Volatile Compounds and Antioxidant Capacity of the Bio-Oil Obtained by Pyrolysis of Japanese Red Pine (Pinus Densiflora Siebold and Zucc.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties of SBO
Elemental Analysis | Amount |
---|---|
C (%) | 50.6 |
H (%) | 6.9 |
N (%) | 0.7 |
O (by difference) (%) | 41.8 |
Water content (wt%) | 23.6 |
Viscosity (cSt) | 12 |
TAN (mg/g KOH) | 74.4 |
HHV (MJ/kg) | 20.7 |
2.2. Chemical Composition of SBO
No. | SI a | RT b | Compound c | Composition (%) | Identification Method d |
---|---|---|---|---|---|
1 | 554 | 4.15 | 2-Methylfuran | 4.28 | EI-MS |
2 | 676 | 4.45 | Trimethyl orthoacetate | 12.78 | EI-MS |
3 | 773 | 4.70 | Acetol acetate | 1.30 | EI-MS |
4 | 812 | 4.92 | 2,5-Dimethoxytetrahydrofuran | 2.92 | EI-MS |
5 | 823 | 5.35 | 2-Methyl-2-cyclopentenone | 1.17 | EI-MS |
6 | 897 | 5.48 | 2(5H)-Furanone | 1.01 | EI-MS |
7 | 782 | 6.23 | 4-Oxo-5-methoxy-2-penten-5-olide | 8.72 | EI-MS |
8 | 533 | 6.30 | Erythrite tetramethyl ether | 1.38 | EI-MS |
9 | 534 | 6.33 | 2,3,4-Trimethylfuran | 1.07 | EI-MS |
10 | 803 | 7.05 | Phenol | 2.19 | EI-MS |
11 | 600 | 7.63 | Hexanal dimethyl acetal | 0.95 | EI-MS |
12 | 563 | 7.88 | 1,1,N,N-(tetramethylbuta)-1,3-diene-4-amine | 2.08 | EI-MS |
13 | 891 | 8.18 | o-Cresol | 2.79 | EI-MS |
14 | 763 | 8.54 | p-Cresol | 6.02 | EI-MS |
15 | 645 | 8.79 | Benzaldehyde dimethyl acetal | 1.18 | EI-MS |
16 | 455 | 8.89 | Butanoic acid | 1.68 | EI-MS |
17 | 577 | 9.31 | Hexanalldimethyl acetal | 4.90 | EI-MS |
18 | 847 | 9.63 | 2,5-Xylene | 3.20 | EI-MS |
19 | 716 | 10.13 | 4-Ethylresorcinol | 1.32 | EI-MS |
20 | 809 | 10.96 | p-Ethylanisole | 2.62 | EI-MS |
21 | 902 | 11.11 | 5,4-Dimethyl-2-methylbibenzyl | 4.10 | EI-MS |
22 | 684 | 11.66 | 5-(Hydroxymethyl)-2-(dimethoxymethyl) furan | 4.75 | EI-MS |
23 | 671 | 12.19 | 1,3-Bis(trimethylsiloxy)benzene | 2.36 | EI-MS |
24 | 613 | 12.49 | 2-Methoxy-6-(1-propenol) phenol | 2.48 | EI-MS |
25 | 871 | 13.24 | 1,4-Methanoazulene | 8.44 | EI-MS |
26 | 357 | 13.44 | 6-Methyl-4-indanol | 2.60 | EI-MS |
27 | 626 | 14.46 | 4-(Phenylmethyl)benzenemethanol | 2.35 | EI-MS |
28 | 748 | 15.42 | Napthalene | 1.50 | EI-MS |
29 | 493 | 24.28 | Benzenemethanamine | 5.48 | EI-MS |
2.3. DPPH Free Radical Scavenging Activity of SBO
Sample | DPPH Free Radical Scavenging | ABTS Free Radical Scavenging | Hydroxyl Radical Scavenging | Superoxide Anion Scavenging | Nitric Oxide Scavenging |
---|---|---|---|---|---|
SBO | 89.52 * | 94.23 | 48.44 | 136.06 | 362.45 |
Gallic acid | 21.73 | 4.48 | 3.99 | 25.08 | 52.59 |
2.4. ABTS Free Radical Scavenging Activity of SBO
2.5. Hydroxyl Radical Scavenging Activity of SBO
2.6. Superoxide Anion Scavenging Activity of SBO
2.7. Nitric Oxide Scavenging Activity of SBO
2.8. Inhibition of Lipid Peroxidation Activity of SBO
2.9. Reducing Power and Total Phenol Content of SBO
3. Experimental Section
3.1. Materials
3.1.1. Chemicals and Instruments
3.1.2. Production of BO from Japanese Red Pine Sawdust
3.2. Methods
3.2.1. Physical Analysis of SBO
3.2.2. Chemical Analysis of the Volatile Compounds in SBO
3.2.3. Radical Scavenging Potential of SBO
DPPH Radical Scavenging Activity of SBO
ABTS Radical Scavenging Activity of SBO
Hydroxyl Radical Scavenging Activity of SBO
Superoxide Anion Scavenging Activity of SBO
Nitric Oxide Scavenging Activity of SBO
3.2.4. Inhibition of Lipid Peroxidation Activity of SBO
3.2.5. Reducing Power of SBO
3.2.6. Total Phenolic Content of SBO
3.2.7. Statistical Analysis
4. Conclusions
Authors Contributions
Acknowledgment
Conflicts of Interest
References
- Rajamanikandan, S.; Sindhu, T.; Durgapriya, D.; Sophia, D.; Ragavendran, P.; Gopalkrishnan, V.K. Radical scavenging and antioxidant activity of ethanolic extract of Mollugo nudicaulis by in vitro assays. Indian J. Pharm. Educ. Res. 2011, 45, 310–316. [Google Scholar]
- Gulcin, I.; Oktay, M.; Kirecci, E.; Kufrevioglu, O.I. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003, 83, 371–382. [Google Scholar] [CrossRef]
- Yildirim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumaxs crispus L. extracts. J. Agric. Food Chem. 2001, 49, 4083–4089. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Hazra, B.; Sarkar, R.; Biswas, S.; Mandal, N. Assessment of the antioxidant and reactive oxygen species scavenging activity of methanolic extract of Caesalphinia crista leaf. Evid. Based Complement. Altern. Med. 2011, 2011, 173768. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Thitilertdecha, N.; Teerawutgulrag, A.; Rakariyatham, N. Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts. LWT Food Sci. Technol. 2008, 41, 2029–2035. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Sharma, A.; Kim, S.H.; Baek, K.H. Phenolic content and antioxidant capacity of essential oil obtained from sawdust of Chamaecyparis obtusa by microwave-assisted hydrodistillation. Food Technol. Biotechnol. 2013, 51, 360–369. [Google Scholar]
- El, S.N.; Karakaya, S. Radical scavenging and iron chelating activities of some greens used as traditional dishes in Mediterranean diet. Int. J. Food. Sci. Nutr. 2004, 55, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, S.; El, S.N.; Karagozlu, N.; Sxahin, S. Antioxidant and antimicrobial activities of essential oils obtained from oregano (Origanum vulgare ssp. hirtum) by using different extraction methods. J. Med. Food. 2011, 14, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B.; Akpulat, H.A.; Sokmen, M.; Daferera, D.; Yumrutas, O.; Aydin, E.; Polissiou, M.; Sokmen, A. Screening of the antioxidative and antimicrobial properties of the essential oils of Pimpinella anisetum and Pimpinella flabellifolia from Turkey. Food Chem. 2006, 97, 719–724. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Khan, Z.; Kim, S.G.; Baek, N.I.; Kim, Y.H. Evaluation of the biocontrol potential of some medicinal plant materials alone and in combination with Trichoderma harzianum against Rhizoctonia solani AG 2–1. Plant Pathol. J. 2011, 27, 68–77. [Google Scholar] [CrossRef]
- Kim, J.S.; Chung, H.Y. Profiling of volatile components using gas chromatography-mass spectrometry in commercial pine needle (Pinus densiflora S. and Z.) powder. J. Food. Sci. Nutr. 2011, 16, 45–55. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, C.G.; Kang, J.J.; Buglass, A.J.; Lee, G.H. Determination of optimum conditions for the analysis of volatile components in pine needles by double-shot pyrolysis-gas chromatography-mass spectrometry. J. Chromatogr. A 2005, 1089, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.J.; Jung, H.A.; Kang, S.S.; Hwang, G.S.; Choi, J.S. A new abietic acid-type diterpene glucoside from the needles of Pinus densiflora. Arch. Pharm. Res. 2009, 32, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- Young, L.W.; Youngki, P.; Seung, C.H.; Kwon, A.J. Screening of antioxidant activity of domestic trees. Mokchae Konghak 2003, 31, 40–44. [Google Scholar]
- Jiang, Y.; Han, W.; Shen, T.; Wang, M.H. Antioxidant activity and protection from dna damage by water extract from pine (Pinus densiflora) bark. Prev. Nutr. Food Sci. 2012, 17, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Sakagami, H. Ascorbyl radical scavenging activity of polyphenols. Anticancer. Res. 1996, 16, 2885–2890. [Google Scholar] [PubMed]
- Park, Y.S.; Jeon, M.H.; Hwang, H.J.; Park, M.R.; Lee, S.H.; Kim, S.G.; Kim, M. Antioxidant activity and analysis of proanthocyanidins from pine (Pinus densiflora) needles. Nutr. Res. Pract. 2011, 5, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Packer, L.; Rimbach, G.; Virgili, F. Antioxidant activity and biological properties of a procyanidin-rich extract from pine (Pinus maritima) bark, Pycnogenol. Free Radic. Biol. Med. 1999, 27, 704–724. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.J.; Yun, C.H.; Yoon, D.Y.; Cho, Y.S.; Rimbach, G.; Packer, L.; Chung, A.S. Effect of bioflavonoids extracted from the bark of Pinus maritima on proinflammatory cytokine interleukin-1 production in lipopolysaccharide-stimulated RAW 264.7. Toxicol. Appl. Pharmacol. 2000, 168, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Zolfaghari, B. Pharmaceutical and nutraceutical effects of Pinus pinaster bark extract. Res. Pharm. Sci. 2011, 6, 1–11. [Google Scholar] [PubMed]
- Bajpai, V.K.; Sharma, A.; Kim, S.H.; Kim, Y.; Kim, J.J.; Baek, K.H. Microwave-assisted seed essential oil of Eleutherococcus senticosus and its antioxidant and free radical-scavenging activities. J. Food Biochem. 2013, 37, 119–127. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel: A Realistic Fuel Alternative for Diesel Engines; Springer-Verlag London Limited: London, UK, 2007. [Google Scholar]
- Lemoine, F.; Maupin, I.; Lemee, L.; Lavoie, J.M.; Lemberton, J.L.; Pouilloux, Y.; Pinard, L. Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae. Bioresour. Technol. 2013, 142, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fiege, H. Cresols and Xylenols. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlas GmbH & Co.: Weinhenim, Germany, 2000. [Google Scholar]
- Lee, J.C.; Song, I.G.; Park, J.Y. Microwave promoted facile synthesis of methyl and ethyl carboxylates. Synth. Commun. 2002, 32, 2209–2213. [Google Scholar] [CrossRef]
- Li, N.G.; Shi, Z.H.; Tang, Y.P.; Li, B.Q.; Duan, J.A. Highly efficient esterification of ferulic acid under microwave irradiation. Molecules 2009, 14, 2118–2126. [Google Scholar] [CrossRef] [PubMed]
- Elavarasan, P.; Kondamudi, K.; Upadhyayula, S. Synthesis of antioxidants: Green chemistry route. Int. J. Chem. Sci. 2010, 8, S578–S584. [Google Scholar]
- Bedmutha, R.; Booker, C.J.; Ferrante, L.; Briens, C.; Berruti, F.; Yeung, K.K.C.; Scott, I.; Conn, K. Insecticidal and bactericidal characteristics of the bio-oil from the fast pyrolysis of coffee grounds. J. Anal. Appl. Pyrol. 2011, 90, 224–231. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, S.; Xu, G.; Cai, Q. Upgrading of bio-oil molecular distillation fraction with solid acid catalyst. BioResources 2011, 6, 2539–2550. [Google Scholar]
- Hamieh, S.; Beauchet, R.; Lemee, L.; Toufaily, J.; Koubaissy, B.; Hamieh, T.; Pouilloux, Y.; Pinard, L. Bio-oil synthesis by coupling biological biomass pretreatment and catalytic hydroliquefaction process. Bioresour. Technol. 2014, 156, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Phukan, M.M.; Chutia, R.S.; Kumar, R.; Kalita, D.; Konwar, B.K.; Kataki, R. Assessment of antimicrobial activity of bio-oil from Pongamia glabra, Mesua ferrea and Parachlorella spp deoiled cake. Int. J. Pharm. Biol. Sci. 2013, 4, 910–918. [Google Scholar]
- Marshall, A.J. Commercial Application of Pyrolysis Technology in Agriculture; Ontario Federation of Agriculture. Ontario AgriCentre: Guelph, ON, Canada, 2013. [Google Scholar]
- Ksouri, R.; Falleh, H.; Megdiche, W.; Trabelsi, N.; Mhamdi, B.; Chaieb, K.; Bakrouf, A.; Magne, C.; Abdelly, C. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol. 2009, 47, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Bridgwater, A.V.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass. Org. Geochem. 1999, 30, 1479–1493. [Google Scholar] [CrossRef]
- Oasmaa, A.; Elliott, D.C.; Korhonen, J. Acidity of biomass fast pyrolysis bio-oils. Energy Fuels 2010, 24, 6548–6554. [Google Scholar] [CrossRef]
- Dobele, G.; Dizhbite, T.; Ponomarenko, J.; Urbanovich, I.; Kreicberga, J.; Valdis, K. Isolation and characterization of the phenolic fractions of wood pyrolytic oil. Holzforschung 2011, 65, 503–510. [Google Scholar] [CrossRef]
- Tessarola, N.S.; Dos-Santos, L.R.M.; Silva, R.S.F.; Azevedo, D.A. Chemical characterization of bio-oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J. Chromatogr. A 2013, 1279, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Hu, X.; Li, W.; Shi, Y. Preparation and characterization of bio-oil from biomass. In Progress in Biomass and Bioenergy Production; Shaukat, S.S., Ed.; InTech Publisher: Rijeka, Croatia, 2011; pp. 197–222. [Google Scholar]
- Wildschut, J. Pyrolysis oil Upgrading to Transportation Fuels by Catalytic Hydrotreatmen. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2009. [Google Scholar]
- Hoyle, W.; Roberts, G.P. Potential antimicrobial furans. J. Med. Chem. 1973, 16, 709–710. [Google Scholar] [CrossRef] [PubMed]
- Meotti, F.C.; Silva, D.O.; Dos-Santos, A.R.S.; Zeni, G.; Rocha, J.B.T.; Nogueira, C.W. Thiophenes and furans derivatives: A new class of potential pharmacological agents. Environ. Toxicol. Pharmacol. 2003, 15, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Pandeya, S.N.; Sinha, S. Synthesis and biological activities of furan derivatives. Int. J. Res. Ayurveda Pharm. 2011, 2, 1110–1116. [Google Scholar]
- Lam, R.Y.Y.; Lin, Z.X.; Sviderskaya, E.V.; Cheng, C.H.K. Mechanistic studies of anti-hyperpigmentary compounds: Elucidating their inhibitory and regulatory actions. Int. J. Mol. Sci. 2014, 15, 14649–14668. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Eom, I.Y.; Lee, S.M.; Choi, D.; Yeo, H.; Choi, I.G.; Choi, J.W. Investigation of physicochemical properties of bio-oils produced from yellow poplar wood (Liriodendron tulipifera) at various temperatures and residence times. J. Anal. Appl. Pyrol. 2011, 92, 2–9. [Google Scholar] [CrossRef]
- Syazana, M.S.N.; Halim, A.S.; Gan, S.H.; Shamsuddin, S. Antiproliferative effect of methanolic extraction of tualang honey on human keloid fibroblasts. BMC Complement. Altern. Med. 2011, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Ensyn Group, Inc. Available online: www.ensyn.com/ (accessed on 28 February 2015).
- Moraes, M.S.A.; Migliorini, M.V.; Damasceno, F.C.; Georges, F.; Almeida, S.; Zini, C.A.; Jacques, R.A.; Caramao, E.B. Qualitative analysis of bio oils of agricultural residues obtained through pyrolysis using comprehensive two dimensional gas chromatography with time-of-flight mass spectrometric detector. J. Anal. Appl. Pyrol. 2012, 98, 51–64. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Adedapo, A.A.; Jimoh, F.O.; Afolayan, A.J.; Masika, P.J. Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera. BMC Complement. Altern. Med. 2008, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Abed, N.E.; Kaabi, B.; Smaali, M.I.; Chabbouh, M.; Habibi, K.; Mejri, M.; Marzouki, M.N.; Ahmed, S.B.H. Chemical Composition, Antioxidant and Antimicrobial Activities of Thymus capitata Essential Oil with Its Preservative Effect against Listeria monocytogenes Inoculated in Minced Beef Meat. Evid. Based Complement. Altern. Med. 2014, 2014, 11. [Google Scholar]
- Gursoy, N.; Tepe, B.; Akpulat, H.A. Chemical composition and antioxidant activity of the essential oils of Salvia palaestina (Bentham) and S. ceratophylla (L.). Rec. Nat. Prod. 2012, 6, 278–287. [Google Scholar]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanism of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Ogunjobi, J.K.; Lajide, L. Characterisation of Bio-Oil and Bio-Char from Slow-Pyrolysed Nigerian Yellow and White Corn Cobs. J. Sustain. Energy Environ. 2013, 4, 77–84. [Google Scholar]
- Halliwell, B.; Gutteridge, J. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Glynn, S.; Santana, W.F.; Switzer, C.; Ridnour, L.; Wink, D.A. Nitric oxide and redox inflammation in cancer. Adv. Mol. Toxicol. 2010, 4, 157–182. [Google Scholar]
- Cals-Grierson, M.M.; Ormerod, A.D. Nitric oxide function in the skin. Nitric Oxide 2004, 10, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Soneja, A.; Drews, M.; Malinski, T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol. Rep. 2005, 57, 108–119. [Google Scholar] [PubMed]
- Royer, M.; Prado, M.; Garcia-Perez, M.E.; Diouf, P.N.; Stevanovic, T. Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. Pharm. Nutr. 2013, 1, 158–167. [Google Scholar]
- Sun, Y.E.; Wang, W.D.; Chen, H.W.; Li, C. Autoxidation of unsaturated lipids in food emulsion. Crit. Rev. Food Sci. Nutr. 2011, 51, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Dauqan, E.M.A.; Abdullah, A.; Sani, H.A. Natural antioxidants, lipid profile, lipid peroxidation, antioxidant enzymes of different vegetable oils. Adv. J. Food Sci. Technol. 2011, 3, 308–316. [Google Scholar]
- Kohen, R. Skin antioxidants: Their role in aging and in oxidative stress—New approaches for their evaluation. Biomed. Pharmacol. 1999, 53, 181–192. [Google Scholar] [CrossRef]
- Sasipriya, G.; Siddhuraju, P. Effect of different processing methods on antioxidant activity of underutilized legumes, Entada scandens seed kernel and Canavalia gladiate seeds. Food Chem. Toxicol. 2012, 50, 2864–2872. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.F.; Yih, K.H.; Huang, K.F. Comparative study of the antioxidant activity of forty-five commonly used essential oils and their potential active components. J. Food Drug Anal. 2010, 18, 24–33. [Google Scholar]
- Radlein, D. The production of chemicals from fast pyrolysis bio-oils. In Fast Pyrolysis of Biomass; Bridgewater, A., Ed.; CPL Press: Newbury, UK, 1999. [Google Scholar]
- Kunyanga, C.N.; Imungi, J.K.; Okoth, M.W.; Biesalski, H.K.; Vadivel, V. Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT Food Sci. Technol. 2012, 45, 269–276. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Barlow, P.J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004, 88, 411–417. [Google Scholar] [CrossRef]
- Bursal, E.; Gulcin, I. Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res. Int. 2011, 44, 1482–1489. [Google Scholar] [CrossRef]
- Stevanovic, T.; Diouf, P.N.; Garcia-Perez, M.E. Bioactive polyphenols from healthy diets and forest biomass. Curr. Nutr. Food Sci. 2010, 5, 264–295. [Google Scholar] [CrossRef]
- Jadhav, S.J.; Nimbalkar, S.S.; Kulkarni, A.D.; Madhavi, D.L. Lipid oxidation in biological and food systems. In Food Antioxidants: Technological, Toxicological, and Health Perspectives; Madhavi, D.L., Deshpande, S.S., Salunkhe, D.K., Eds.; Marcel Dekker: New York, NY, USA, 1996; pp. 5–63. [Google Scholar]
- Hwang, H.; Shinyoung, O.; Cho, T.S.; Choi, I.G.; Choi, J.W. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products. Bioresour. Technol. 2013, 150, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Sheng, C.; Azevedo, J.L.T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2001. [Google Scholar]
- ACD/ChemSketch for Academic and Personal Use. Available online: http://www.acdlabs.com/resources/freeware/chemsketch/ (accessed on 28 February 2015).
- Braca, A.; Tommasi, N.D.; Bari, L.D.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Elizabeth, K.; Rao, M.N.A. Oxygen radical scavenging activity of curcumin. Int. J. Pharm. 1990, 58, 237–240. [Google Scholar] [CrossRef]
- Fontana, M.; Mosca, L.; Rosei, M.A. Interaction of enkephalines with oxyradicals. Biochem. Pharmacol. 2001, 61, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Zarka, R.; De las Heras, B.; Hoult, J.R.S. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 1995, 61, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on product of browning reactions prepared from glucose amine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolic and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effects of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Bio-oil samples are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patra, J.K.; Kim, S.H.; Hwang, H.; Choi, J.W.; Baek, K.-H. Volatile Compounds and Antioxidant Capacity of the Bio-Oil Obtained by Pyrolysis of Japanese Red Pine (Pinus Densiflora Siebold and Zucc.). Molecules 2015, 20, 3986-4006. https://doi.org/10.3390/molecules20033986
Patra JK, Kim SH, Hwang H, Choi JW, Baek K-H. Volatile Compounds and Antioxidant Capacity of the Bio-Oil Obtained by Pyrolysis of Japanese Red Pine (Pinus Densiflora Siebold and Zucc.). Molecules. 2015; 20(3):3986-4006. https://doi.org/10.3390/molecules20033986
Chicago/Turabian StylePatra, Jayanta Kumar, Sung Hong Kim, Hyewon Hwang, Joon Weon Choi, and Kwang-Hyun Baek. 2015. "Volatile Compounds and Antioxidant Capacity of the Bio-Oil Obtained by Pyrolysis of Japanese Red Pine (Pinus Densiflora Siebold and Zucc.)" Molecules 20, no. 3: 3986-4006. https://doi.org/10.3390/molecules20033986
APA StylePatra, J. K., Kim, S. H., Hwang, H., Choi, J. W., & Baek, K. -H. (2015). Volatile Compounds and Antioxidant Capacity of the Bio-Oil Obtained by Pyrolysis of Japanese Red Pine (Pinus Densiflora Siebold and Zucc.). Molecules, 20(3), 3986-4006. https://doi.org/10.3390/molecules20033986