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Abstract: Biofilm formation by Staphylococcus aureus represents a problem in both the 

medical field and the food industry, because the biofilm structure provides protection to 

embedded cells and it strongly attaches to surfaces. This circumstance is leading to many 

research programs seeking new alternatives to control biofilm formation by this pathogen. 

In this study we show that a potent inhibition of biofilm mass production can be achieved 

in community-associated methicillin-resistant S. aureus (CA-MRSA) and methicillin-sensitive 

strains using plant compounds, such as individual constituents (ICs) of essential oils 

(carvacrol, citral, and (+)-limonene). The Crystal Violet staining technique was used to 

evaluate biofilm mass formation during 40 h of incubation. Carvacrol is the most effective 

IC, abrogating biofilm formation in all strains tested, while CA-MRSA was the most 

sensitive phenotype to any of the ICs tested. Inhibition of planktonic cells by ICs during 

initial growth stages could partially explain the inhibition of biofilm formation. Overall, 

our results show the potential of EOs to prevent biofilm formation, especially in strains 

that exhibit resistance to other antimicrobials. As these compounds are food additives 

generally recognized as safe, their anti-biofilm properties may lead to important new 

applications, such as sanitizers, in the food industry or in clinical settings. 
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1. Introduction 

Microbial communities adhered to surfaces are commonly referred as biofilms and are well recognized 

to cause hard-to-treat bacterial infections, being associated with around 65% of all human bacterial 

infections worldwide and with 80% of persistent infections in the United States [1–3]. The human 

pathogen Staphylococcus aureus shows a great ability to form biofilms, which represent a serious threat 

to the food industry and clinical settings [4]. S. aureus is well adapted to human colonization because it 

is part of the normal microbiota of the nasopharynx and skin, however, S. aureus penetrates to the 

internal parts of the body during surgical practice or food consumption and causes severe infections 

that can progress to life-threatening diseases, like necrotizing fasciitis, endocarditis, or pneumonia [4]. 

In S. aureus biofilms, cells are embedded in a self-produced extracellular matrix that protects cells not 

only from the host’s immune response but also from any antimicrobial treatment [5]. 

Bacterial biofilms are particularly challenging in the food industry because bacteria contaminate food 

surfaces (e.g., produce or animal carcasses) or food-contact surfaces (e.g., equipment and processing 

environment), and once biofilm is formed, its eradication becomes difficult because it exhibits great 

resilience to environmental stresses, disinfectants, and antimicrobial treatments [6]. As a consequence, 

these biofilms can act as reservoirs of persistent contaminations, cross-contaminations, and post-processing 

contaminations, leading to food spoilage with a potential risk to public health [2,7]. Several factors can 

account for the contamination of food products with S. aureus that often occurs during handling and 

packaging in food industries, including its frequent occurrence on food contact surfaces and the ability 

of some strains to form biofilms in food equipment and environments [8], and its common presence as 

a commensal colonizer of the skin and mucous membranes of healthy animals and humans [3,7]. 

Prevention of biofilm formation is considered preferable to its removal, since the latter is a very 

difficult and demanding task, which can cause recontamination problems due to release of bacterial 

cells and toxins after disruption of the biofilms [9]. Thus, prevention of biofilm formation of S. aureus 

in food and clinical environments is required in order to minimize the potential risk of a widespread 

dissemination of these new multi-drug resistant strains [7,10]. Control measures mostly rely on the 

application of effective cleaning and disinfecting procedures [11,12]. Over the last years, the proven 

antimicrobial efficacy of plant-derived essential oils (EOs) and their individual constituents (ICs) [13] 

has elicited their proposal as a “green alternative” to the routinely used disinfecting products such as 

sodium hypochlorite or quaternary ammonium compounds [14]. Many EOs and ICs are incorporated 

in disinfectant compositions and proposed as novel food preservatives [15] mainly due to their strong 

activity in the inhibition and inactivation of bacteria and fungi. However, more research is needed in 

order to have a better approach to develop the potential use of EOs and ICs as inhibitors of the biofilm 

formation by S. aureus in food and clinical environments. For example, inhibition of biofilm formation 

by these compounds is usually evaluated after 24 h of treatment [16,17], without considering that biofilm 

formation is a dynamic and cyclical process involving attachment, maturation and a final dispersal 

phase [18]. Due to strong bacteriostatic and bactericidal activity shown by the ICs (+)-limonene, citral, 
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and carvacrol against planktonic cells, such as S. aureus, Listeria monocytogenes, Escherichia coli, 

Enterococcus faecium, Salmonella enterica, or Pseudomonas aeruginosa [19–21], we selected these 

ICs to evaluate their potential as inhibitors of biofilm mass production by S. aureus strains. In order to 

cover different types of strains, two community-associated methicillin-resistant S. aureus (CA-MRSA) 

strains (SC-01 and USA300) and two methicillin-sensitive S. aureus (MSSA) strains (Newman and 

UAMS-1) were chosen. The main objective of this work was to study the effect of different concentrations 

of carvacrol, citral, or (+)-limonene on the ability of clinical isolates of S. aureus to form biofilms  

in vitro. Additionally, the effects of these compounds on planktonic cells and their implication in the 

inhibition of biofilm mass production were studied. 

2. Results and Discussion 

2.1. Selection of Effective Compounds According to Their MICs 

The potential activity of ICs as inhibitors of biofilm mass production was firstly addressed by 

determining the MIC of each compound in S. aureus planktonic cells (Table 1). Interestingly, MICs of 

ICs were similar against all S. aureus strains. Thus, (+)-limonene showed a MIC of 5000 µL/L against 

all bacterial strains assayed. For all the strains, the MICs for carvacrol and citral were lower than for 

(+)-limonene (200 and 500 µL/L, respectively). Therefore, non-inhibitory concentrations (NICs) were 

determined at 100, 200, and 2000 µL/L for carvacrol, citral, and (+)-limonene, respectively, against all 

strains tested. 

Table 1. MICs of ICs against S. aureus strains. Minimum inhibitory concentrations  

(MICs) in µL/L of individual constituents (carvacrol, citral, or (+)-limonene) against 

Staphylococcus aureus strains (SC-01, USA300, UAMS-1, and Newman). The non-inhibitory 

concentration (NIC) is shown in parentheses. 

 SC-01 USA300 UAMS-1 Newman 

Carvacrol 200 (100) 200 (100) 200 (100) 200 (100) 
Citral 500 (200) 500 (200) 500 (200) 500 (200) 

(+)-Limonene 5000 (2000) 5000 (2000) 5000 (2000) 5000 (2000) 

2.2. Biofilm Development throughout Time of S. aureus Strains in the Absence and the Presence of ICs 

As a preliminary step to evaluate activity of antimicrobial compounds against biofilm formation, we 

quantified biofilm mass production by all strains. Thus, the biofilm mass was measured during 40 h of 

incubation (Figure 1). 

Using this approach, the patterns of biofilm formation and biofilm thickness were evaluated for each 

strain at every time point. These patterns were characterized by the alternation of the assembly-dissasembly 

of the biofilm. CA-MRSA strain, SC-01 formed the thickest biofilm as measured at any growth time 

from 16 h onwards, reaching a biofilm mass corresponding to 8 absorbance units (AU) after 40 h 

(Figure 1A). 
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Figure 1. Inhibition of biofilm mass production in presence of NIC of carvacrol, citral and 

(+)-limonene. Biofilm development (expressed as optical absorbance units at 595 nm) at  

37 °C of Staphylococcus aureus SC-01 (A); USA300 (B); UAMS-1 (C); or Newman (D) in 

the absence of antimicrobial compounds (●) or in the presence of the non-inhibitory 

concentration (NIC) of each compound: 100 µL/L of carvacrol (●), 200 µL/L of citral (●), 

or 2000 µL/L of (+)-limonene (●). 

Besides, it presented a different growth pattern from the other three strains, since it continued 

increasing its biofilm mass throughout the whole experiment. In contrast, the biofilms formed by 

UAMS-1 (MSSA) and USA300 (CA-MRSA) increased throughout the first 8 h of incubation (over  

4 AU) and then biofilm mass decreased (Figure 1B,C). Moreover, Newman strain (MSSA) presented 

the weakest biofilm forming ability: a growth plateau or declining phase started after peaking at 8 h, 

and the measured absorbance values remained under 3 AU (Figure 1D). 

The effect of the addition of the NIC of each IC on the biofilm development was evaluated by the 

representation of the absorbance values throughout time (Figure 1). The most prominent effect observed 

was the decrease in the biofilm mass after 8 h of incubation in the presence of all ICs tested, which 

corresponded to the peak time point of biofilm mass production in the Newman and UAMS-1 strains 

(MSSA), and the USA300 strain (CA-MRSA). In addition to this, we detected an important reduction in 

the production of biofilm mass in S. aureus SC-01 after 8 h onwards of incubation time in the presence 

of any of the ICs in the growth medium (Figure 1A) (p < 0.05). S. aureus Newman was the least 
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susceptible strain to the action of the ICs, since their addition seemed to cause a delay in the biofilm 

development rather than a reduction in the biofilm mass (Figure 1D). Yet, Newman strain formed 

weak biofilms in all conditions tested, which prevented us from characterizing with precision the 

efficiency of the ICs inhibiting biofilm formation in this particular strain. 

Although we detected similar anti-biofilm activity of the three ICs at their respective NICs, 

carvacrol was active at a lower concentration. Carvacrol decreases the biofilm mass production of 

USA300 and UAMS-1 at every time point tested (Figure 1B,C). This contrasted to the anti-biofilm 

activity of the rest ICs, which showed an inhibitory effect that was dependable of the incubation period. 

For instance, the addition of 2000 µL/L of (+)-limonene reduced the production of biofilm mass in  

S. aureus USA300 by 90% after 8 h of incubation, but increased it by 30% after 40 h of incubation 

(Figure 1B). As a consequence, to compare the effect of each IC on S. aureus strains in relation to the 

differences in biofilm development between strains and throughout time, we evaluated the decrease in 

the total biofilm mass production (expressed as the cumulative absorbance thickness measured over 40 h 

of incubation period) for each strain when adding each IC in comparison with the control (Table 2). 

Table 2. Global inhibitory effect of ICs in biofilm formation by S. aureus. Percentage of 

decrease in the cumulative absorbance values in the presence of non-inhibitory concentration 

(NIC) of carvacrol, citral, or (+)-limonene against Staphylococcus aureus strains (SC-01, 

USA300, UAMS-1, and Newman), in comparison to each value in the absence of added 

compounds (control). Cumulative absorbance values indicating the biofilm thickness were 

measured throughout time for a total of 40 h. Values were obtained from the measurement of 

the area under the curve (AUC) and are expressed in optical absorbance units (at 595 nm)·h 

(mean ± standard deviation). Asterisks indicate statistically significant differences between 

each mean AUC value in the presence of each compound with that of the AUC value in  

its absence. Different superscript letters indicate statistically significant differences in the 

percentage of decrease in the AUC value among strains for the same compound. Different 

superscript numbers indicate statistically significant differences in the AUC values among 

compounds for the same strain. ANOVA tests with Bonferroni’s multiple comparison  

Post-tests were used (α = 0.05). 

 SC-01 USA300 UAMS-1 Newman 

Carvacrol 81.51 *,a1 ± 11.16 74.62 *,a1 ± 12.23 74.66 *,a1 ± 2.79 33.28 *,b1 ± 17.34 
Citral 65.00 *,a1 ± 15.30 47.34 *,a1,2 ± 21.50 57.10 *,a2 ± 6.75 0.21 b1 ± 29.78 

(+)-Limonene 77.77 *,a1 ± 6.06 28.54 b2 ± 19.45 26.46 b2 ± 11.83 11.19 b1 ± 9.42 

Thus, Table 2 shows that SC-01 was the most sensitive strain to any IC, decreasing its total biofilm 

mass production to at least 65%; and that Newman experienced a significantly lower reduction in its 

biofilm production when compared to the other strains, regardless of the added compound (p < 0.05). 

Carvacrol was the most effective IC regardless of the tested strain, decreasing more than 30% of 

biofilm mass production to all strains tested (Table 2) and being statistically more effective than  

(+)-limonene (p < 0.05). 

Next, we further evaluated the potential of ICs at lower concentrations to inhibit biofilm mass 

production in the SC-01 strain (CA-MRSA). Figure 2 was obtained by evaluating the evolution of the 
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biofilm mass of SC-01 in the presence of 0.1-fold NIC of each IC. These conditions evidenced  

a reduction in the biofilm mass by approximately 40%, 55%, and 80% after 40 h of incubation using 

ICs concentrations as low as 10, 20, or 200 µL/L of carvacrol, citral, and (+)-limonene, respectively. 

 

Figure 2. Inhibition of biofilm mass production by S. aureus SC-01 in presence of  

0.1× NIC of carvacrol, citral and (+)-limonene. Biofilm development (expressed as optical 

absorbance units at 595 nm) at 37 °C of Staphylococcus aureus SC-01 in the absence of 

antimicrobial compounds (continuous line) or in the presence of 1/10 the non-inhibitory 

concentration (NIC) of each compound: 10 µL/L of carvacrol (●), 20 µL/L of citral (●), or 

200 µL/L of (+)-limonene (●). 

2.3. Effect of ICs on Planktonic Cells in Relation to Biofilm Formation 

The effect of the NIC of ICs on Newman strain would be consistent with a delay in the development 

of the biofilm formation, differing from the effect of the inhibition of biofilm formation that we 

observed in SC-01 strain (Figure 1A,D). Based on these results, we hypothesized that ICs could affect 

the viability of planktonic cells, which may alter the regular cycle of biofilm formation and would 

explain the differences in the biofilm mass that were observed in the absence and the presence of ICs. 

This antimicrobial effect of ICs is probably due to the coexistence of bacterial cells exhibiting 

different physiologies and thus showing different sensitivities to the action of our compounds. In order 

to evaluate the correlation between the effect of ICs on planktonic cells and the biofilm development, 

the planktonic cell concentration of S. aureus Newman was measured during early stages of biofilm 

formation. As shown in Figure 3, the concentration of planktonic cells increased from 107 to 108 CFU/mL 

after the first 8 h of incubation in the absence of antimicrobials. However, in the presence of the NIC 

of any IC the initial concentration of planktonic cells decreased about 1.5 log10 cycles. Similar results 

were obtained for the other strains (data not shown). 

2.4. Discussion 

Natural compounds with antimicrobial and anti-biofilm activity are being promoted for different 

purposes, such as food preservatives, disinfectants and chemotherapeutic agents to replace traditionally 

used chemical agents and antibiotics [22,23]. In addition, exposure to sub-MIC concentrations of  
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some traditional antibiotics and disinfectants can act as an environmental signal triggering biofilm 

formation [24,25], supporting the research on new antimicrobial compounds. MIC values for ICs 

against S. aureus strains showed in this investigation (Table 1) were in agreement with previous 

studies showing the strong inhibitory activity of carvacrol, citral, and (+)-limonene against several 

strains of S. aureus and other bacterial species [21,26,27]. 

 

Figure 3. Inactivation of planktonic cells at sub-MIC values of carvacrol, citral, and  

(+)-limonene. Log10 concentration of planktonic cells (CFU/mL) of Staphylococcus aureus 

Newman when grown at 37 °C on polystyrene surfaces in growth medium without added 

antimicrobial compounds (●), or in the presence of the non-inhibitory concentration (NIC) 

of each compound: 100 µL/L of carvacrol (●), 200 µL/L of citral (●), or 2000 µL/L of  

(+)-limonene (●). 

The study of the evolution of the biofilm mass production revealed that highly diverse patterns of 

adhesion and biofilm formation exist among the different assayed S. aureus strains (Figure 1). We 

found no correlation between each strain’s ability to form a biofilm and its original source of isolation 

and its susceptibility to methicillin. Yet, we detected that biofilm mass production is directly related to 

the incubation time interval, which varies from strain to strain. Therefore, incubation time should be 

considered when comparing biofilm formation ability among strains. For instance, the strains SC-01 

and Newman exhibited increasing and decreasing biofilm thickness over 40 h of incubation period 

(Figure 1A,D). Thus, after 24 h of incubation, which is the usual time to evaluate antimicrobial  

activity of EOs [16,17,26,28], UAMS-1 was a better biofilm forming strain than USA300 and 

Newman (Figure 1). However, after 32 h of incubation, USA300 strain showed a thicker biofilm than 

Newman and UAMS-1 strains which is consistent with what has been previously reported [3,29,30]. 

Addition of NIC of ICs to growth medium inhibited biofilm mass production by S. aureus strains. 

Although most studies agree about the inhibitory effect of EOs and ICs on the biofilm formation [31–39], 

different authors have detected an enhancement of the biofilm production by these compounds under 

some conditions [40–42]. As described for biofilm formation in absence of ICs, the inhibitory effect of 

these compounds on biofilm mass production varied as a function of the time point tested. The biofilm 

formation is a dynamic and cyclical process that involves two initial steps; an initial attachment and  

a subsequent maturation phase. A final dispersal phase occurs when the biofilm reaches a nutrient-deprived 

critical mass or as a response to changing environmental conditions, which causes the detachment of 
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bacteria from the outermost layers of the biofilm and become planktonic single individuals [2,18]. 

Therefore, dependence of the incubation period in the inhibition of biofilm mass production could be 

attributable to a possible delay in the cycles of biofilm assembly-disassembly caused by antimicrobial 

effect of ICs, emphasizing the importance of measuring the anti-biofilm properties of any compound 

of interest at different time points during the process of biofilm formation. Although the representation 

of the stages of biofilm development has been applied to the identification of particularities in mutants 

or the differentiation of strains [43,44], to the best of our knowledge, most studies describing the effect 

of EOs or ICs on the biofilm development only compare the biofilm produced after a certain period of 

incubation, usually 24 h [16,17,26,28]. Comparison of the area under the curve of biofilm for biofilm 

mass production in absence or presence of ICs (Table 2) provided us with a useful parameter to describe 

inhibitory properties of these compounds in biofilm formation. This parameter revealed carvacrol as  

a potent inhibitor of biofilm mass production by all S. aureus strains tested. 

Although resistance to ICs (MIC values) was similar for the planktonic cells of all the strains (Table 1), 

inhibition of biofilm mass production varied as a function of the assayed S. aureus strain (Figure 1). 

This differential behaviour could indicate that different or specific mechanisms of biofilm inhibition 

(other than those related to the delay in the initial attachment) are present depending on the S. aureus 

strain and on the antimicrobial compound. Difference between the planktonic cell concentration of  

S. aureus Newman in the absence and in the presence of the NICs of the ICs after 8 h of incubation 

(Figure 3) could account for the difference observed in the biofilm production at this time point 

(Figure 1D) by delaying the initial attachment and consequently the biofilm mass production. In this 

regard, it is known that the first step of the biofilm development (the initial bacterial adhesion to the 

surface) is conditioned by the growth stage of the bacterial cells [11]. On the other hand, high cell 

density triggers quorum sensing response, based on cell-to-cell communication that regulates genes 

involved in biofilm maturation and maintenance [2,23]. Quorum sensing response is activated when 

the concentration of autoinducers (small molecules secreted by bacteria) exceeds a requisite threshold. 

Therefore, lower initial bacterial counts would delay biofilm mass production [9]. Moreover, these ICs 

can damage cell envelopes [20,21] which could result in a diminished ability to attach to the surface 

and form biofilms, as previously suggested by Kerekes et al. [17]. Likewise, inhibitory effects of ICs 

on planktonic cells could also explain the delay in biofilm formation by the other S. aureus strains. 

However, while biofilm formation by S. aureus Newman in presence of citral and (+)-limonene was 

only delayed, growth of the other strains in presence of ICs also reduced the highest biofilm mass 

(Table 2). Therefore, in contrast to the results obtained with Newman strain, the effect of ICs on 

inhibiting biofilm formation by SC-01, USA300 and UAMS-1 strains would not only be due to the 

inhibitory effect of ICs on planktonic cells, indicating a different mechanism of action by ICs for these 

strains and Newman strain. 

The control of S. aureus in clinical settings has been traditionally performed by increasing 

concentrations of conventional antibiotics, such as β-lactams or glycopeptides. Unfortunately, the 

uncontrolled use of penicillins, like methicillin, to treat patients and livestock contributed in emergence 

of MRSA [45]. MRSA infections show a mortality rate of 20%, and are the leading cause of death by  

a single infectious agent in the USA, high above HIV [46]. In addition to this, a subset of CA-MRSA 

strains has emerged, which are no longer restricted to patients from hospitals or immuno-compromised 

high-risk citizens but in fact have the ability to cause severe and pandemic infections in healthy 
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individuals [47]. The reduced number of effective antimicrobial treatments that are available to eradicate 

multi-drug resistant pathogenic bacteria could lead to recurrent microbial contaminations in food 

industry, and to hard-to-treat infections frequently related to hospitals. In food processing, EOs and 

ICs are of special interest since their natural origin meets consumers’ current reluctance towards 

chemically-synthesized antimicrobials [48]. In addition to their use as sanitizers and disinfectants  

of food equipment and environments, food packaging materials containing antimicrobial compounds 

have gained practical importance in the control of surface contamination [49]. 

The potential of sub-MIC concentrations of carvacrol, citral, and (+)-limonene as inhibitors of the 

biofilm formation in multi-drug resistant strains, such as the CA-MRSA strain SC-01 (Figure 2), 

whose biofilms can develop in the presence of many conventional antibiotics [50], should be further 

considered as anti-biofilm compounds. Finally, another important reason that supports the use of ICs in 

food and clinical environments is the evidence that, unlike conventional antibiotics, these compounds 

would effectively kill bacteria while applying a less selective pressure for the development of 

resistance [51]. 

3. Experimental Section 

3.1. Microorganisms and Growth Conditions 

The four bacterial strains of S. aureus used in this study (Newman, UAMS-1, USA300, and SC-01) 

were obtained from the Kolter laboratory (Harvard Medical School, Boston, MA, USA). Newman 

strain is an antibiotic sensitive (MSSA, from methicillin-sensitive S. aureus) isolate from an 

osteomyelitis patient (Royal South Wants Hospital, Southampton, UK) [52]; UAMS-1 is another MSSA 

osteomyelitis isolate from the University of Arkansas Medical School (Little Rock, AR, USA) [53]; 

USA300 is a CA-MRSA outbreak strain (USA) [45]; and SC-01 is a CA-MRSA isolate from a war 

veteran’s hip wound (Sepulveda Veterans Administration Medical Center, Sepulveda, CA, USA) [54]. 

All of them were clinical isolates, USA300 strain being a major source of community-associated 

outbreaks of S. aureus in America and Europe [55]. 

During this investigation, the strains were kept frozen at −80 °C in cryovials. Broth subcultures 

were prepared by inoculating, with one single colony from a plate, a test tube containing 5 mL of 

sterile Tryptic Soy Broth (TSB) (Biolife, Milan, Italy). After inoculation, the tubes were incubated 

overnight at 37 °C in aerobic conditions (Selecta, mod Incudigit, Barcelona, Spain) to obtain bacterial 

subcultures. With these subcultures, tubes containing 5 mL of TSB were inoculated to a final 

concentration of 107 CFU/mL. These bacterial cultures were incubated under agitation (130 rpm; 

Selecta, mod. Rotabit) at 37 °C for 12 ± 2 h so that the stationary growth phase was reached. 

3.2. Procedure for Biofilm Formation 

For S. aureus biofilm formation, 0.01 mL of a bacterial culture and 0.5 mL of the growth  

medium were inoculated in selected wells in polystyrene 24-well plates (Nunclon Delta Surface, 

Thermo Fisher Scientific, Roskilde, Denmark), attaining an initial concentration of 107 CFU/mL.  

The growth medium was composed by TSB + Glucose 0.5% (VWR, Leuven, Belgium) + NaCl 3% 

(Panreac, Barcelona, Spain). The plates were incubated inside individual plastic bags at 37 °C in static 
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conditions for different incubation times. Biofilms formed by S. aureus were stained with crystal violet 

(0.1%) (Panreac) for better visualization and quantification of the biomass according to O’Toole and 

Kolter [56]. Briefly, the supernatant containing the planktonic cells was extracted from each well, and 

the plates were rinsed with distilled water to remove non-attached cells and left to air-dry for about  

2 h. Next, each well was filled with 300 µL/L of crystal violet solution and incubated at room 

temperature (20–25 °C) for 30 min. The crystal violet solution was removed, and the wells were 

further washed with distilled water. To quantify biofilm formation the crystal violet stain was 

solubilized in 33% acetic acid (Panreac) [57] and absorbance measured at 595 nm using a microplate 

reader (Genios, Tecan, Männedorf, Switzerland). This technique measures total biomass (cells and 

extracellular matrix) [58], and therefore is suitable to determine biofilm removal or inhibition. 

3.3. Determination of Minimum Inhibitory Concentration (MIC) and Quantification of the Effect of 

Sub-MIC Concentrations of EOs and ICs 

For the determination of the MIC of planktonic cells 24-well plates were prepared as previously 

described. Growth medium had been previously added with 10, 50, 100, 200, 500, 1000, 2000, 5000, 

or 10,000 µL/L of carvacrol (PubChem CID: 10364), citral (PubChem CID: 638011; mixture of two 

isomers: geranial and neral), or (+)-limonene (PubChem CID: 440917), and plates were incubated at 

37 °C for 24 h. Carvacrol (≥98%), citral (95%), and (+)-limonene (97%) were purchased from Sigma 

Aldrich (Sigma-Aldrich Chemie, Steinheim, Germany). Positive controls (with bacterial culture but  

no compounds added) and negative controls (with compounds but no bacterial culture added) were 

also included. MIC was noted as the lowest compound concentration at which the optical absorbance 

at 595 nm of the content of each well was equal or lower than that of their negative controls, and the 

non-inhibitory concentration (NIC) was determined as its immediately lower concentration. 

The same procedure for different incubation times was followed for the biofilm formation assay 

throughout time in the presence of 1- or 0.1-fold NIC of carvacrol, citral, or (+)-limonene. Positive 

controls (with bacterial culture but no compounds added) and negative controls (with compounds  

but no bacterial culture added) were also included. The assays were performed in duplicate in three 

independent experiments. 

3.4. Quantification of Planktonic Cells in Biofilm-Growing Cultures 

The supernatant obtained from each well was homogenized (Genios 3, Ika, Königswinter, Germany) 

and adequately diluted in 0.1% (w/v) peptone water (Biolife, Milan, Italy). Next, 0.02-mL aliquots of 

each sample were inoculated in plates containing TSA (Biolife) using the spread plate technique. 

Plates were incubated at 37 °C for 24 h before bacterial counts (CFU/mL). The assays were performed 

in duplicate in three independent experiments. 

3.5. Data Analyses 

All the analyses were performed with PRISM software (GraphPad Software, Inc., San Diego, CA, 

USA). ANOVA tests with Bonferroni’s multiple comparison Post-test were performed to test statistically 
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significant differences among several groups (α = 0.05). The error bars in the figures indicate the  

mean ± standard deviations from the obtained data. 

PRISM software was also used to obtain the measurement of the cumulative absorbance values for 

each strain and compound throughout the total incubation time (40 h). These cumulative absorbance 

values were computed as the area under the curve (AUC) [59] following the trapezoid rule, where the 

total area is the sum of all rectangular trapezoids, each defined by two adjacent absorbance values with 

respect to the ground (in the y axis) and the time between those measurements (in the x axis). Therefore, 

the formula used was: 

AUC = xi·(yi+yi+1)

2

n-1

i = 1

 (1)

with xi denoting the time between measurements, yi denoting the absorbance value for each 

measurement, and n being the total number of measurements. The AUC values were determined for 

each individual experiment as a mean of the two replicates performed per experiment. 

The AUC values were used to express the percentages of decrease in the cumulative absorbance 

values caused by the incorporation of each compound in the growth medium. For each strain and 

compound, the percentage of decrease was calculated for each individual experiment using the formula: 

Percentage of decrease =
AUCcontrol − AUCcompound

AUCcontrol
× 100 (2)

where AUCcontrol and AUCcompound were the cumulative absorbance values in the absence of added 

compounds or in the presence of each one of them, respectively. The mean and standard deviation of 

three individual experiments were also calculated using PRISM software. 

4. Conclusions 

In brief, we have shown the importance of studying the evolution of the biofilm development 

throughout time when describing the effect of ICs on the biofilm formation by each bacterial strain. 

Due to the cyclic behavior inherent to the biofilm development, the measured biofilm mass fluctuates 

in response to the disassembly and reforming on the biofilm. The four clinical S. aureus strains showed 

different patterns of biofilm development, and also exhibited different sensitivity to the ICs carvacrol, 

citral, and (+)-limonene. Overall, the three ICs acted similarly, although analysis of the cumulative 

biofilm production highlighted carvacrol as the best inhibitor of biofilm mass production, decreasing 

more than 40% of biofilm mass production for any strain. Interestingly, our ICs were capable of 

reducing biofilm mass of SC-01 strain in 65%–85% when incorporating the NIC of any IC (100, 200, 

and 2000 µL/L of carvacrol, citral, and (+)-limonene, respectively) in the growth medium (after 16 h 

of incubation). These compounds also inhibited biofilm mass production by SC-01 at concentrations 

10 times lower than the NIC. This is particularly important in CA-MRSA strains, which are able to 

grow and form biofilm in the presence of many different conventional antibiotics. 

The mechanism(s) by which ICs modify S. aureus’ pattern of biofilm development are still 

unknown. The absence or delay in the first peak of the biofilm development in presence of ICs,  

along with the initial partial inactivation of planktonic cells in the strain Newman, suggested that the 
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delay in the attachment of cells would probably be one of the factors implied in the effectiveness of the 

tested ICs. 

The anti-biofilm properties of our molecules suggest that they may have a great potential to fight 

against bacterial biofilms in the food industry. Furthermore, ICs could be used to treat biofilm-associated 

infections caused by multi-drug resistant pathogenic bacteria. 
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