New Polyphenols Identified in Artemisiae abrotani herba Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC/MS Polyphenol Analysis
Compound | Retention Time (min) | UV Detection | MS Detection | Concentration (µg∙mL−1) |
---|---|---|---|---|
Gentisic acid | 2.15 | NO | YES | NF |
Caffeic acid | 5.6 | NO | YES | NF |
Chlorogenic acid | 5.6 | NO | YES | NF |
p-cumaric acid | 8.7 | YES | YES | 2 |
Ferulic acid | 12.2 | YES | YES | 10.31 |
Sinapic acid | 14.3 | YES | YES | 34.56 |
Hyperozid | 18.6 | YES | YES | 1.95 |
Isoquercitrin | 19.6 | YES | YES | NF |
Rutin | 20.2 | YES | YES | 62.9 |
Quercitrin | 23 | YES | YES | 2.42 |
Quercetol | 26.8 | YES | YES | 2.59 |
Luteolin | 29.1 | YES | YES | 4.27 |
Apigenin | 33.1 | YES | YES | 1.16 |
Compound | Retention Time (min) | UV Detection | MS Detection | Concentration (µg∙mL−1) |
---|---|---|---|---|
Gentisic acid | 2.15 | NO | YES | NF |
Caffeic acid | 5.6 | NO | YES | NF |
Chlorogenic acid | 5.6 | NO | YES | NF |
p-cumaric acid | 8.7 | YES | YES | 3.63 |
Ferulic acid | 12.2 | YES | YES | 27.7 |
Sinapic acid | 14.3 | YES | YES | 79.95 |
Quercetol | 26.8 | YES | YES | 33.31 |
Patuletin | 28.7 | YES | YES | 19.04 |
Luteolin | 29.1 | YES | YES | 1.29 |
Kaempferol | 31.6 | YES | YES | 4.19 |
2.2. Total Polyphenol, Flavonoid and Hydroxycinnamic Derivatives Content
Total Content of | Polyphenols (mg gallic acid/g HP) | Flavonoids (mg rutin/g HP) | Hydroxycinnamic Derivatives (mg caffeic acid/g HP) |
---|---|---|---|
Artemisiae abrotani herba | 12.7 | 6.74 | 3.35 |
SD | 0.44 | 0.32 | 0.06 |
2.3. Antioxidant Activity Assay
Product | IC50 (µg∙mL−1) | SD |
---|---|---|
Ascorbic acid | 17.34 | 0.43 |
Artemisiae abrotani herba extract | 284.5 | 16.21 |
3. Experimental Section
3.1. Plant Material and Extraction Protocol
3.2. Chemicals and Instruments
3.3. HPLC/MS Analysis
3.4. Polyphenol Profile (Qualitative and Quantitative Analysis)
Peak No. | Phenolic Compound | tR ± SD (min) | Peak No. | Phenolic Compound | tR ± SD (min) |
---|---|---|---|---|---|
1 | Caftaric acid * | 2.10 ± 0.06 | 10 | Rutin | 20.20 ± 0.15 |
2 | Gentisic acid * | 2.15 ± 0.07 | 11 | Myricetin | 20.70 ± 0.06 |
3 | Caffeic acid * | 5.60 ± 0.04 | 12 | Fisetin | 22.60 ± 0.15 |
4 | Chlorogenic acid * | 5.62 ± 0.05 | 13 | Quercitrin | 23.00 ± 0.13 |
5 | p-coumaric acid | 8.7 ± 0.08 | 14 | Quercetol | 26.80 ± 0.15 |
6 | Ferulic acid | 12.2 ± 0.10 | 15 | Patuletin | 28.70 ± 0.12 |
7 | Sinapic acid | 14.3 ± 0.10 | 16 | Luteolin | 29.10 ± 0.19 |
8 | Hyperoside | 18.60 ± 0.12 | 17 | Kaempferol | 31.60 ± 0.17 |
9 | Isoquercitrin | 19.60 ± 0.10 | 18 | Apigenin | 33.10 ± 0.15 |
3.5. Total Content of Polyphenols, Flavonoids and Hydroxycinnamic Derivatives
3.6. In Vitro Antioxidant Activity Assay-DPPH Method
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ramalingum, N.; Mahomoodally, M.F. The therapeutic potential of medicinal foods. Adv. Pharmacol. Sci. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Ribnicky, D.M.; Poulev, A.; Logendra, S.; Cefalu, W.T.; Raskin, I. A natural history of botanical therapeutics. Metabolism 2008, 57, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The artemisia l. Genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Bustamante, L.; Haynes, R.K.; Staines, H.M. Artemisinins: Their growing importance in medicine. Trends Pharmacol. Sci. 2008, 29, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.E.; Peh, H.Y.; Chan, T.K.; Wong, W.S. Artemisinins: Pharmacological actions beyond anti-malarial. Pharmacol. Ther. 2014, 142, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Coleman, P.G.; Morel, C.; Shillcutt, S.; Goodman, C.; Mills, A.J. A threshold analysis of the cost-effectiveness of artemisinin-based combination therapies in sub-Saharan Africa. Am. J. Trop. Med. Hyg. 2004, 71, 196–204. [Google Scholar] [PubMed]
- Committee on Herbal Medicinal Products. Assessment Report on Artemisia absinthium L., Herba; European Medicines Agency: London, UK, 2008. [Google Scholar]
- Van der Kooy, F.; Sullivan, S.E. The complexity of medicinal plants: The traditional artemisia annua formulation, current status and future perspectives. J. Ethnopharmacol. 2013, 150, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Remberg, P.B.; Björkb, L.; Hedner, T.; Sterner, O. Characteristics, clinical effect profile and tolerability of a nasal spray preparation of Artemisia abrotanum L. for allergic rhinitis. Phytomedicine 2004, 11, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Brodin, K.; Alahyar, H.; Hedner, T.; Sterner, O.; Faergemann, J. In vitro activity of Artemisia abrotanum extracts against malassezia spp., candida albicans and staphylococcus aureus. Acta Derm. Venereol. 2007, 87, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.; Tămaș, M.; Băncilă, E. Cercetări asupra uleiului volatil de Artemisia abrotanum L.—Identificarea eucaliptolului. Farmacia 1973, 21, 417–424. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [PubMed]
- Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011, 82, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Sak, K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn. Rev. 2014, 8, 122–146. [Google Scholar] [CrossRef] [PubMed]
- Kanadaswami, C.; Lee, L.T.; Lee, P.H.; Hwang, J.J.; Ke, F.C.; Huang, Y.T.; Lee, M.T. The antitumor activities of flavonoids. In Vivo 2005, 19, 895–909. [Google Scholar]
- Sergent, T.; Piront, N.; Meurice, J.; Toussaint, O.; Schneider, Y.J. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem. Biol. Interact. 2010, 188, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.E.; Zhang, S. Flavonoid-drug interactions: Effects of flavonoids on abc transporters. Life Sci. 2006, 78, 2116–2130. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.; Anwar, F.; Mahmood, Z.; Rashid, U.; Ashraf, M. Variation in minerals, phenolics and antioxidant activity of peel and pulp of different varieties of peach (Prunus persica L.) fruit from Pakistan. Molecules 2012, 17, 6491–6506. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M. Artemisia species: From traditional medicines to modern antimalarials and back again. J. Altern. Complement. Med. 2009, 15, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Dr. Duke’s Phytochemical and Ethnobotanical Databases-Farmacy Query. Available online: http://www.ars-grin.gov/cgi-bin/duke/farmacy2.pl?118 (accessed on 16 March 2015).
- Tunon, H.; Thorsell, W.; Mikiver, A.; Malander, I. Arthropod repellency, especially tick (ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of dianthus caryophyllum. Fitoterapia 2006, 77, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Chemicals in: Artemisia abrotanum L. (asteraceae). Available online: http://www.ars-grin.gov/cgi-bin/duke/farmacy2.pl (accessed on 13 January 2015).
- Spice pages: Southernwood (Artemisia abrotanum). Available online: http://gernot-katzers-spice-pages.com/engl/Arte_abr.html (accessed on 13 January 2015).
- Parvu, M.; Toiu, A.; Vlase, L.; Alina Parvu, E. Determination of some polyphenolic compounds from allium species by HPLC-UV-MS. Nat. Prod. Res. 2010, 24, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Vlase, L.; Parvu, M.; Parvu, E.A.; Toiu, A. Chemical constituents of three allium species from Romania. Molecules 2012, 18, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Karakida, F.; Ikeya, Y.; Tsunakawa, M.; Yamaguchi, T.; Ikarashi, Y.; Takeda, S.; Aburada, M. Cerebral protective and cognition-improving effects of sinapic acid in rodents. Biol. Pharm. Bull. 2007, 30, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Pari, L.; Mohamed Jalaludeen, A. Protective role of sinapic acid against arsenic: Induced toxicity in rats. Chem. Biol. Interact. 2011, 194, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhou, Q.; Du, Y.; Zhang, W.; Bai, M.; Zhang, Z.; Xi, Y.; Li, Z.; Miao, J. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion. Br. J. Pharmacol. 2014, 171, 3702–3715. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.H.; Murakami, A.; Tanaka, T.; Ohigashi, H. Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: Attenuation of pro-inflammatory gene expression. Biochem. Pharmacol. 2005, 69, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Raheem, I.T. Gastroprotective effect of rutin against indomethacin-induced ulcers in rats. Basic Clin. Pharmacol. Toxicol. 2010, 107, 742–750. [Google Scholar] [CrossRef] [PubMed]
- EMBL-EBI website. Patuletin (chebi: 75164). Available online: http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A75164 (accessed on 22 January 2015).
- Jun, X. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Crit. Rev. Food Sci. Nutr. 2013, 53, 837–852. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and analysis of polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the balance between ros and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med. 1995, 18, 125–126. [Google Scholar] [CrossRef]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Scheepens, A.; Tan, K.; Paxton, J.W. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes. Nutr. 2010, 5, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Choi, S.W. Antioxidants in food: Content, measurement, significance, action, cautions, caveats, and research needs. Adv. Food Nutr. Res. 2014, 71, 1–53. [Google Scholar] [PubMed]
- Benzie, I.F.F.; Wachtel-Galor, S. Herbal Medicine; CRC Press: Bocq Raton, FL, USA, 2011. [Google Scholar]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Abert Vian, M.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Mocan, A.; Crisan, G.; Vlase, L.; Crisan, O.; Vodnar, D.C.; Raita, O.; Gheldiu, A.M.; Toiu, A.; Oprean, R.; Tilea, I. Comparative studies on polyphenolic composition, antioxidant and antimicrobial activities of schisandra chinensis leaves and fruits. Molecules 2014, 19, 15162–15179. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. European Pharmacopoeia 5.0, 6th ed.; Council of Europe: Strasbourg, France, 2004; Volume 2. [Google Scholar]
- Romanian Pharmacopoeia Commission National Medicines Agency. Romanian Pharmacopoeia; Medical Publishing House Bucharest: Bucharest, Romania, 1993. [Google Scholar]
- Sample Availability: Samples of the herbal voucher are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baiceanu, E.; Vlase, L.; Baiceanu, A.; Nanes, M.; Rusu, D.; Crisan, G. New Polyphenols Identified in Artemisiae abrotani herba Extract. Molecules 2015, 20, 11063-11075. https://doi.org/10.3390/molecules200611063
Baiceanu E, Vlase L, Baiceanu A, Nanes M, Rusu D, Crisan G. New Polyphenols Identified in Artemisiae abrotani herba Extract. Molecules. 2015; 20(6):11063-11075. https://doi.org/10.3390/molecules200611063
Chicago/Turabian StyleBaiceanu, Elisabeta, Laurian Vlase, Andrei Baiceanu, Madalina Nanes, Dan Rusu, and Gianina Crisan. 2015. "New Polyphenols Identified in Artemisiae abrotani herba Extract" Molecules 20, no. 6: 11063-11075. https://doi.org/10.3390/molecules200611063
APA StyleBaiceanu, E., Vlase, L., Baiceanu, A., Nanes, M., Rusu, D., & Crisan, G. (2015). New Polyphenols Identified in Artemisiae abrotani herba Extract. Molecules, 20(6), 11063-11075. https://doi.org/10.3390/molecules200611063