]
- Ukpabi, U.J. Quality evaluation of meads produced with cassava (Manihot esculenta) floral honey under farm conditions in Nigeria. Trop. Subtrop. Agroecosyst. 2006, 6, 37–41. [Google Scholar]
- Šmogrovicová, D.; Nádaský, P.; Tandlich, R.; Wilhelmi, B.S.; Cambray, G. Analytical and aroma profiles of slovak and south african meads. Czech J. Food Sci. 2012, 30, 241–246. [Google Scholar]
- Kahoun, D.; Rezková, S.; Veskrnová, K.; Královský, J.; Holčapek, M. Determination of phenolic compounds and hydroxymethylfurfural in meads using high performance liquid chromatography with coulometric–array and UV detection. J. Chromatogr. A 2008, 1202, 19–33. [Google Scholar] [CrossRef]
- Vargas, T. Avaliação da qualidade do mel produzido na Região dos Campos Gerais do Paraná. Dissertação para obtenção do título de mestre em Ciências e Tecnologia dos Alimentos. Master Thesis, Universidade Estadual de Ponta Grossa, Paraná, Brazil, 2006. [Google Scholar]
- Fallico, B.; Arena, E.; Zappala, M. Degradation of 5-hydroxymethylfurfural in honey. J. Food Sci. 2008, 73, C625–C631. [Google Scholar]
- Arena, E.; Ballistreri, G.; Fallico, B. Kinetics of 3-deoxy-D-erythro-hexos-2-ulose in unifloral honeys. J. Food. Sci. 2011, 76, C1044–C1049. [Google Scholar] [CrossRef]
- Erejuwa, O.; Sulaiman, S.; Wahab, M. Oligosaccharides might contribute to the antidiabetic effect of honey: A review of the literature. Molecules 2012, 17, 248–266. [Google Scholar] [CrossRef]
- Abraham, K.; Gürtler, R.; Berg, K.; Heinemeyer, G.; Lampen, A.; Appel, K.E. Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Mol. Nutr. Food Res. 2011, 55, 667–678. [Google Scholar] [CrossRef]
- Feás, X.; Pires, J.; Estevinho, M.L.; Iglesias, A.; Araujo, J.P.P. Palynological and physicochemical data characterisation of honeys produced in the Entre-Douro e Minho region of Portugal. Int. J. Food Sci. Technol. 2010, 45, 1255–1262. [Google Scholar] [CrossRef]
- Casellas, G.B. Effect of low temperature fermentation and nitrogen content on wine yeast metabolism. Available online: http://www.tdx.cat/bitstream/handle/10803/8651/Tesis_G.Beltran.pdf;jsessionid=0D2417AA196ABEF3CF63FDF693E43ED1.tdx2?sequence=1 (accessed on l5 August 2014).
- Boyle, P.; Boffetta, P.; Lowenfels, A.B.; Burns, H.; Brawley, O.; Zatonski, W.; Rehm, J. Alcohol: Science, Policy and Public Health 2013; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Ivorra, C.; Perez-Ortin, J.E.; del Olmo, M. An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol. Bioeng. 1999, 64, 698–708. [Google Scholar] [CrossRef]
- Plessas, S.; Bekatorou, A.; Koutinas, A.A.; Soupioni, M.; Banat, I.M.; Marchant, R. Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresour. Technol. 2007, 98, 860–865. [Google Scholar] [CrossRef]
- Liu, C.Z.; Wang, F.; Ou-Yang, F. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles. Bioresour. Technol. 2009, 100, 878–882. [Google Scholar] [CrossRef]
- Hernandez, R.M.; Orive, G.; Murua, A.; Pedraz, J.L. Microcapsules and microcarriers for in situ cell delivery. Adv. Drug Deliv. Rev. 2010, 62, 711–730. [Google Scholar] [CrossRef]
- Vilela, A.; Schuller, D.; Mendes-Faia, A.; Côrte-Real, M. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells. Appl. Microbiol. Biotechnol. 2013, 97, 4991–5000. [Google Scholar] [CrossRef]
- Reddy, L.V.; Reddy, Y.H.; Reddy, L.P.; Reddy, O.V. Wine production by novel yeast biocatalyst prepared by immobilization on watermelon (Citrullus vulgaris) rind pieces and characterization of volatile compounds. Process Biochem. 2008, 43, 748–752. [Google Scholar] [CrossRef]
- Genisheva, Z.; Macedo, S.; Mussatto, S.I.; Teixeira, J.A.; Oliveira, J.M. Production of white wine by Saccharomyces cerevisiae immobilized on grape pomace. J. Inst. Brew. 2012, 118, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Inal, M.; Yiğitoğlu, M. Production of bioethanol by immobilized Saccharomyces Cerevisiae onto modified sodium alginate gel. J. Chem. Technol. Biotechnol. 2011, 86, 1548–1554. [Google Scholar] [CrossRef]
- Silva, S.; Ramón-Portugal, F.; Andrade, P.; Abreu, S.; de Fatima Texeira, M.; Strehaiano, P. Malic acid consumption by dry immobilized cells of Schizosaccharomyces pombe. Am. J. Enol. Vitic. 2003, 54, 50–55. [Google Scholar]
- Bezbradica, D.; Obradovic, B.; Leskosek-Cukalovic, I.; Bugarski, B.; Nedovic, V. Immobilization of yeast cells in PVA particles for beer fermentation. Process Biochem. 2007, 42, 1348–1351. [Google Scholar]
- Yu, J.; Zhang, X.; Tan, T. A novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 2007, 129, 415–420. [Google Scholar] [CrossRef]
- Norton, S.; D’Amore, T. Physiological effects of yeast cell immobilization: Applications for brewing. Enzym. Microb. Technol. 1994, 16, 365–375. [Google Scholar] [CrossRef]
- Kostov, G.; Angelov, M.; Mihaylov, I.; Poncelet, D. Mechanical properties of Ca-alginate beads for ethanol fermentation with immobilized yeast. Rev. Génie Ind. 2010, 5, 25–35. [Google Scholar]
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Iglesias, A.; Pascoal, A.; Choupina, A.B.; Carvalho, C.A.; Feás, X.; Estevinho, L.M. Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production. Molecules 2014, 19, 12577-12590. https://doi.org/10.3390/molecules190812577
Iglesias A, Pascoal A, Choupina AB, Carvalho CA, Feás X, Estevinho LM. Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production. Molecules. 2014; 19(8):12577-12590. https://doi.org/10.3390/molecules190812577
Chicago/Turabian StyleIglesias, Antonio, Ananias Pascoal, Altino Branco Choupina, Carlos Alfredo Carvalho, Xesús Feás, and Leticia M. Estevinho. 2014. "Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production" Molecules 19, no. 8: 12577-12590. https://doi.org/10.3390/molecules190812577
APA StyleIglesias, A., Pascoal, A., Choupina, A. B., Carvalho, C. A., Feás, X., & Estevinho, L. M. (2014). Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production. Molecules, 19(8), 12577-12590. https://doi.org/10.3390/molecules190812577