Non-Covalent Derivatives: Cocrystals and Eutectics
Abstract
:1. Introduction
2. Preparation of NCDs
3. Characterization of NCDs
4. Applications of NCDs
Pharmaceuticals
5. Cosmetics
6. Agrochemicals
7. Chromophores
8. Food Additives
9. Other Potential Applications
10. Summary
Acknowledgments
Conflicts of Interest
References
- Stoler, E. Non-Covalent Derivatives. Ph.D. Thesis, Northeastern University, Boston, MA, USA, May 2015. [Google Scholar]
- Guarrera, D.; Taylor, L.D.; Warner, J.C. Molecular Self-Assembly in the Solid State. The Combined Use of Solid-State NMR and Differential Scanning Calorimetery for the Determination of Phase Constitution. Chem. Mater. 1994, 1, 1293–1296. [Google Scholar] [CrossRef]
- Warner, J.C. Pollution Prevention via Molecular Recognition and Self Assembly: Non-Covalent Derivatization. In Green Chemistry: Syntheses and Processes; Oxford University Press: London, UK, 1996; pp. 336–346. [Google Scholar]
- Cannon, A.S.; Warner, J.C. Noncovalent Derivatization: Green Chemistry Applications of Crystal Engineering. Cryst. Growth Des. 2002, 2, 255–257. [Google Scholar] [CrossRef]
- Warner, J.C. Green Chemistry:Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Desiraju, G.R. Crystal and Co-Crystal. CrystEngComm 2003, 5, 466–467. [Google Scholar] [CrossRef]
- Dunitz, J.D. Crystal and Co-Crystal: A Second Opinion. CrystEngComm 2003, 5, 506. [Google Scholar] [CrossRef]
- Aitipamula, S.; Banerjee, R.; Bansal, A.K.; Biradha, K.; Cheney, M.L.; Choudhury, A.R. Polymorphs, Salts, and Cocrystals: What’s in a Name? Cryst. Growth Des. 2012, 12, 2147–2152. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Fasulo, M.E.; Desper, J. Cocrystal or Salt: Does It Really Matter? Mol. Pharm. 2007, 4, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Childs, S.L.; Stahly, G.P.; Park, A. The Salt-Cocrystal Continuum: The Influence of Crystal Structure on Ionization State. Mol. Pharm. 2007, 4, 323–338. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Guidence for Industry: Regulatory Classification of Pharmaceutical Co-crystals, Food and Drug Administration; Center for Drug Evaluation and Research: Silver Springs, MD, USA, 2013.
- Cruz-Cabeza, A.J. Acid–Base Crystalline Complexes and the pKa Rule. CrystEngComm 2012, 14, 6362–6365. [Google Scholar] [CrossRef]
- Almarsson, O.; Zaworotko, M.J. Crystal Engineering of the Composition of Pharmaceutical Phases. Do Pharmaceutical Co-Crystals Represent a New Path to Improved Medicines? Chem. Commun. (Camb.) 2004, 17, 1889–1896. [Google Scholar] [CrossRef] [PubMed]
- Jakse, N.; Nguyen, T.L.T.; Pasturel, A. Ordering Effects in Disordered Systems: The Au–Si System. J. Phys. Condens. Matter 2011, 23, 404205. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.D.; Wildfong, P.L.D. Aqueous Solubility Enhancement through Engineering of Binary Solid Composites: Pharmaceutical Applications. J. Pharm. Innov. 2009, 4, 36–49. [Google Scholar] [CrossRef]
- Chirawatkul, P.; Zeidler, A.; Salmon, P.S.; Takeda, S.; Kawakita, Y.; Usuki, T.; Fischer, H.E. Structure of Eutectic Liquids in the Au-Si, Au-Ge, and Ag-Ge Binary Systems by Neutron Diffraction. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83. [Google Scholar] [CrossRef]
- Chen, H.S.; Turnbull, D. Thermal Properties of Gold-Silicon Binary Alloy near the Eutectic Composition. J. Appl. Phys. 1967, 38, 3646–3650. [Google Scholar] [CrossRef]
- Cherukuvada, S.; Row, T.N.G. Comprehending the Formation of Eutectics and Cocrystals in Terms of Design and Their Structural Interrelationships. Cryst. Growth Des. 2014, 14, 4187–4198. [Google Scholar] [CrossRef]
- Hickey, M.B.; Peterson, M.L.; Scoppettuolo, L.A.; Morrisette, S.L.; Vetter, A.; Guzmán, H.; Remenar, J.F.; Zhang, Z.; Tawa, M.D.; Haley, S.; et al. Performance Comparison of a Co-Crystal of Carbamazepine with Marketed Product. Eur. J. Pharm. Biopharm. 2007, 67, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Trask, A.V.; Motherwell, W.D.S.; Jones, W. Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration. Cryst. Growth Des. 2005, 5, 1013–1021. [Google Scholar] [CrossRef]
- Rodríguez-Hornedo, N. Reaction Crystallization of Pharmaceutical Molecular Complexes. Mol. Pharm. 2006, 3, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Remenar, J.F.; Peterson, M.L.; Stephens, P.W.; Zhang, Z.; Zimenkov, Y.; Hickey, M.B. Celecoxib:nicotinamide Dissociation: Using Excipients to Capture the Cocrystal’s Potential. Mol. Pharm. 2007, 4, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Childs, S.L.; Rodríguez-Hornedo, N.; Reddy, L.S.; Jayasankar, A.; Maheshwari, C.; McCausland, L.; Shipplett, R.; Stahly, B.C. Screening Strategies Based on Solubility and Solution Composition Generate Pharmaceutically Acceptable Cocrystals of Carbamazepine. CrystEngComm 2008, 10, 856–864. [Google Scholar] [CrossRef]
- McNamara, D.P.; Childs, S.L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M.S.; Mannion, R.; O’Donnell, E.; Park, A. Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API. Pharm. Res. 2006, 23, 1888–1897. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-lara, J.C.; Guzman-villanueva, D.; Arenas-garc, I.; Herrera-ruiz, D.; Roma, P.; Morales-rojas, H.; Ho, H. Cocrystals of Active Pharmaceutical Ingredients- Praziquantel in Combination with Oxalic, Malonic, Succinic, Maleic, Fumaric, Glutaric, Adipic, And Pimelic Acids. Cryst. Growth Des. 2013, 13, 169–185. [Google Scholar] [CrossRef]
- Basavoju, S.; Boström, D.; Velaga, S.P. Indomethacin-Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization. Pharm. Res. 2008, 25, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Sarcevica, I.; Orola, L.; Veidis, M.V.; Belyakov, S. Cinnamic Acid Hydrogen Bonds to Isoniazid and N′-(propan-2-Ylidene)isonicotinohydrazide, an in Situ Reaction Product of Isoniazid and Acetone. Acta Crystallogr. Sect. C Struct. Chem. 2014, 70, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Lu, Jie; Rohani, S. Synthesis and Preliminary Characterization of Sulfamethazine-Theophylline Co-Crystal. J. Pharm. Sci. 2010, 99, 4042–4047. [Google Scholar] [CrossRef] [PubMed]
- Babu, N.J.; Reddy, L.S.; Nangia, A. Amide N-Oxide Heterosynthon and Amide Dimer Homosynthon in Cocrystals of Carboxamide Drugs and Pyridine N-Oxides. Mol. Pharm. 2007, 4, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Etter, M.C.; Reutzel, S.M. Hydrogen Bond Directed Cocrystallization and Molecular Recognition Properties of Acyclic Imides. J. Am. Chem. Soc. 1991, 113, 2586–2598. [Google Scholar] [CrossRef]
- Childs, S.L.; Chyall, L.J.; Dunlap, J.T.; Smolenskaya, V.N.; Stahly, B.C.; Stahly, G.P. Crystal Engineering Approach to Forming Cocrystals of Amine Hydrochlorides with Organic Acids. Molecular Complexes of Fluoxetine Hydrochloride with Benzoic, Succinic, and Fumaric Acids. J. Am. Chem. Soc. 2004, 126, 13335–13342. [Google Scholar] [CrossRef] [PubMed]
- Fleischman, S.; Kuduva, S.S.; McMahon, J.A.; Moulton, B.; Bailey Walsh, R.D.; Zaworotko, M.J.; Rodríguez-Hornedo, N. Crystal Engineering of the Composition of Pharmaceutical Phases: Multiple-Component Crystalline Solids Involving Carbamazepine. Cryst. Growth Des. 2003, 3, 909–919. [Google Scholar] [CrossRef]
- Walsh, R.D.B.; Bradner, M.W.; Fleischman, S.; Morales, L.A.; Moulton, B.; Rodríguez-Hornedo, N.; Zaworotko, M.J. Crystal Engineering of the Composition of Pharmaceutical Phases. Chem. Commun. 2002, 2, 186–187. [Google Scholar] [CrossRef]
- Schultheiss, N.; Newman, A. Pharmaceutical Cocrystals and Their Physiochemical Properties. Cryst. Growth Des. 2009, 9, 2950–2967. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, Z.; Zhou, Z. One Kind of Ambroxol Eutectic Crystal and Its Preparation Method. CN 104292116, 17 December 2015. [Google Scholar]
- Jain, H.; Khomane, K.S.; Bansal, A.K. Implication of Microstructure on the Mechanical Behaviour of an Aspirin–paracetamol Eutectic Mixture. CrystEngComm 2014, 16, 8471–8478. [Google Scholar] [CrossRef]
- Bučar, D.K.; Filip, S.; Arhangelskis, M.; Lloyd, G.O.; Jones, W. Advantages of Mechanochemical Cocrystallisation in the Solid-State Chemistry of Pigments: Colour-Tuned Fluorescein Cocrystals. CrystEngComm 2013, 15, 6289–6291. [Google Scholar] [CrossRef]
- Nguyen, K.L.; Friscic, T.; Day, G.M.; Gladden, L.F.; Jones, W. Terahertz Time-Domain Spectroscopy and the Quantitative Monitoring of Mechanochemical Cocrystal Formation. Nat. Mater. 2007, 6, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Caira, M.R.; Nassimbeni, L.R.; Wildervanck, A.F. Selective Formation of Hydrogen Bonded Cocrystals between a Sulfonamide and Aromatic Carboxylic Acids in the Solid State. J. Chem. Soc. Perkin Trans. 2 1995, 12, 2213. [Google Scholar] [CrossRef]
- Kuroda, R.; Imai, Y.; Tajima, N. Generation of a Co-Crystal Phase with Novel Coloristic Properties via Solid State Grinding Procedures. Chem. Commun. 2002, 23, 2848–2849. [Google Scholar] [CrossRef]
- Dolotko, O.; Wiench, J.W.; Dennis, K.W.; Pecharsky, V.K.; Balema, V.P. Mechanically Induced Reactions in Organic Solids: Liquid Eutectics or Solid-State Processes? New J. Chem. 2010, 34, 25–28. [Google Scholar] [CrossRef]
- Cherukuvada, S.; Nangia, A. Fast Dissolving Eutectic Compositions of Two Anti-Tubercular Drugs. CrystEngComm 2012, 14, 2579–2588. [Google Scholar] [CrossRef]
- Friscic, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9, 1621–1637. [Google Scholar] [CrossRef]
- Rehder, S.; Klukkert, M.; Löbmann, K.A.M.; Strachan, C.J.; Sakmann, A.; Gordon, K.; Rades, T.; Leopold, C.S. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding. Pharmaceutics 2011, 3, 706–722. [Google Scholar] [CrossRef] [PubMed]
- Shan, N.; Toda, F.; Jones, W. Mechanochemistry and Co-Crystal Formation: Effect of Solvent on Reaction Kinetics. Chem. Commun. 2002, 20, 2372–2373. [Google Scholar] [CrossRef]
- Lin, H.L.; Wu, T.K.; Lin, S.Y. Screening and Characterization of Cocrystal Formation of Metaxalone with Short-Chain Dicarboxylic Acids Induced by Solvent-Assisted Grinding Approach. Thermochim. Acta 2014, 575, 313–321. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Grommet, A.B.; Desper, J. Co-Crystal Screening of Diclofenac. Pharmaceutics 2011, 3, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Swapna, B.; Maddileti, D.; Nangia, A. Cocrystals of the Tuberculosis Drug Isoniazid: Polymorphism, Isostructurality, and Stability. Cryst. Growth Des. 2014, 14, 5991–6005. [Google Scholar] [CrossRef]
- Child, S.; Rodriguez-Hornedo, N.; Reddy, S.L.; Jayasankar, A.; Maheshwari, C.; McClausland, L.; Shipplett, R.; Stahly, B. Screening stragies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm 2008, 10, 856–864. [Google Scholar] [CrossRef]
- Friščić, T.; Trask, A.V.; Jones, W.; Motherwell, W.D.S. Screening for Inclusion Compounds and Systematic Construction of Three-Component Solids by Liquid-Assisted Grinding. Angew. Chem. Int. Ed. 2006, 45, 7546–7550. [Google Scholar] [CrossRef] [PubMed]
- Alhalaweh, A.; George, S.; Boström, D.; Velaga, S.P. 1:1 and 2:1 Urea-Succinic Acid Cocrystals: Structural Diversity, Solution Chemistry, and Thermodynamic Stability. Cryst. Growth Des. 2010, 10, 4847–4855. [Google Scholar] [CrossRef]
- Kudo, S.; Takiyama, H. Production Method of Carbamazepine/saccharin Cocrystal Particles by Using Two Solution Mixing Based on the Ternary Phase Diagram. J. Cryst. Growth 2014, 392, 87–91. [Google Scholar] [CrossRef]
- Ainouz, A.; Authelin, J.R.; Billot, P.; Lieberman, H. Modeling and Prediction of Cocrystal Phase Diagrams. Int. J. Pharm. 2009, 374, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Moradiya, H.G.; Islam, M.T.; Woollam, G.R.; Slipper, I.J.; Halsey, S.; Snowden, M.J.; Douroumis, D. Continuous Cocrystallization for Dissolution Rate Optimization of a Poorly Water-Soluble Drug. Cryst. Growth Des. 2014, 14, 189–198. [Google Scholar] [CrossRef]
- Liu, X.; Lu, M.; Guo, Z.; Huang, L.; Feng, X.; Wu, C. Improving the Chemical Stability of Amorphous Solid Dispersion with Cocrystal Technique by Hot Melt Extrusion. Pharm. Res. 2012, 29, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Boterashvili, M.; Lahav, M.; Shankar, S.; Facchetti, A.; van der Boom, M.E. On-Surface Solvent-Free Crystal-to-Co-Crystal Conversion by Non-Covalent Interactions. J. Am. Chem. Soc. 2014, 136, 11926–11929. [Google Scholar] [CrossRef] [PubMed]
- Remenar, J.F.; Morissette, S.L.; Peterson, M.L.; Moulton, B.; MacPhee, J.M.; Guzmán, H.R.; Almarsson, O. Crystal Engineering of Novel Cocrystals of a Triazole Drug with 1,4-Dicarboxylic Acids. J. Am. Chem. Soc. 2003, 125, 8456–8457. [Google Scholar] [CrossRef] [PubMed]
- Bak, A.; Gore, A.; Yanez, E.; Stanton, M.; Tufekcic, S.; Syed, R.; Akrami, A.; Rose, M.; Surapaneni, S.; Bostick, T.; et al. The Co-Crystal Approach to Improve the Exposure of a Water-Insoluble Compound: AMG 517 Sorbic Acid Co-Crystal Characterization and Pharmacokinetics. J. Pharm. Sci. 2008, 97, 3942–3956. [Google Scholar] [CrossRef] [PubMed]
- Bučar, D.K.; Henry, R.F.; Lou, X.; Duerst, R.W.; Borchardt, T.B.; MacGillivray, L.R.; Zhang, G.G.Z. Co-Crystals of Caffeine and Hydroxy-2-Naphthoic Acids: Unusual Formation of the Carboxylic Acid Dimer in the Presence of a Heterosynthon. Mol. Pharm. 2007, 4, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Sanphui, P.; Bolla, G.; Nangia, A.; Chernyshev, V. Acemetacin Cocrystals and Salts: Structure Solution from Powder X-ray Data and Form Selection of the Piperazine Salt. IUCrJ 2014, 1 Pt 2, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Caira, M.R.; Bourne, S.A.; Samsodien, H.; Engel, E.; Liebenberg, W.; Stieger, N.; Aucamp, M. Co-Crystals of the Antiretroviral Nevirapine: Crystal Structures, Thermal Analysis and Dissolution Behaviour. CrystEngComm 2012, 14, 2541–2551. [Google Scholar] [CrossRef]
- Ebenezer, S.; Muthiah, P.T. Design of Co-crystals/Salts of Aminopyrimidines and Carboxylic Acids through Recurrently Occurring Synthons. Cryst. Growth Des. 2012, 12, 3766–3785. [Google Scholar] [CrossRef]
- Karki, S.; Fábián, L.; Friscic, T.; Jones, W. Powder X-ray Diffraction as an Emerging Method to Structurally Characterize Organic Solids. Org. Lett. 2007, 9, 3133–3136. [Google Scholar] [CrossRef] [PubMed]
- Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical Cocrystals: An Overview. Int. J. Pharm. 2011, 419, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chu, Y.; Wang, L.; Wenslow, R.M.; Yu, K.; Zhang, H.; Deng, Z. Structure Determination of the Theophylline-nicotinamide Cocrystal: A Combined Powder XRD, 1D Solid-State NMR, and Theoretical Calculation Study. CrystEngComm 2014, 16, 3141–3147. [Google Scholar] [CrossRef]
- Eshtiagh-Hosseini, H.; Aghabozorg, H.; Mirzaei, M.; Beyramabadi, S.A.; Eshghi, H.; Morsali, A.; Shokrollahi, A.; Aghaei, R. Hydrothermal Synthesis, Experimental and Theoretical Characterization of a Novel Cocrystal Compound in the 2:1 Stoichiometric Ratio Containing 6-Methyluracil and Dipicolinic Acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 78, 1392–1396. [Google Scholar] [CrossRef] [PubMed]
- Elbagerma, M.A.; Edwards, H.G.M.; Munshi, T.; Hargreaves, M.D.; Matousek, P.; Scowen, I.J. Characterization of New Cocrystals by Raman Spectroscopy, Powder X-ray Diffraction, Differential Scanning Calorimetry, and Transmission Raman Spectroscopy. Cryst. Growth Des. 2010, 10, 2360–2371. [Google Scholar] [CrossRef]
- Foxman, B.M.; Guerrera, D.J.; Taylor, L.D.; VanEngen, D.; Warner, J.C. Environmentally Benign Synthesis Using Crystal Engineering: Steric Accomodation in Non-Covalent Derivatives of Hydroquinones. Cryst. Eng. 1998, 1, 109–118. [Google Scholar] [CrossRef]
- Yamashita, H.; Hirakura, Y.; Yuda, M.; Terada, K. Detection of Cocrystal Formation Based on Binary Phase Diagrams Using Thermal Analysis. Pharm. Res. 2013, 30, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, H.; Hirakura, Y.; Yuda, M.; Terada, K. Coformer Screening Using Thermal Analysis Based on Binary Phase Diagrams. Pharm. Res. 2014, 8, 1946–1957. [Google Scholar] [CrossRef] [PubMed]
- Warner, J.C. Entropic Control in Green Chemistry and Materials Design. Pure Appl. Chem. 2006, 78, 2035–2041. [Google Scholar] [CrossRef]
- Leksic, E.; Pavlovic, G.; Mestrovic, E. Cocrystals of Lamotrigine Based on Coformers Involving Carbonyl Group Discovered by Hot-Stage Microscopy and DSC Screening. Cryst. Growth Des. 2012, 12, 1847–1858. [Google Scholar] [CrossRef]
- Thakuria, R.; Eddleston, M.D.; Chow, E.H.H.; Lloyd, G.O.; Aldous, B.J.; Krzyzaniak, J.F.; Bond, A.D.; Jones, W. Use of in Situ Atomic Force Microscopy to Follow Phase Changes at Crystal Surfaces in Real Time. Angew. Chem. Int. Ed. 2013, 52, 10541–10544. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.D.; Warner, J.C. Process and Composition for Use in Photographic Materials Containing Hydroquinones. U.S. 5,177,262, 5 January 1993. [Google Scholar]
- Taylor, L.D.; Warner, J.C. Process and Composition for Use in Photographic Materials Containing Hydroquinones. U.S. 5,338,644, 16 August 1994. [Google Scholar]
- Cannon, A.S.; Foxman, B.M.; Guarrera, D.J.; Warner, J.C. Noncovalent Derivatives of Hydroquinone: Complexes with Trigonal Planar tris(N,N-Dialkyl)trimesamides. Cryst. Growth Des. 2005, 5, 407–411. [Google Scholar] [CrossRef]
- Foxman, B.M.; Guarrera, D.J.; Pai, R.; Tassa, C.; Warner, J.C. NonCovalent Derivatives of Hydroquione: Bis-(N,N-Dialkyl)Bicyclo[2.2.2]octane-1,4-Dicarboxamide Complexes. Cryst. Eng. 1999, 2, 55–64. [Google Scholar] [CrossRef]
- Good, D.J.; Rodríguez-Hornedo, N. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth Des. 2009, 9, 2252–2264. [Google Scholar] [CrossRef]
- Maheshwari, C.; André, V.; Reddy, S.; Roy, L.; Duarte, T.; Rodríguez-Hornedo, N. Tailoring Aqueous Solubility of a Highly Soluble Compound via Cocrystallization: Effect of Coformer Ionization, pHmax and Solute-solvent Interactions. CrystEngComm 2012, 14, 4801–4811. [Google Scholar] [CrossRef]
- Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal Engineering of Active Pharmaceutical Ingredients to Improve Solubility and Dissolution Rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Alhalaweh, A.; George, S.; Basavoju, S.; Childs, S.L.; Rizvi, S.A.A.; Velaga, S.P. Pharmaceutical Cocrystals of Nitrofurantoin: Screening, Characterization and Crystal Structure Analysis. CrystEngComm 2012, 14, 5078–5088. [Google Scholar] [CrossRef]
- Childs, S.L.; Kandi, P.; Lingireddy, S.R. Formulation of a Danazol Cocrystal with Controlled Supersaturation Plays an Essential Role in Improving Bioavailability. Mol. Pharm. 2013, 10, 3112–3127. [Google Scholar] [CrossRef] [PubMed]
- Jones, W.; Motherwell, W.D.S.; Trask, A.V. Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement. MRS Bull. 2006, 31, 875–879. [Google Scholar] [CrossRef]
- Vishweshwar, P.; Mcmahon, J.A.; Bis, J.A.; Zaworotko, M.J. Pharmaceutical Co-Crystals. J. Pharm. Sci. 2006, 95, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Weyna, D.; Shattock, T.; Vishweshwar, P.; Zaworotko, M.J. Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs Slow Evaporation from Solution. Cryst. Growth Des. 2009, 9, 1106–1123. [Google Scholar] [CrossRef]
- Aitipamula, S.; Chow, P.S.; Tan, R.B.H. Crystal Engineering of Tegafur Cocrystals: Structural Analysis and Physicochemical Properties. Cryst. Growth Des. 2014, 14, 6557–6559. [Google Scholar] [CrossRef]
- Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical Cocrystals and Poorly Soluble Drugs. Int. J. Pharm. 2013, 453, 101–125. [Google Scholar] [CrossRef] [PubMed]
- Perlovich, G.L.; Manin, A.N. Design of Pharmaceutical Cocrystals for Drug Solubility Improvement. Russ. J. Gen. Chem. 2014, 84, 407–414. [Google Scholar] [CrossRef]
- Cherukuvada, S.; Nangia, A. Eutectics as Improved Pharmaceutical Materials: Design, Properties and Characterization. Chem. Commun. 2014, 50, 906–923. [Google Scholar] [CrossRef] [PubMed]
- Ojha, N.; Prabhakar, B. Advances in Solubility Enhancement Techniques. Cryst. Growth Des. 2013, 21, 351–358. [Google Scholar]
- Law, D.; Wang, W.; Schmitt, E.A.; Qiu, Y.; Krill, S.L.; Fort, J.J. Properties of Rapidly Dissolving Eutectic Mixtures of Poly(ethylene Glycol) and Fenofibrate: The Eutectic Microstructure. J. Pharm. Sci. 2003, 92, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Yong, C.S.; Oh, Y.K.; Jung, S.H.; Rhee, J.D.; Kim, H.D.; Kim, C.K.; Choi, H.G. Preparation of Ibuprofen-Loaded Liquid Suppository Using Eutectic Mixture System with Menthol. Eur. J. Pharm. Sci. 2004, 23, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Trask, A.V.; Motherwell, W.D.S.; Jones, W. Physical Stability Enhancement of Theophylline via Cocrystallization. Int. J. Pharm. 2006, 320, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Agarabi, C.; Zidan, A.S.; Khan, S.R.; Khan, M.A. Physico-Mechanical and Stability Evaluation of Carbamazepine Cocrystal with Nicotinamide. AAPS PharmSciTech 2011, 12, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Moscona, M.; Sprecker, M.A.; Weiss, R.A. Single Phase Liquid Mixture of Benzophenone and Mixture of at Least Two Other Normally Solid Perfumery Substances and Perumery Uses Thereof. EP000994176B1, 19 April 2004. [Google Scholar]
- Khoshdel, E.; Schumm, S.; Yao, Y.; Zhang, Q. Eutectic Mixtures in Personal Care Compositioins. W2014/095255A1, 26 June 2014. [Google Scholar]
- Khoshdel, E.; Schumm, S.; Yao, Y.; Zhang, Q. Eutectic Mixtures in Personal Care Compositions. W2014/095257, 26 June 2014. [Google Scholar]
- Candau, D.; Fiandino, C. Compositions Containing a Triazine Derivative, an Arylalkyl Benzoate Derivative and a Eutectic N-Butylphthalimide/isopropylphthalimide Mixture; Cosmetic Uses Thereof. W2006/003020, 12 January 2006. [Google Scholar]
- Burry, J.; Evans, R.; Hall, C.; Khoshdel, E.; Mackay, C. Personal Care Composition. WO2009/071422, 11 June 2009. [Google Scholar]
- Burry, J.; Evans, R.; Hall, C.; Khoshdel, E.; Mackay, C. Personal Care Composition. WO2010/040579, 10 June 2010. [Google Scholar]
- Resnati, G.; Metrangolo, P.; Terraneo, G.; Baldrighi, M. Co-Crystals of 3-Iodopropynyl Butylcarbamate. US2015/0051280 A1, 19 April 2015. [Google Scholar]
- Bevill, M.; Schultheiss, N. Cocrystals of P-Coumaric Acid. U.S.20140073674 A1, 14 March 2014. [Google Scholar]
- Warner, J.C.; Stoler, E. Coloring Composition Containing and Aromatic Compound and an Initiator. WO2011060354 A4, 3 November 2011. [Google Scholar]
- Warner, J.C. Coloring Composition Containing L-DOPA and L-Arginine and Forming a Non-Covalent Derivatization Complex. WO 2012/067868 A3, 5 May 2012. [Google Scholar]
- Frizzell, D. Metalaxyl and Prothioconazole Cocrystals and Methods of Making and Using. WO 2013/162725 A1, 31 October 2013. [Google Scholar]
- Chiodo, T.; Klimov, E.; Schafer, A.; Hoffken, H.; Hellmann, R.; Kabat, A.; Israels, R.; Schnabel, G.; Bratz, M.; Kibat, C.; Houy, W. Cocrystals of Dicambe and a Cocrystal Former B, Herbicides. WO2013143927A1, 3 October 2013. [Google Scholar]
- Saxell, H.; Israels, R.; Schafer, A.; Bratz, M.; Hoffken, H.; Brode, I.; Nauha, E.; Nissinen, M. Crystalline Complexes of 4-Hydroxy Benzoic Acid and Selected Pesticides. WO2011/0544741, 30 January 2011. [Google Scholar]
- Weiss, M.; Temming, K. Powder Formulations Comprising Imidacloprid and Oxalic Acid, Including Methods for Cocrystallization by Compaction. EP 2422621, 29 February 2012. [Google Scholar]
- Weiss, M.; Dirk, S.; Wirth, W.; Olenik, B.; Hans-Christoph, W.; Schwiedop, U. Cocrystallization 4-[{(6-Chloropyrid-3-Yl)methyl]-(2,2-Difluoroethyl)amino]furan-2(5H)-One with Salicylic Acid and Use Thereof as Pesticide. U.S. EP2493884A1, 4 October 2012. [Google Scholar]
- Molaire, M.; Kaeding, J. Methods for Preparing Cocrystals of Titanyl Fluorophthalocyannes and Unsubstituted Titanyl Phthalocyanine, Electrographic Elements, and Titanyl Phthalocyanine Compositions. U.S. 005766810, 16 June 1998. [Google Scholar]
- Molair, M. Heat-Induced Formation of Co-Crystalline Composition Containing Titanyl Phthalocyanine and Titanyl Fluorophthalocyanine. U.S. 20050159595A1, 7 March 2006. [Google Scholar]
- Molaire, M.; Lobo, L. Coating Solution Containing Cocrystals and or Crystals of a Charge-Generation Pigment or a Mixture of Charge-Generation Pigments. U.S. 20080204885A1, 1 May 2007. [Google Scholar]
- Fang, L.; Yonghua, W. Red Organic Pigment and Its Usage. CN1144825, 12 March 1997. [Google Scholar]
- Yan, D.; Delori, A.; Lloyd, G.O.; Friščić, T.; Day, G.M.; Jones, W.; Lu, J.; Wei, M.; Evans, D.G.; Duan, X. A Cocrystal Strategy to Tune the Luminescent Properties of Stilbene-Type Organic Solid-State Materials. Angew. Chem. Int. Ed. Engl. 2011, 50, 12483–12486. [Google Scholar] [CrossRef] [PubMed]
- López-Córdoba, A.; Deladino, L.; Agudelo-Mesa, L.; Martino, M. Yerba Mate Antioxidant Powders Obtained by Co-Crystallization: Stability during Storage. J. Food Eng. 2014, 124, 158–165. [Google Scholar] [CrossRef]
- Le-Theisse, J.C. Novel Compound Containing Vanillin and Ethyl Vanillin, and Preparation and Applications Thereof. WO 2010046239 A1, 29 April 2010. [Google Scholar]
- Zhong, W.; Quiang, W.; Zhi, X.H.; Ayami, F. Xylitol/menthol Co-Crystallization Body and Preparation Method Thereof. CN 103535579 A, 29 January 2014. [Google Scholar]
- Porter, W.W.; Vaid, T.P. Doping of an Organic Molecular Semiconductor by Substitutional Cocrystallization with a Molecular N-Dopant. J. Mater. Chem. 2007, 17, 469–475. [Google Scholar] [CrossRef]
- MacGillivray, L.R.; Papaefstathiou, G.S.; Friscic, T.; Hamilton, T.D.; Bucar, D.-K.; Chu, Q.; Varshney, D.B.; Georgiev, I.G. Supramolecular Control of Reactivity in the Solid State: From Templates to Ladderanes to Metal-Organic Frameworks. Acc. Chem. Res. 2008, 41, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, T.; Morimoto, M.; Irie, M. Asymmetric Photoreaction of a Diarylethene in Hydrogen-Bonded Cocrystals with Chiral Molecules. Photochem. Photobiol. Sci. 2014, 13, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Iwama, S.; Kuyama, K.; Mori, Y.; Manoj, K.; Gonnade, R.G.; Suzuki, K.; Hughes, C.E.; Williams, P.A.; Harris, K.D.M.; Veesler, S.; et al. Highly Efficient Chiral Resolution of DL-Arginine by Cocrystal Formation Followed by Recrystallization under Preferential-Enrichment Conditions. Eur. J. Chem. 2014, 20, 10343–10350. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoler, E.; Warner, J.C. Non-Covalent Derivatives: Cocrystals and Eutectics. Molecules 2015, 20, 14833-14848. https://doi.org/10.3390/molecules200814833
Stoler E, Warner JC. Non-Covalent Derivatives: Cocrystals and Eutectics. Molecules. 2015; 20(8):14833-14848. https://doi.org/10.3390/molecules200814833
Chicago/Turabian StyleStoler, Emily, and John C. Warner. 2015. "Non-Covalent Derivatives: Cocrystals and Eutectics" Molecules 20, no. 8: 14833-14848. https://doi.org/10.3390/molecules200814833
APA StyleStoler, E., & Warner, J. C. (2015). Non-Covalent Derivatives: Cocrystals and Eutectics. Molecules, 20(8), 14833-14848. https://doi.org/10.3390/molecules200814833