Overview of Methods for the Direct Molar Mass Determination of Cellulose
Abstract
:1. Introduction
1.1. Something about Cellulose
1.2. How to Define Polymer Molecules—Average Values
1.3. An Important Requirement—Dissolving Cellulose
2. How to Measure Molecular Weights
2.1. End Group Method
2.2. Osmotic Pressure
2.3. Ultracentrifugation
2.4. The Viscosity of Cellulose Solutions
2.5. Light Scattering Methods
- the concentration of solution c;
- the specific refractive increment obtained at chemical equilibrium dn/dc or, more accurately, (dn/dc)µ;
- the molecular weight of dissolved particles (M);
- Scattering angle θ.
2.6. Separating by Size—Size Exclusion Chromatography
2.7. A Powerful Combination: SEC-MALLS
- A lack of studies on the elution behavior of cellulose in which the degree of oxidation and the content of hemicelluloses and lignin are considered;
- Optimization of the salt concentration in order to eliminate all distorting interactions such as macromolecule interactions and polyelectrolytes;
- Re-examination of the SEC mechanism of the calibrants pullulan and polystyrene;
- Correct Mark-Houwink constants for cellulose in DMAc/x*LiCl/y*H2O at given temperatures;
- Experimental proof of the validity of the universal calibration;
2.8. The Gloomy Part—Capturing the Low Molecular Weight Region
2.9. Evaluation of MWD Curves
3. Conclusions and Outlook
Author Contributions
Conflicts of Interest
References
- Wertz, J.L.; Bédué, O.; Mercier, J.P. Cellulose Science and Technology; EPFL Press: Lausanne, Switzerland, 2010; p. 21. [Google Scholar]
- Staudinger, H. Über Polymerisation. Ber. Dt. Chem. Ges. 1920, 53, 1073–1085. [Google Scholar] [CrossRef]
- Deußing, G.; Weber, M. Das Leben des Hermann Staudinger. Available online: http://www.k-online.de/cipp/md_k/custom/pub/content,oid,40071/lang,1/ticket,g_u_e_s_t/~/Das_Leben_des_Hermann_Staudinger_-_Teil_3._Die_Jahre_1933-1945.html (accessed on 7 July 2014).
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: New York, NY, USA, 1953; pp. 21–25. [Google Scholar]
- Staudinger, H. Viscosity investigations for the examination of the constitution of natural products of high molecular weight and of rubber and cellulose. Trans. Faraday Soc. 1933, 29, 18–32. [Google Scholar] [CrossRef]
- Nevell, T.P.; Zeronian, S.H. Cellulose Chemistry and Its Applications; Ellis Horwood Limited: New York, NY, USA, 1985. [Google Scholar]
- Dawsey, T.R.; McCormick, C.L. The lithium chloride/dimethylacetamide solvent for cellulose: A literature review. J. Macromol. Sci. Polym. Rev. 1990, 30, 405–440. [Google Scholar] [CrossRef]
- Striegel, A.M. Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl. J. Chil. Chem. Soc. 2003, 48, 73–77. [Google Scholar] [CrossRef]
- Lindman, B.; Karlström, G.; Stigsson, L. On the mechanism of dissolution of cellulose. J. Mol. Liq. 2010, 156, 76–81. [Google Scholar] [CrossRef]
- Heinze, T.; Koschella, A. Solvents applied in the field of cellulose chemistry: A mini review. Polímeros 2005, 15, 84–90. [Google Scholar] [CrossRef]
- Schweizer, E. Ueber das unterschwefelsaure Kupferoxyd-Ammoniak und die ammoniakbasischen Metallsalze überhaupt. J. Prakt. Chem. 1856, 67, 430–444. [Google Scholar] [CrossRef]
- Schweizer, E. Das Kupferoxyd-Ammoniak, ein Auflösungsmittel für die Pflanzenfaser. J. Prakt. Chem. 1857, 72, 109–111. [Google Scholar] [CrossRef]
- Kauffman, G.B. Eduard Schweizer (1818–1860): The unknown chemist and his well-known reagent. J. Chem. Educ. 1984, 61, 1095. [Google Scholar] [CrossRef]
- ISO: Determination of Limiting Viscosity Number in Cupri-Ethylenediamine (CED) Solution; ISO 5351; ISO: Geneva, Switzerland, 2010.
- ASTM: Standard Test Method for Intrinsic Viscosity of Cellulose; American Society for Testing and Materials: West Conshohocken, PA, USA, 2001.
- TAPPI: Viscosity of Pulp; Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 2013.
- McCormick, C.L.; Callais, P.A.; Hutchinson, B.H. Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 1985, 18, 2394–2401. [Google Scholar] [CrossRef]
- Ekmanis, J.L. GPC analysis of cellulose. Polym. Notes Waters 1986, 3, 1. [Google Scholar]
- Jerosch, H.; Lavédrine, B.; Cherton, J.C. Study of the stability of cellulose-holocellulose solutions in N,N-dimethylacetamide-lithium chloride by size exclusion chromatography. J. Chromatogr. A 2001, 927, 31–38. [Google Scholar] [CrossRef]
- Strlic, M.; Kolenc, J.; Kolar, J.; Pihlar, B. Enthalpic interactions in size exclusion chromatography of pullulan and cellulose in LiCl-N,N-dimethylacetamide. J. Chromatogr. A 2002, 964, 47–54. [Google Scholar] [CrossRef]
- Potthast, A.; Rosenau, T.; Buchner, R.; Röder, T.; Ebner, G.; Bruglachner, H.; Sixta, H.; Kosma, P. The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited: The effect of water on physicochemical properties and chemical stability. Cellulose 2002, 9, 41–53. [Google Scholar] [CrossRef]
- Gränacher, C.; Sallmann, R. Cellulose solutions and Process of making Same. U.S. Patent 2179181 A, 7 November 1939. [Google Scholar]
- Eckelt, J.; Knopf, A.; Röder, T.; Weber, H.K.; Sixta, H.; Wolf, B.A. Viscosity-molecular weight relationship for cellulose solutions in either NMMO monohydrate or cuen. J. Appl. Polym. Sci. 2011, 119, 670–676. [Google Scholar] [CrossRef]
- Klemm, D. Comprehensive Cellulose Chemistry: Functionalization of Cellulose; Wiley-VCH: Weinheim, Germany, 1998. [Google Scholar]
- Evans, R.; Wearne, R.H.; Wallis, A.F.A. Molecular weight distribution of cellulose as its tricarbanilate by high performance size exclusion chromatography. J. Appl. Polym. Sci. 1989, 37, 3291–3303. [Google Scholar] [CrossRef]
- Lauriol, J.M.; Froment, P.; Pla, F.; Robert, A. Molecular weight distribution of cellulose by on-online size exclusion chromatography—Low angle laser light scattering part I: basic experiments and treatment of data. Holzforschung 1985, 41, 109–113. [Google Scholar] [CrossRef]
- Staudinger, H.; Schweitzer, O. Über hochpolymere Verbindungen, 48. Mitteil.: Über die Molekülgröße der Cellulose. Ber. Dt. Chem. Ges. 1930, 63, 3132–3154. [Google Scholar] [CrossRef]
- Potthast, A.; Radosta, S.; Saake, B.; Lebioda, S.; Heinze, T.; Henniges, U.; Isogai, A.; Koschella, A.; Kosma, P.; Rosenau, T.; et al. Comparison testing of methods for gel permeation chromatography of cellulose: Coming closer to a standard protocol. Cellulose 2015. [Google Scholar] [CrossRef]
- Terbojevich, M.; Cosani, A.; Conio, G.; Ciferri, A.; Blanchi, E. Mesophase formation and chain rigidity in cellulose and derivatives. 3. Aggregation of cellulose in N,N-dimethylacetamide-lithium chloride. Macromolecules 1985, 18, 640–646. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kuramae, R.; Yanagisawa, M.; Ishii, D.; Isogai, A. Light-scattering analysis of native wood holocelluloses totally dissolved in LiCl-DMI solutions: high probability of branched structures in inherent cellulose. Biomacromolecules 2011, 12, 3982–3988. [Google Scholar] [CrossRef] [PubMed]
- Röder, T.; Potthast, A.; Rosenau, T.; Kosma, P.; Baldinger, T.; Morgenstern, B.; Glatter, O. The effect of water on cellulose solutions in DMAc/LiCl. Macromol. Symp. 2002, 190, 151–159. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kato, Y.; Yoshida, Y.; Isogai, A. SEC-MALS study on aggregates of chitosan molecules in aqueous solvents: Influence of residual N-acetyl groups. Carbohydr. Polym. 2006, 66, 192–198. [Google Scholar] [CrossRef]
- Anthonsen, M.W.; Vårum, K.M.; Hermansson, A.M.; Smidsrød, O.; Brant, D.A. Aggregates in acidic solutions of chitosans detected by static laser light scattering. Carbohydr. Polym. 1994, 25, 13–23. [Google Scholar] [CrossRef]
- Potthast, A. University of Natural Resources and Life Sciences, Vienna, Austria. Unpublished data. 2015. [Google Scholar]
- Röder, T.; Morgenstern, B.; Schelosky, N.; Glatter, O. Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 2001, 42, 6765–6773. [Google Scholar] [CrossRef]
- Röder, T.; Morgenstern, B.; Glatter, O. Light scattering studies on solutions of cellulose in N,N-dimethylacetamid/lithium chlorid. Lenzinger Ber. 2000, 79, 97–101. [Google Scholar]
- Röder, T.; Möslinger, R.; Mais, U.; Morgenstern, B.; Otto, G. Charakterisierung der Lösungsstrukturen in technisch relevanten Celluloselösungen (Characterizing the solution structure of technically relevant cellulose solutions). Lenzinger Ber. 2003, 82, 118–127. [Google Scholar]
- Röder, T.; Morgenstern, B.; Glatter, O. Polarized and depolarised light scattering on solutions of cellulose in N,N-dimethylacetamide/lithium chloride. Macromol. Symp. 2000, 162, 87–94. [Google Scholar] [CrossRef]
- Fleury, E.; Dubois, J.; Léonard, C.; Joseleau, J.P.; Chanzy, H. Microgels and ionic associations in solutions of cellulose diacetate. Cellulose 1994, 1, 131–144. [Google Scholar] [CrossRef]
- Funaki, Y.; Ueda, K.; Saka, S.; Soejima, S. Characterization of cellulose acetate in acetone solution. Studies on prehump II in GPC pattern. J. App. Polym. Sci. 1993, 48, 419–424. [Google Scholar] [CrossRef]
- Alexander, W.J.; Muller, T.E. Evaluation of pulps, rayon fibers, and cellulose acetate by GPC and other fractionation methods. Sep. Sci. 1971, 6, 47–71. [Google Scholar] [CrossRef]
- Cowie, J.M.G.; Arrighi, V. Polymers: Chemistry and Physics of Modern Materials; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Staudinger, H.; Eder, K. Über das Viskositätsgesetz für Fadenmoleküle. Naturwissenschaften 1941, 29, 221–221. [Google Scholar] [CrossRef]
- Weber, O.H.; Husemann, E. Über Zusammenhänge zwischen Carboxylgehalt und Polymerisationsgrad von Cellulosen bei der Vorreife der Viscose und der Chlorbleiche. J. Prakt. Chem. 1942, 161, 20–29. [Google Scholar] [CrossRef]
- Husemann, E.; Weber, O.H. Bestimmung des Molekulargewichtes von Cellulosen nach einer Endgruppenmethode. Naturwissenschaften 1942, 30, 280–281. [Google Scholar] [CrossRef]
- Arndt, K.F.; Müller, G. Polymercharakterisierung; Hanser: München, Germany, 1996. [Google Scholar]
- Hunt, J.; James, M.I. Polymer Characterization; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Schulz, G.V. Zur Methodik der Berechnung von Molekulargewichten aus osmotischen Daten. Mitteilung aus dem Institut für physikalische Chemie der Universität Rostock 1942, 161, 147–162. [Google Scholar] [CrossRef]
- Nair, P.R.M.; Gohil, R.M.; Patel, K.C.; Patel, R.D. Solution properties of cellulose triacetate. I. Method of fractionation and light scattering, osmometry, viscometry on dilute solutions. Eur. Polym. J. 1977, 13, 273–276. [Google Scholar] [CrossRef]
- Masson, C.R.; Melville, H.W. Osmometry of high polymer solutions. II. Osmotic measurements using bacterial cellulose membranes. J. Polym. Sci. 1949, 4, 337–350. [Google Scholar] [CrossRef]
- Striegel, A.M. Mid-chain grafting in PVB-graft-PVB. Polym. Int. 2004, 53, 1806–1812. [Google Scholar] [CrossRef]
- Immergut, E.H.; Ranby, B.G.; Mark, H.F. Recent work on molecular weight of cellulose. Ind. Eng. Chem. 1953, 45, 2483–2490. [Google Scholar] [CrossRef]
- Immergut, E.H.; Schurz, J.; Mark, H. Viskositätszahl-Molekulargewichts-Beziehung für Cellulose und Untersuchungen von Nitrocellulose in verschiedenen Lösungsmitteln. Monatsh. Chem. 1953, 84, 219–249. [Google Scholar] [CrossRef]
- Kamide, K.; Terakawa, T.; Uchiki, H. Molecular weight determination of macromolecules by vapor pressure osmometry. Makromolekul. Chem. 1976, 177, 1447–1464. [Google Scholar] [CrossRef]
- Kamide, K.; Saito, M. Cellulose and cellulose derivatives: Recent advances in physical chemistry. Biopolymers; Springer: Berlin-Heidelberg, Germany, 1987; Volume 83, pp. 1–56. [Google Scholar]
- Koehler, C.S.W. Developing the ultracentrifuge. Today’s Chemist at Work 2003, February 2003; 63–66. [Google Scholar]
- Vollmert, B. Grundriss der Makromolekularen Chemie; Springer: Berlin-Heidelberg, Germany, 1962. [Google Scholar]
- Stamm, A.J. The state of dispersion of cellulose in cuprammonium solvent as determined by ultracentrifuge methods. J. Am. Chem. Soc. 1930, 52, 3047–3062. [Google Scholar] [CrossRef]
- Herzog, R.O.; Krüger, D. Diffusionsversuche an Lösungen von Zellulose in Kupferaminlösung. Kolloid Z. 1926, 39, 250–252. [Google Scholar] [CrossRef]
- Herzog, H.O.; Kruger, D. Nitrocellulose diffusion experiments. J. Phys. Chem. 1928, 33, 179–189. [Google Scholar] [CrossRef]
- Gralén, N.; Svedberg, T. Molecular weight of native cellulose. Nature 1943, 152, 625–625. [Google Scholar] [CrossRef]
- Jullander, I. Recent ultracentrifugal investigations on cellulose and cellulose derivatives. J. Polym. Sci. 1947, 2, 329–345. [Google Scholar] [CrossRef]
- Meyerhoff, G. Molekulargewichtsbestimmungen an Cellulosenitraten in der Ultrazentrifuge. Naturwissenschaften 1954, 41, 13–14. [Google Scholar] [CrossRef]
- Marx, M. Molekulargewichtsverteilungen von nativen Faser- und Holzcellulosen. J. Polym. Sci. 1958, 30, 119–130. [Google Scholar] [CrossRef]
- Harding, S. Challenges for the modern analytical ultracentrifuge analysis of polysaccharides. Carbohydr. Res. 2005, 340, 811–826. [Google Scholar] [CrossRef] [PubMed]
- Harding, S.; Abdelhameed, A.; Morris, G. Molecular weight distribution evaluation of polysaccharides and glycoconjugates using analytical ultracentrifugation. Macromol. Biosci. 2010, 10, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Staudinger, H. Über das Molekulargewicht und die Viskosität von Hochpolymeren. Kolloid Z 1938, 81, 190–195. [Google Scholar]
- Evans, R.; Wallis, A.F.A. Cellulose molecular weights determined by viscometry. J. Appl. Polym. Sci. 1989, 37, 2331–2340. [Google Scholar] [CrossRef]
- Łojewski, T.; Zieba, K.; Łojewska, J. Size exclusion chromatography and viscometry in paper degradation studies. New Mark-Houwink coefficients for cellulose in cupri-ethylenediamine. J. Chromatogr. A 2010, 1217, 6462–6468. [Google Scholar] [CrossRef] [PubMed]
- Marx-Figini, V.M.; Schulz, G.V. Die viskosimetrische Molekulargewichtsbestimmung von Cellulosen und Cellulosenitraten unter Standardbedingungen. Makromol. Chem. 1962, 54, 102–118. [Google Scholar] [CrossRef]
- Kasaai, M.R. Comparison of various solvents for determination of intrinsic viscosity and viscometric constants for cellulose. J. Appl. Polym. Sci. 2002, 86, 2189–2193. [Google Scholar] [CrossRef]
- Podzimek, S. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Fractionation; Wiley: Hoboken, New Jersey, NJ, USA, 2011. [Google Scholar]
- Wyatt, P.J. Light scattering and the absolute characterization of macromolecules. Anal. Chim. Acta 1993, 272, 1–40. [Google Scholar] [CrossRef]
- Schelosky, N.; Röder, T.; Baldinger, T. Molecular mass distribution of cellulosic products by size exclusion chromatography in DMAc/LiCl. Das Pap. 1999, 53, 728–738. [Google Scholar]
- Zhou, J.; Zhang, L.; Cai, J. Behavior of cellulose in NaOH/Urea aqueous solution characterized by light scattering and viscometry. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 347–353. [Google Scholar] [CrossRef]
- Kamide, K.; Saito, M. Light scattering and viscometric study of cellulose in aqueous lithium hydroxide. Polym. J. 1986, 18, 569–579. [Google Scholar] [CrossRef]
- Seger, B.; Burchard, W. Structure of cellulose in cuoxam. Macromol. Symp. 1994, 83, 291–310. [Google Scholar] [CrossRef]
- Drechsler, U.; Radosta, S.; Vorwerg, W. Characterization of cellulose in solvent mixtures with N-methylmorpholine-N-oxide by static light scattering. Macromol. Chem. Phys. 2000, 201, 2023–2030. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Shibata, I.; Isogai, A. SEC-MALLS analysis of softwood kraft pulp using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose 2005, 12, 151–158. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Shibata, I.; Isogai, A. SEC–MALLS analysis of cellulose using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose 2004, 11, 169–176. [Google Scholar] [CrossRef]
- Guzmán, G.M.; Riande, E.; Pereña, J.M.; Ureña, A.G. Molecular weight distribution of cellulose by fractionation in cadoxen solutions. Eur. Polym. J. 1974, 10, 537–540. [Google Scholar] [CrossRef]
- Almin, K.E.; Eriksson, K.; Pettersson, B.A. Determination of the molecular weight distribution of cellulose on calibrated gel columns. J. Appl. Polym. Sci. 1972, 16, 2583–2593. [Google Scholar] [CrossRef]
- Kostanski, L.K.; Keller, D.M.; Hamielec, A.E. Size-exclusion chromatography—A review of calibration methodologies. J. Biochem. Biophys. Methods 2004, 58, 159–186. [Google Scholar] [CrossRef] [PubMed]
- Striegel, A.M.; Yau, W.W.; Kirkland, J.J.; Bly, D.D. Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography, 2nd ed.; Wiley: New Jersey, NJ, USA, 2009. [Google Scholar]
- Bohrn, R.; Potthast, A.; Schiehser, S.; Rosenau, T.; Sixta, H.; Kosma, P. The FDAM method: Determination of carboxyl profiles in cellulosic materials by combining group-selective fluorescence labeling with GPC. Biomacromolecules 2006, 7, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Westermark, U.; Gustafsson, K. Molecular size distribution of wood polymers in birch kraft pulps. Holzforschung 1994, 48, 146–150. [Google Scholar] [CrossRef]
- Sjöholm, E. Size Exclusion Chromatogrhaphy of Cellulose and Cellulose Derivates. In Handbook of Size Exclusion Chromatography and Related Techniques; Wu, C.S., Ed.; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Rahkamo, L.; Viikari, L.; Buchert, J.; Paakkari, T.; Suortti, T. Enzymatic and alkaline treatments of hardwood dissolving pulp. Cellulose 1998, 5, 79–88. [Google Scholar] [CrossRef]
- Grubisic, Z.; Rempp, P.; Benoit, H. A universal calibration for gel permeation chromatography. J. Polym. Sci. Part B Polym. Lett. 1967, 5, 753–759. [Google Scholar] [CrossRef]
- Vidal, P.F.; Basora, N.; Overend, R.P.; Chornet, E. Pseudouniversal calibration procedure for the molecular weight determination of cellulose. J. Appl. Polym. Sci. 1991, 42, 1659–1664. [Google Scholar] [CrossRef]
- Timpa, J.D. Application of universal calibration in gel permeation chromatography for molecular weight determinations of plant cell wall polymers: Cotton fiber. J. Agric. Food Chem. 1991, 39, 270–275. [Google Scholar]
- Jean-Marc, L.; Jean, C.; Pierre, F.; Fernand, P.; Αndré, R. Molecular weight distribution of cellulose by on-line size exclusion chromatography—low angle laser light scattering part. II. acid and enzymatic hydrolysis. Holzforschung 1987, 41, 165–169. [Google Scholar] [CrossRef]
- Dupont, A.L.; Mortha, G. Comparative evaluation of size-exclusion chromatography and viscometry for the characterisation of cellulose. J. Chromatogr. A 2004, 1026, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Poché, D.S.; Ribes, A.J.; Tipton, D.L. Characterization of Methocel™: Correlation of static light-scattering data to GPC molar mass data based on pullulan standards. J. Appl. Polym. Sci. 1998, 70, 2197–2210. [Google Scholar] [CrossRef]
- Tolonen, L.K.; Bergenstråhle-Wohlert, M.; Sixta, H.; Wohlert, J. Solubility of cellulose in supercritical water studied by molecular dynamics simulations. J. Phys. Chem. B 2015, 119, 4739–4748. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wu, H. Characteristics and precipitation of glucose oligomers in the fresh liquid products obtained from the hydrolysis of cellulose in hot-compressed water. Ind. Eng. Chem. Res. 2009, 48, 10682–10690. [Google Scholar] [CrossRef]
- Siller, M.; Ahn, K.; Pircher, N.; Rosenau, T.; Potthast, A. Dissolution of rayon fibers for size exclusion chromatography: A challenge. Cellulose 2014, 21, 3291–3301. [Google Scholar] [CrossRef]
- Silva, A.A.; Laver, M.L. Molecular weight characterization of wood pulp cellulose: Dissolution and size exclusion chromatographic analysis. Tappi J. 1997, 80, 173–180. [Google Scholar]
- Berggren, R.; Berthold, F.; Sjöholm, E.; Lindström, M. Improved methods for evaluating the molar mass distributions of cellulose in kraft pulp. J. Appl. Polym. Sci. 2003, 88, 1170–1179. [Google Scholar] [CrossRef]
- Strlič, M.; Kolar, J.; Žigon, M.; Pihlar, B. Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidised cellulose. J. Chromatogr. A 1998, 805, 93–99. [Google Scholar] [CrossRef]
- Schult, T.; Hjerde, T.; Inge Optun, O.; Kleppe, P.; Moe, S. Characterization of cellulose by SEC-MALLS. Cellulose 2002, 9, 149–158. [Google Scholar] [CrossRef]
- Bikova, T.; Treimanis, A. Problems of the MMD analysis of cellulose by SEC using DMA/LiCl: A review. Carbohydr. Polym. 2002, 48, 23–28. [Google Scholar] [CrossRef]
- Heywood, R.J.; Emsley, A.M.; Ali, M. Degradation of cellulosic insulation in power transformers. Part 1: Factors affecting the measurement of the average viscometric degree of polymerisation of new and aged electrical papers. IEE Proc. Sci. Meas. Technol. 2000, 147, 86–90. [Google Scholar] [CrossRef]
- Schwald, W.; Bobleter, O. Characterization of nonderivatized cellulose by gel permeation chromatography. J. Appl. Polym. Sci. 1988, 35, 1937–1944. [Google Scholar] [CrossRef]
- Malm, C.J.; Glegg, R.E.; Luce, M. Solubility of cellulose in iron-sodium tartrate solution. Tappi J. 1961, 44, 102–108. [Google Scholar]
- Potthast, A.; Rosenau, T.; Sixta, H.; Kosma, P. Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett. 2002, 43, 7757–7759. [Google Scholar] [CrossRef]
- Sjöholm, E.; Gustafsson, K.; Eriksson, B.; Brown, W.; Colmsjö, A. Aggregation of cellulose in lithium chloride/N,N-dimethylacetamide. Carbohydr. Polym. 2000, 41, 153–161. [Google Scholar] [CrossRef]
- Rousselle, M.A. Determining the molecular weight distribution of cotton cellulose: A new GPC solvent. Text. Res. J. 2002, 72, 131–134. [Google Scholar] [CrossRef]
- Vejdovszky, P.; Oberlerchner, J.; Zweckmair, T.; Rosenau, T.; Potthast, A. Preparation and analysis of cello- and xylooligosaccharides. Adv. Poly. Sci. 2015. [Google Scholar] [CrossRef]
- Simms, P.J.; Haines, R.M.; Hicks, K.B. High performance liquid chromatography of neutral oligosaccharides on a β-cyclodextrin bonded phase column. J. Chromatogr. A 1993, 648, 131–137. [Google Scholar] [CrossRef]
- Churms, S.C. Recent progress in carbohydrate separation by high-performance liquid chromatography based on hydrophilic interaction. J. Chromatogr. A 1996, 720, 75–91. [Google Scholar] [CrossRef]
- Pereira, A.N.; Mobedshahi, M.; Ladisch, M.R. Preparation of cellodextrins. Methods Enzymol. 1988, 160, 26–38. [Google Scholar]
- Isogai, T.; Yanagisawa, M.; Isogai, A. Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation. Cellulose 2009, 16, 117–127. [Google Scholar] [CrossRef]
- Hamacher, K.; Schmid, G.; Sahm, H.; Wandrey, C. Structural heterogeneity of cellooligomers homogeneous according to high-resolution size-exclusion chromatography. J. Chromatogr. A 1985, 319, 311–318. [Google Scholar] [CrossRef]
- Akpinar, O.; Penner, M.H. Preparation of cellooligosaccharides: Comparative study. J. Food. Agric. Environ. 2008, 6, 55–61. [Google Scholar]
- Armstrong, D.W.; Jin, H.L. Evaluation of the liquid chromatographic separation of monosaccharides, disaccharides, trisaccharides, tetrasaccharides, deoxysaccharides and sugar alcohols with stable cyclodextrin bonded phase columns. J. Chromatogr. A 1989, 462, 219–232. [Google Scholar] [CrossRef]
- Akpinar, O.; McGorrin, R.J.; Penner, M.H. Cellulose-based chromatography for cellooligosaccharide production. J. Agric. Food. Chem. 2004, 52, 4144–4148. [Google Scholar] [CrossRef] [PubMed]
- Schmid, G.; Biselli, M.; Wandrey, C. Preparation of cellodextrins and isolation of oligomeric side components and their characterization. Anal. Biochem. 1988, 175, 573–583. [Google Scholar] [CrossRef]
- Corradini, C.; Cavazza, A.; Bignardi, C. High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: Principles and applications. Int. J. Carbohydr. Chem. 2012. [Google Scholar] [CrossRef]
- Striegel, A.M.; Alward, D.B. Studying abnormal viscosity behaviour in dilute oligomer solutions by SEC and rheology. J. Liq. Chromatogr. Relat. Technol. 2002, 25, 2003–2022. [Google Scholar] [CrossRef]
- Gridnev, A.A.; Ittel, S.D.; Fryd, M. A caveat when determining molecular weight distributions of methacrylate oligomers. J. Polym. Sci. Part A Polym. Chem. 1995, 33, 1185–1188. [Google Scholar] [CrossRef]
- Morris, M.J.; Striegel, A.M. Determining the solution conformational entropy of oligosaccharides by SEC with on-line viscometry detection. Carbohydr. Polym. 2014, 106, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Wyatt Technology Corporation. Low-Molecular-Weight Polymer SEC-MALS. Available online: http://www.wyatt.com/files/literature/Multi_Angle_Light_Scattering-lowmw.pdf (accessed on 12 July 2014).
- Xie, T.; Penelle, J.; Verraver, M. Experimental investigation on the reliability of routine sec-malls for the determination of absolute molecular weights in the oligomeric range. Polymer 2002, 43, 3973–3977. [Google Scholar] [CrossRef]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberlerchner, J.T.; Rosenau, T.; Potthast, A. Overview of Methods for the Direct Molar Mass Determination of Cellulose. Molecules 2015, 20, 10313-10341. https://doi.org/10.3390/molecules200610313
Oberlerchner JT, Rosenau T, Potthast A. Overview of Methods for the Direct Molar Mass Determination of Cellulose. Molecules. 2015; 20(6):10313-10341. https://doi.org/10.3390/molecules200610313
Chicago/Turabian StyleOberlerchner, Josua Timotheus, Thomas Rosenau, and Antje Potthast. 2015. "Overview of Methods for the Direct Molar Mass Determination of Cellulose" Molecules 20, no. 6: 10313-10341. https://doi.org/10.3390/molecules200610313
APA StyleOberlerchner, J. T., Rosenau, T., & Potthast, A. (2015). Overview of Methods for the Direct Molar Mass Determination of Cellulose. Molecules, 20(6), 10313-10341. https://doi.org/10.3390/molecules200610313