Synthesis, Photophysical Characterization, and Photoinduced Antibacterial Activity of Methylene Blue-loaded Amino- and Mannose-Targeted Mesoporous Silica Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis, Functionalization, and Loading of MB onto Mesoporous Silica Nanoparticles
Size/nm | ζ-potential/mV | MB-LR (%) | |
---|---|---|---|
MSNP | 160 | −40 | |
AMSNP-MB | 200 | −25 | 73 |
MMSNP-MB | 180 | −20 | 94 |
2.2. Photophysical Properties of MB-Loaded Nanoparticles
2.2.1. Absorption and Fluorescence Spectra
2.2.2. Fluorescence Kinetics
Component | τF/ns | Amplitude (%) | |
---|---|---|---|
MB | 1 | 0.8 | 100 |
2 | --- | --- | |
AMSNP-MB | 1 | 0.8 | 33 |
2 | 1.5 | 67 | |
MMSNP-MB | 1 | 0.7 | 13 |
2 | 1.4 | 87 |
2.2.3. Near-Infrared Phosphorescence Decays
2.3. Photodynamic Inactivation of Gram-Negative Bacteria
2.4. Discussion
3. Experimental Section
3.1. Chemicals
3.2. Synthesis and Functionalization of Mesoporous Silica Nanoparticles
3.2.1. Synthesis of N-(d-Mannose)-N'-(3-(triethoxysilyl)propyl))-urea and 3-(Triethoxysilyl)propyl isocyanate in 1:3 Molar Ratio
3.2.2. Synthesis of MSNP
3.2.3. Synthesis of AMSNP
3.2.4. Synthesis of MMSNP
3.2.5. Loading of MB onto MSNP, AMSNP, or MMSNP
3.3. Techniques for the Characterization of Nanostructures
3.3.1. Determination of the Size, ζ-Potential, and Infrared Spectra of MSNP
3.3.2. Quantification of the MB Loading
3.4. Spectroscopic Techniques
3.5. Microbial Techniques
3.5.1. Microbial Strains and Growth Conditions
3.5.2. Photodynamic Inactivation Procedure
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- St Denis, T.G.; Dai, T.; Izikson, L.; Astrakas, C.; Anderson, R.R.; Hamblin, M.R.; Tegos, G.P. All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2011, 2, 509–520. [Google Scholar]
- Tegos, G.P.; Mylonakis, E. Antimicrobial Drug Discovery; Tegos, G.P., Mylonakis, E., Eds.; CAB International: Oxfordshire, UK, 2012; pp. 1–357. [Google Scholar]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar]
- Pedigo, L.A.; Gibbs, A.J.; Scott, R.J.; Street, C.N. Absence of bacterial resistance following repeat exposure to photodynamic therapy. In Photodynamic Therapy: Back to the Future; Kessel, D.H., Ed.; SPIE: Bellingham, WA, USA, 2009; Volume 7380, p. 73803H. [Google Scholar]
- Giuliani, F.; Martinelli, M.; Cocchi, A.; Arbia, D.; Fantetti, L.; Roncucci, G. In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrob. Agents Chemother. 2010, 54, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.; Tome, J.P.; Neves, M.G.; Tome, A.C.; Cavaleiro, J.A.; Faustino, M.A.; Cunha, A.; Gomes, N.C.; Almeida, A. Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Res. 2011, 91, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, S.A.; Demidova, T.N.; Aalders, M.C.; Hasan, T.; Hamblin, M.R. Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem. Photobiol. Sci. 2005, 4, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Tegos, G.P.; Hamblin, M.R. Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob Agents Chemother 2006, 50, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Ragàs, X.; Dai, T.; Tegos, G.P.; Agut, M.; Nonell, S.; Hamblin, M.R. Photodynamic inactivation of Acinetobacter baumannii using phenothiazinium dyes: in vitro and in vivo studies. Lasers Surg. Med. 2010, 42, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Ragàs, X.; Agut, M.; Nonell, S. Singlet oxygen in Escherichia coli: New insights for antimicrobial photodynamic therapy. Free Radic. Biol. Med. 2010, 49, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Mantareva, V.; Kussovski, V.; Angelov, I.; Wohrle, D.; Dimitrov, R.; Popova, E.; Dimitrov, S. Non-aggregated Ga(III)-phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms. Photochem. Photobiol. Sci. 2011, 10, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Ragàs, X.; Sánchez-García, D.; Ruiz-González, R.; Dai, T.; Agut, M.; Hamblin, M.R.; Nonell, S. Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy. J. Med. Chem. 2010, 53, 7796–7803. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Hamblin, M.R.; Kishen, A. Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochem. Photobiol. Sci. 2009, 8, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Ragàs, X.; He, X.; Agut, M.; Roxo-Rosa, M.; Gonsalves, A.R.; Serra, A.C.; Nonell, S. Singlet oxygen in antimicrobial photodynamic therapy: photosensitizer-dependent production and decay in E. coli. Molecules 2013, 18, 2712–2725. [Google Scholar] [CrossRef]
- Planas, O.; Boix-Garriga, E.; Rodríguez-Amigo, B.; Torra, J.; Bresolí-Obach, R.; Flors, C.; Viappiani, C.; Agut, M.; Ruiz-González, R.; Nonell, S. Chapter 9: Newest approaches to singlet oxygen photosensitisation in biological media. In Photochemistry; Fasani, E., Albini, A., Eds.; Photochemistry; Royal Society of Chemistry: Cambridge, UK, 2015; Volume 42, pp. 233–278. [Google Scholar]
- Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, A.; Morales, J.; Comas-Barceló, J.; Gallavardin, T.; Acedo, P.; Villanueva, Á.; Nonell, S. Silica-based nanostructured materials for biomedical applications. In Applications of Nanoscience to Photomedicine; Hamblin, M.R., Avci, P., Eds.; Chandos Publishing: Witney, Oxford, UK, 2015; pp. 425–444. [Google Scholar]
- Brevet, D.; Gary-Bobo, M.; Raehm, L.; Richeter, S.; Hocine, O.; Amro, K.; Loock, B.; Couleaud, P.; Frochot, C.; Morère, A.; et al. Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem. Commun. 2009, 12, 1475–1477. [Google Scholar]
- Hocine, O.; Gary-Bobo, M.; Brevet, D.; Maynadier, M.; Fontanel, S.; Raehm, L.; Richeter, S.; Loock, B.; Couleaud, P.; Frochot, C.; et al. Silicalites and Mesoporous Silica Nanoparticles for photodynamic therapy. Int. J. Pharm. 2010, 402, 221–230. [Google Scholar]
- Gary-Bobo, M.; Mir, Y.; Rouxel, C.; Brevet, D.; Basile, I.; Maynadier, M.; Vaillant, O.; Mongin, O.; Blanchard-Desce, M.; Morère, A.; Garcia, M.; et al. Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew. Chem. Int. Ed. Engl. 2011, 50, 11425–11429. [Google Scholar]
- Irache, J.M.; Salman, H.H.; Gamazo, C.; Espuelas, S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin. Drug Deliv. 2008, 5, 703–724. [Google Scholar] [CrossRef] [PubMed]
- Comas-Barceló, J.; Rodríguez-Amigo, B.; Abbruzzetti, S.; del Rey-Puech, P.; Agut, M.; Nonell, S.; Viappiani, C. A self-assembled nanostructured material with photosensitising properties. RSC Adv. 2013, 3, 17874–17879. [Google Scholar] [CrossRef]
- Rodríguez-Amigo, B.; Delcanale, P.; Rotger, G.; Juárez-Jiménez, J.; Abbruzzetti, S.; Summer, A.; Agut, M.; Luque, F.J.; Nonell, S.; Viappiani, C. The complex of hypericin with β-lactoglobulin has antimicrobial activity with potential applications in dairy industry. J. Dairy Sci. 2015, 98, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Jockusch, S.; Turro, N.J.; Tomalia, D.A. Aggregation of methylene blue adsorbed on starburst dendrimers. Macromolecules 1995, 28, 7416–7418. [Google Scholar] [CrossRef]
- Nonell, S.; Braslavsky, S.E. Time-resolved singlet oxygen detection. Methods Enzymol. 2000, 319, 37–49. [Google Scholar] [PubMed]
- Torra, J.; Burgos-Caminal, A.; Endres, S.; Wingen, M.; Drepper, T.; Gensch, T.; Ruiz-González, R.; Nonell, S. Singlet oxygen photosensitisation by the fluorescent protein Pp2FbFP L30M, a novel derivative of Pseudomonas putida flavin-binding Pp2FbFP. Photochem. Photobiol. Sci. 2015, 14, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, F.; Brummer, J.G. Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 1981, 24, 809–999. [Google Scholar] [CrossRef]
- Wilkinson, F.; Helman, W.P.; Ross, A.B. Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data 1995, 24, 663–677. [Google Scholar] [CrossRef]
- Young, R.H.; Martin, R.L.; Feriozi, D.; Brewer, D.; Kayser, R. On the mechanism of quenching singlet oxygen by amines—III. Evidence for a charge-transfer-like complex. Photochem. Photobiol. 1973, 17, 233–244. [Google Scholar]
- Monroe, B.M. Quenching of singlet oxygen by aliphatic amines. J. Phys. Chem. 1977, 81, 1861–1864. [Google Scholar] [CrossRef]
- Iu, K.; Thomas, J.K. Quenching of singlet molecular oxygen (1∆gO2) in silica gel-solvent heterogeneous system II. A direct time-resolved study. J. Photochem. Photobiol. A 1993, 71, 55–60. [Google Scholar] [CrossRef]
- Cojocaru, B.; Laferrière, M.; Carbonell, E.; Parvulescu, V.; García, H.; Scaiano, J.C. Direct time-resolved detection of singlet oxygen in zeolite-based photocatalysts. Langmuir 2008, 42, 4478–4481. [Google Scholar] [CrossRef]
- Sample Availability: Samples are not available from authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Planas, O.; Bresolí-Obach, R.; Nos, J.; Gallavardin, T.; Ruiz-González, R.; Agut, M.; Nonell, S. Synthesis, Photophysical Characterization, and Photoinduced Antibacterial Activity of Methylene Blue-loaded Amino- and Mannose-Targeted Mesoporous Silica Nanoparticles. Molecules 2015, 20, 6284-6298. https://doi.org/10.3390/molecules20046284
Planas O, Bresolí-Obach R, Nos J, Gallavardin T, Ruiz-González R, Agut M, Nonell S. Synthesis, Photophysical Characterization, and Photoinduced Antibacterial Activity of Methylene Blue-loaded Amino- and Mannose-Targeted Mesoporous Silica Nanoparticles. Molecules. 2015; 20(4):6284-6298. https://doi.org/10.3390/molecules20046284
Chicago/Turabian StylePlanas, Oriol, Roger Bresolí-Obach, Jaume Nos, Thibault Gallavardin, Rubén Ruiz-González, Montserrat Agut, and Santi Nonell. 2015. "Synthesis, Photophysical Characterization, and Photoinduced Antibacterial Activity of Methylene Blue-loaded Amino- and Mannose-Targeted Mesoporous Silica Nanoparticles" Molecules 20, no. 4: 6284-6298. https://doi.org/10.3390/molecules20046284
APA StylePlanas, O., Bresolí-Obach, R., Nos, J., Gallavardin, T., Ruiz-González, R., Agut, M., & Nonell, S. (2015). Synthesis, Photophysical Characterization, and Photoinduced Antibacterial Activity of Methylene Blue-loaded Amino- and Mannose-Targeted Mesoporous Silica Nanoparticles. Molecules, 20(4), 6284-6298. https://doi.org/10.3390/molecules20046284