In Vitro Studies of Chromone-Tetrazoles against Pathogenic Protozoa, Bacteria, and Fungi
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
Product | R | R1 | R2 | R3 | R4 | R5 | Yield (%) b | |
---|---|---|---|---|---|---|---|---|
1aa | H | I | H | H | H | t-Bu | 85 | |
1ba | H | I | H | H | H | Cy | 78 | |
1ca | H | H | H | H | H | t-Bu | 86 | |
1d a | H | H | H | H | H | Cy | 82 | |
1e a | H | H | H | Cl | H | t-Bu | 76 | |
1f a | H | H | H | Cl | H | Cy | 72 | |
1g a | H | H | H | I | H | t-Bu | 85 | |
1h a | H | H | H | I | H | Cy | 79 | |
1i a | H | H | H | NO2 | H | Cy | 70 | |
1j a | H | H | OMe | OMe | H | 2,6-MePh | 55 | |
1k a | H | H | OMe | OMe | OMe | Cy | 90 | |
1l a | H | Br | H | H | H | t-Bu | 72 | |
1m a | H | Br | H | H | H | Cy | 70 | |
1n a | H | NO2 | H | H | H | Cy | 71 | |
1o | F | H | H | H | H | Cy | 81 | |
1p | F | H | OMe | OMe | OMe | Cy | 85 | |
1q | F | H | H | H | H | t-Bu | 82 | |
1r | F | H | H | Cl | H | t-Bu | 80 |
2.2. Biology
2.2.1. Antibacterial and Antiamoebic Activity
Compound | Pseudomonas aeruginosa | Staphylococcus auerus | ||
---|---|---|---|---|
MIC b | MBC b | MIC b | MBC b | |
1a | 160 | ND | 40 | 80 |
1p | 80 | 160 | 160 | ND |
1q | 20 | 40 | 80 | 160 |
Cefotaxime a | 0.5 | 1 | 1 | 3 |
Compound | IC50 (μg/mL) | |
---|---|---|
Subculture Method | MTT Assay | |
1a | 61.7 | 57.1 |
1p | 69.5 | 71.8 |
1q | 228.1 | 201.7 |
1r | 225.1 | 205.3 |
1o | >320 | >320 |
Metronidazole a | 1.5 | 2.1 |
2.2.2. Antifungal Activity
3. Experimental Section
3.1. General Information, Instrumentation, and Chemicals
3.2. General Procedure (GP) for the Synthesis of Fluorine-Containing Chromone-Tetrazoles 1o–r
3.3. Synthesis and Characterization of Fluorine-Containing Chromone-Tetrazoles 1o–r
3.3.1. 3-((1-Cyclohexyl-1H-tetrazol-5-yl)(phenylamino)methyl)-6-fluoro-4H-chromen-4-one 1o
3.3.2. 3-((1-Cyclohexyl-1H-tetrazol-5-yl)((3,4,5-trimethoxyphenyl)amino)methyl)-6-fluoro-4H-chrome-4-one 1p
3.3.3. 3-((1-(tert-Butyl)-1H-tetrazol-5-yl)(phenylamino)methyl)-6-fluoro-4H-chromen-4-one 1q
3.3.4. 3-((1-(tert-Butyl)-1H-tetrazol-5-yl)((4-chlorophenyl)amino)methyl)-6-fluoro-4H-chromen-4-one 1r
3.4. Antibacterial Assay
3.5. Antiamoebic Assay
3.6. Antifungal Assay
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Gillespie, S.H.; Pearson, R.D. Principles and Practice of Clinical Parasitology, 1st ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2001; pp. 21–52. [Google Scholar]
- Skappak, C.; Akierman, S.; Belga, S.; Novak, K.; Chadee, K.; Urbanski, S. J.; Church, D.; Beck, P.L. Invasive amoebiasis: A review of Entamoeba infections highlighted with case reports. Can. J. Gastroenterol. Hepatol. 2014, 28, 355–359. [Google Scholar] [PubMed]
- Koch, A.L. Bacterial Morphologies. In The Bacteria: Their Origin, Structure, Function and Antibiosis, 1st ed.; Springer: Bloomington, IN, USA, 2006; pp. 91–161. [Google Scholar]
- Strateva, T.; Yordanov, D. Pseudomonas aeruginosa—A phenomenon of bacterial resistance. J. Med. Microbiol. 2009, 58, 1133–1148. [Google Scholar] [CrossRef] [PubMed]
- Plata, K.; Rosato, A.E.; Wegrzyn, G. Staphylococcus aureus as an infectious agent: Overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochim. Pol. 2009, 56, 597–612. [Google Scholar] [PubMed]
- Hazen, K.C. New and emerging yeast pathogens. Clin. Microbiol. Rev. 1995, 8, 462–478. [Google Scholar] [PubMed]
- Barros, M.B.D.L.; de Almeida Paes, R.; Schubach, A.O. Sporothrix schenckii and Sporotrichosis. Clin. Microbiol. Rev. 2011, 24, 633–654. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Sudbery, P. Candida albicans, a major human fungal pathogen. J. Microbiol. 2011, 49, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Kothavade, R.J.; Kura, M.M.; Valand, A.G.; Panthaki, M.H. Candida tropicalis: Its prevalence, pathogenicity and increasing resistance to fluconazole. J. Med. Microbiol. 2010, 59, 873–880. [Google Scholar] [CrossRef] [PubMed]
- The images described in Figure 1 are of public domain or protected by the rights indicated: For (a) the E. histolytica image, author: Felipe Padilla-Vaca (F.P.-V.); (b) Pseudomonas aeruginosa image, ID number: #10043, Centers of Disease Control and Prevention’s, CDC; (c) Staphylococcus aureus, ID number: C010/5904, Science Photo Library; (d) Sporothrix schenckii, ID number: 4208, Centers of Disease Control and Prevention’s, CDC; (e) Candida albicans image, ID: “Chlamydospores of Candida albicans” author: Goodman, on microbewolrd.org; (f) Candida tropicalis image, shared with free license of Creative Commons
- Gordillo-Cruz, R.E.; Rentería-Gómez, A.; Islas-Jácome, A.; Cortes-García, C.J.; Díaz-Cervantes, E.; Robles, J.; Gámez-Montaño, R. Synthesis of 3-tetrazolylmethyl-azepino[4,5-b]indol-4-ones in two reaction steps: (Ugi-azide/N-acylation/SN2)/free radical cyclization and docking studies to a 5-Ht6 model. Org. Biomol. Chem. 2013, 11, 6470–6476. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Galindo, L.E.; Islas-Jácome, A.; Alvarez-Rodríguez, N.V.; El Kaim, L.; Gámez-Montaño, R. Synthesis of 2-Tetrazolylmethyl-2,3,4,9-tetrahydro-1H-β-carbolines by a One Pot Ugi-azide/Pictet-Spengler Process. Synthesis 2014, 46, 49–56. [Google Scholar] [CrossRef]
- Cárdenas-Galindo, L.E.; Islas-Jácome, A.; Colmenero-Martínez, K.M.; Martínez-Richa, A.; Gámez-Montaño, R. Synthesis of Novel bis-1,5-Disubstituted-1H-Tetrazoles by an Efficient Catalyst-Free Ugi-azide Repetitive Process. Molecules 2015, 20, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Cano, P.A.; Islas-Jácome, A.; González-Marrero, J.; Yépez-Mulia, L.; Calzada, F.; Gámez-Montaño, R. Synthesis of 3-tetrazolylmethyl-4H-chromen-4-ones via Ugi-azide and biological evaluation against Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis. Bioorg. Med. Chem. 2014, 22, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chem. Rev. 2014, 114, 4960–4992. [Google Scholar] [CrossRef] [PubMed]
- Khadem, S.; Marles, R.J. Chromone and Flavonoid Alkaloids: Occurrence and Bioactivity. Molecules 2012, 17, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Sarvary, A.; Maleki, A. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol. Divers. 2014, 19, 189–212. [Google Scholar] [CrossRef] [PubMed]
- Myznikov, L.V.; Hrabalek, A.; Koldobskii, G.I. Drugs in the tetrazole series. Chem. Heterocycl. Comp. 2007, 43, 1–9. [Google Scholar] [CrossRef]
- Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Diwakar, S.D.; Bhagwat, S.S.; Shingare, M.S.; Gill, C.H. Substituted 3-((Z)-2-(4-nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chromen-4-ones as novel anti-MRSA agents: Synthesis, SAR, and in vitro assessment. Bioorg. Med. Chem. Lett. 2008, 18, 4678–4681. [Google Scholar] [CrossRef] [PubMed]
- Saadeh, H.A.; Mosleh I.M., I.M.; Mubarak, M.S. Synthesis of Novel Hybrid Molecules from Precursors with Known Antiparasitic Activity. Molecules 2009, 14, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Damu, G.L.V.; Lv, J.S.; Geng, R.X.; Yang, D.C.; Zhou, C.H. Design, synthesis and evaluation of clinafloxacin triazole hybrids as a new type of antibacterial and antifungal agents. Bioorg. Med. Chem. Lett. 2012, 22, 5363–5366. [Google Scholar] [CrossRef] [PubMed]
- Negi, B.; Raj, K.K.; Siddiqui, S.M.; Ramachandran, D.; Azam, A.; Rawat, D.S. In Vitro Antiamoebic Activity Evaluation and Docking Studies of Metronidazole-Triazole Hybrids. Chem. Med. Chem. 2014, 9, 2439–2444. [Google Scholar] [CrossRef] [PubMed]
- Hazen, K.C. Influence of DMSO on antifungal activity during susceptibility testing in vitro. Diagn. Microbiol. Infect. Dis. 2013, 75, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.I.; Zakaria, A.S; Almutairi, M.S.; Ghoneim, S.W. In Vitro Anti-Candida Activity of Certain New 3-(1H-Imidazol-1-y1)propan-1-one oxime Esters. Molecules 2013, 18, 12208–12221. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Diamond, L.S.; Harlow, D.R.; Cunnick, C.C. A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans. R. Soc. Trop. Med. Hyg. 1978, 72, 431–432. [Google Scholar] [CrossRef]
- Wright, C.W.; O’Neill, M.J.; Phillipson, J.D.; Warhurst, D.C. Use of microdilution to assess in vitro antiamoebic activities of Brucea javanica fruits, Simarouba amara stem, and a number of quassinoids. Antimicrob. Agents Chemother. 1988, 32, 1725–1729. [Google Scholar] [CrossRef] [PubMed]
- Upcroft, J.A.; Upcroft, P. Drug Susceptibility Testing of Anaerobic Protozoa. Antimicrob. Agents Chemother. 2001, 45, 1810–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calzada, F.; Meckes, M.; Cedillo-Rivera, R.; Tapia-Contreras, A.; Mata, R. Screening of Mexican medicinal plants for antiprotozoal activity. Pharm. Biol. 1998, 36, 305–309. [Google Scholar] [CrossRef]
- Kodama, E.; Igarashi, A.; Mori, S.; Hashimoto, K.I.; Suzuki, T.; DeClercq, E.; Shigeta, S. Evaluation of antiherpetic compounds using a gastric cancer cell line: Pronounced activity of BVDU against herpes simplex virus replication. Microbiol. Immunol. 1996, 40, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turk, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [PubMed]
- Sample Availability: Samples of the compounds 1a–r are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano, P.A.; Islas-Jácome, A.; Rangel-Serrano, Á.; Anaya-Velázquez, F.; Padilla-Vaca, F.; Trujillo-Esquivel, E.; Ponce-Noyola, P.; Martínez-Richa, A.; Gámez-Montaño, R. In Vitro Studies of Chromone-Tetrazoles against Pathogenic Protozoa, Bacteria, and Fungi. Molecules 2015, 20, 12436-12449. https://doi.org/10.3390/molecules200712436
Cano PA, Islas-Jácome A, Rangel-Serrano Á, Anaya-Velázquez F, Padilla-Vaca F, Trujillo-Esquivel E, Ponce-Noyola P, Martínez-Richa A, Gámez-Montaño R. In Vitro Studies of Chromone-Tetrazoles against Pathogenic Protozoa, Bacteria, and Fungi. Molecules. 2015; 20(7):12436-12449. https://doi.org/10.3390/molecules200712436
Chicago/Turabian StyleCano, Pedro A., Alejandro Islas-Jácome, Ángeles Rangel-Serrano, Fernando Anaya-Velázquez, Felipe Padilla-Vaca, Elías Trujillo-Esquivel, Patricia Ponce-Noyola, Antonio Martínez-Richa, and Rocío Gámez-Montaño. 2015. "In Vitro Studies of Chromone-Tetrazoles against Pathogenic Protozoa, Bacteria, and Fungi" Molecules 20, no. 7: 12436-12449. https://doi.org/10.3390/molecules200712436
APA StyleCano, P. A., Islas-Jácome, A., Rangel-Serrano, Á., Anaya-Velázquez, F., Padilla-Vaca, F., Trujillo-Esquivel, E., Ponce-Noyola, P., Martínez-Richa, A., & Gámez-Montaño, R. (2015). In Vitro Studies of Chromone-Tetrazoles against Pathogenic Protozoa, Bacteria, and Fungi. Molecules, 20(7), 12436-12449. https://doi.org/10.3390/molecules200712436