Optimized Extraction of Polysaccharides from Grateloupia livida (Harv.) Yamada and Biological Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Factor Experimental Analysis of G. livida (Harv.) Yamada (GL) Polysaccharide Extraction
2.1.1. Effect of Extraction Time on Extraction Yield of GL Polysaccharides
2.1.2. Effect of Extraction Temperature on Extraction Yield of GL Polysaccharides
2.1.3. Effect of Ratio of Water to Raw Material on Extraction Yield of GL Polysaccharides
2.2. Box-Behnken Design (BBD) and Analysis
2.2.1. Statistical Analysis
Independent Symbol Variables | Factor Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Extraction X1 (h) time | 4 | 5 | 6 |
Extraction X2 (°C) temperature | 80 | 90 | 100 |
Ratio of water X3 (mL/g) to raw material | 60 | 70 | 80 |
Run | Factor Level | Extraction Yield (%) | Extraction Yield (%) | Residue (%) | ||
---|---|---|---|---|---|---|
X1 (h) | X2 (°C) | X3 (mL/g) | Experimental | Predicted | ||
1 | 4 | 80 | 70 | 31.07 | 31.75 | −0.68 |
2 | 4 | 100 | 70 | 39.48 | 38.53 | 0.95 |
3 | 6 | 80 | 70 | 37.01 | 37.96 | −0.95 |
4 | 6 | 100 | 70 | 38.06 | 37.44 | 1.62 |
5 | 5 | 80 | 60 | 33.53 | 33.00 | 0.53 |
6 | 5 | 80 | 80 | 24.96 | 23.86 | 1.10 |
7 | 5 | 100 | 60 | 29.53 | 30.63 | −1.10 |
8 | 5 | 100 | 80 | 31.90 | 32.43 | −0.53 |
9 | 4 | 90 | 60 | 34.75 | 34.60 | 0.15 |
10 | 6 | 90 | 60 | 27.35 | 26.93 | 0.42 |
11 | 4 | 90 | 80 | 20.30 | 20.72 | −0.42 |
12 | 6 | 90 | 80 | 33.31 | 34.40 | −1.09 |
13 | 5 | 90 | 70 | 39.23 | 37.79 | 1.44 |
14 | 5 | 90 | 70 | 36.52 | 37.79 | −1.27 |
15 | 5 | 90 | 70 | 37.63 | 37.79 | −0.16 |
Source | Sum of Squares | df | Mean Square | f-Value | p > f |
---|---|---|---|---|---|
Model | 424.74 | 9 | 47.19 | 24.01 | 0.0014 |
X1 | 12.83 | 1 | 12.83 | 6.52 | 0.0510 |
X2 | 19.22 | 1 | 19.22 | 9.78 | 0.0261 |
X3 | 26.97 | 1 | 26.97 | 13.72 | 0.0139 |
X1X2 | 13.54 | 1 | 13.54 | 6.89 | 0.0468 |
X1X3 | 104.14 | 1 | 104.14 | 52.97 | 0.0008 |
X2X3 | 29.92 | 1 | 29.92 | 15.22 | 0.0114 |
5.50 | 1 | 5.50 | 2.80 | 0.1553 | |
0.10 | 1 | 0.10 | 0.053 | 0.8271 | |
215.82 | 1 | 215.82 | 109.78 | 0.0001 | |
Residual | 9.83 | 5 | 1.97 | ||
Lack of fit | 6.12 | 3 | 2.04 | 1.10 | 0.5090 |
Pure error | 3.71 | 2 | 1.86 | ||
Total model | 434.57 | 14 | |||
R2 = 0.9774 | = 0.9367 | CV = 4.25% | Adequate precision = 15.554 |
2.2.2. Optimization of GL Polysaccharide Extraction
2.2.3. Verification of Predictive Model
2.3. Scavenging Activity
2.3.1. DPPH Radical Scavenging Activity
2.3.2. Hydroxyl Radical Scavenging Activity
2.4. Anticancer Activity
3. Experimental Section
3.1. Plant and Cell Materials
3.2. Chemicals and Reagents
3.3. Preparation of GL
3.4. Polysaccharide Extraction from GL
3.5. Single Factor Experimental Design
3.6. BBD and Statistical Analysis
3.7. Antioxidant Activity Assay in Vitro
3.7.1. DPPH Radical Scavenging Activity
3.7.2. Hydroxyl Radical Scavenging Assay
3.8. Cell Cytotoxicity Assay in Vitro
3.8.1. Cell Culture
3.8.2. MTT Assay
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wilkes, R.J.; Morabito, M.; Gargiulo, G.M. Taxonomic considerations of a foliose Grateloupia species from the Straits of Messia. J. Appl. Phycol. 2006, 18, 663–669. [Google Scholar] [CrossRef]
- Fang, Y.C.; Wang, Y.; Luo, Y. Investigation of medicinal red algae resources and proposals for its development and utilization. Chin. J. Mar. Drugs 2010, 29, 63–67. [Google Scholar]
- Zhang, C.; Yang, F.; Zhang, X.W. Grateloupia longifolia polysaccharide inhibits angiogenesis by down regulating tissue factor expression in HMEC-1 endothelial cells. Br. J. Pharmacol. 2006, 148, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Pang, S.J. stress tolerance and antioxidant enzymatic activities in the metabolisms of the reactive oxygen species in two intertidal red algae Grateloupia turuturu and Palmaria palmate. J. Exp. Mar. Biol. Ecol. 2010, 382, 82–87. [Google Scholar] [CrossRef]
- Emma, A.H.; Ruth, F.; Susan, M.C. Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antivir. Res. 2009, 83, 282–289. [Google Scholar]
- Ngo, D.H.; Kim, S.K. Sulfated polysaccharides as bioactive agents from marine algae. Int. J. Biol. Macromol. 2013, 62, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Noda, H.; Amano, H.; Arashima, K. Antitumor activity of marine algae. Hydrobiologia 1990, 204, 577–584. [Google Scholar] [CrossRef]
- Jiang, Z.B.; Chen, Y.C. Antioxidant, antibacterial and antischistosomal activities of extracts from Grateloupia livida (Harv). Yamada. PLoS ONE 2013, 8, e80413. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.J.; Guo, S.J.; Yang, Y.L. Research process of development and function of Rhodophyta in east area of Guangdong. Food Sci. 2007, 28, 580–583. [Google Scholar]
- Fenoradosoa, T.A.; Delattre, C.; Laroche, C.; Wadouachi, A.; Dulong, V.; Picton, L.; Andriamadio, P.; Michaud, P. Highly sulphated galactan from Halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coasts. Int. J. Biol. Macromol. 2009, 45, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Delattre, C.; Fenoradosoa, T.A.; Michaud, P. Galactans: An overview of their most important sourcing and applications as natural polysaccharides. Braz. Arch. Biol. Technol. 2011, 54, 1075–1092. [Google Scholar]
- Chu, H.L.; Mao, H.; Feng, W. Effects of sulfated polysaccharides from Masson pine (Pinus massoniana) pollen on the proliferation and cell cycle of HepG2 cells. Int. J. Biol. Macromol. 2003, 55, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Research in Separation and Structure of Sulfated Polysaccharides from Three Kinds of Grateloupia. Master’s Thesis, Ocean University of China, Qingdao, China, 2012. [Google Scholar]
- Shanab, S.M.M. Antioxidant and antibiotic activities of some seaweeds (Egyptian isolates). Int. J. Agric. Biol. 2007, 9, 220–225. [Google Scholar]
- Vijayabaskar, P.; Vaseela, N.; Thirumaran, G. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chin. J. Nat. Med. 2012, 10, 421–428. [Google Scholar] [CrossRef]
- Yang, D.J.; Yang, Y.L.; Wang, Z.H.; Guo, S.J.; Liu, L.M.; Zhong, W.H.; Rao, P.Y. Extraction and properties of polysaccharides from Grateloupia filicna. Food Sci. Technol. 2006, 36, 162–164. [Google Scholar]
- Zhang, Z.Y. Antitumor effect of Grateloupia filicna on U87 cell and its xenografts in nude mice. J. Chongqing Med. Univ. 2011, 36, 1051–1053. [Google Scholar]
- Jin, M.L.; Zhao, K.; Huang, Q.S. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: A review. Carbohydr. Polym. 2012, 89, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.M.; Wang, Y.F.; Zhang, M.Y. The study on the extraction and the antivirus activity of amylose extracted from Grateloupia filicina. J. Chin. Med. Mat. 2006, 29, 256–259. [Google Scholar]
- Fan, T.; Hu, J.G.; Fu, L.D. Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology. Carbohydr. Polym. 2015, 115, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Kurd, F.; Samavati, V. Water soluble polysaccharides from Spirulina platensis: Extraction and in vitro anti-cancer activity. Int. J. Biol. Macromol. 2015, 74, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Yi, L.; Hu, Y.H. Optimization of polysaccharides extraction from Trametes robiniophila and its antioxidant activities. Carbohydr. Polym. 2014, 111, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Samavati, A.; Manoochehrizade, A. Polysaccharide extraction from Malva sylvestris and its anti-oxidant activity. Int. J. Biol. Macromol. 2013, 60, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.P.; Zhai, X.C.; Li, L.Q.; Wu, X.X.; Bing, L. Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel. Food Chem. 2015, 177, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.F.; Chen, X.F.; Yang, W.Y.; Liu, S. Response surface methodology for optimization of the ultrasonic extraction of polysaccharides from Codonopsis pilosula Nannf. var. modesta. L.T. Shen. Carbohydr. Polym. 2011, 84, 503–508. [Google Scholar] [CrossRef]
- Hou, X.J.; Chen, W. Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology. Carbohydr. Polym. 2008, 72, 67–74. [Google Scholar]
- Murthy, M.S.R.C.; Swaminathan, T.; Rakshit, S.K.; Kosugi, Y. Statistical optimization of lipase catalyzed hydrolysis of methyloleate by response surface methodology. Bioprocess. Eng. 2000, 22, 35–39. [Google Scholar] [CrossRef]
- Zhao, S.; Rong, C.B.; Liu, Y.; Xu, F.; Wang, S.X.; Duan, C.L.; Chen, J.C.; Wu, X.Y. Extraction of a soluble polysaccharide from Auricularia polytricha and evaluation of its anti-hypercholesterolemic effect in rats. Carbohydr. Polym. 2015, 122, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Bahaabad, G.A.; Gharibzahedi, S.M.T.; Esmaiili, M.; Alizadeh, M. Response Surface modeling for optimization of textural and color Characteristics of dried grapes. Int. J. Food. Eng. 2014, 10, 493–502. [Google Scholar]
- Mason, R.L.; Gunst, R.F.; Hess, J.L. Statistical Design and Analysis of Experiments-English with Applications to Engineering and Science, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2003; Volume 33, pp. 105–106. [Google Scholar]
- Balavigneswaran, C.K.; Kumar, T.S.J.; Packiaraj, R.M.; Veeraraj, A.; Prakash, S. Anti-oxidant activity of polysaccharides extracted from Isocrysis galbana using RSM optimized conditions. Int. J. Biol. Macromol. 2013, 60, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Edamatsu, R.; Hiramatsu, M.; Mori, A.; Fujita, Y.; Yasuhara, T.; Yoshida, T.; Okuda, T. Effects of the interaction of tannins with co-existing substances, VI: Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 1989, 37, 2016–2021. [Google Scholar] [CrossRef]
- Lai, F.R.; Wen, Q.B.; Li, L.; Wu, H.; Li, X.F. Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiate L.) hull with ultrasonic assisted treatment. Carbohydr. Polym. 2010, 81, 323–329. [Google Scholar] [CrossRef]
- Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979, 59, 527–605. [Google Scholar] [PubMed]
- Jiang, P.; Yuan, L.; Cai, D.L.; Jiao, L.L.; Zhang, L.P. Characterization and antioxidant activities of the polysaccharides from mycelium of Phellinus pini and culture medium. Carbohydr. Polym. 2015, 117, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.Z.; Liu, Z.Q.; Zhao, J.M.; Chen, R.P.; Meng, F.L.; Zhang, M.; Ge, W.C. Antioxidant and immunobiological activity of water-soluble polysaccharide fractions purified from Acanthopanax senticosu. Food Chem. 2011, 127, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Lu, C.L.; Jiang, J.G.; Wang, M.; Wang, D.M.; Zhu, W. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu. Carbohydr. Polym. 2015, 130, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.H.; Zhao, Y.R.; Wang, S.M. Astragalus polysaccharide enrichment process. LiShiZhen Med. Med. Res. 2003, 24, 2075–2078. [Google Scholar]
- Ghavi, P.P. The extraction process optimization of antioxidant polysaccharides from Marshmallow (Althaea officinalis L.) roots. Int. J. Biol. Macromol. 2015, 75, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Dang, J.; Wang, Q.L.; Yu, M.F.; Jiang, L.; Mei, L.J.; Shao, Y.; Tao, Y.D. Optimization of polysaccharides from Lycium ruthenicum fruit using RSM and its anti-oxidant activity. Int. J. Biol. Macromol. 2013, 61, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.R. Optimization of extraction technology of soluble polysaccharides in Opuntia milpa alta by response surface methodology. J. Anhui Agric. Sci. 2007, 35, 6819–6822. [Google Scholar]
- Zhang, Q.B.; Yu, P.Z.; Li, Z.E.; Zhang, H.; Xu, Z.H.; Li, P.C. Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J. Appl. Phycol. 2003, 15, 305–310. [Google Scholar] [CrossRef]
- Heo, S.J.; Park, E.J.; Lee, K.W.; Jeon, Y.J. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 2005, 96, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of polysaccharides from Grateloupia livida (Harv.) Yamada are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, D.; Jiang, Z.; Zheng, F.; Wang, H.; Zhang, Y.; Gao, F.; Chen, P.; Chen, Y.; Shi, G. Optimized Extraction of Polysaccharides from Grateloupia livida (Harv.) Yamada and Biological Activities. Molecules 2015, 20, 16817-16832. https://doi.org/10.3390/molecules200916817
Ye D, Jiang Z, Zheng F, Wang H, Zhang Y, Gao F, Chen P, Chen Y, Shi G. Optimized Extraction of Polysaccharides from Grateloupia livida (Harv.) Yamada and Biological Activities. Molecules. 2015; 20(9):16817-16832. https://doi.org/10.3390/molecules200916817
Chicago/Turabian StyleYe, Danyan, Zebin Jiang, Fuchun Zheng, Hongmei Wang, Yanmei Zhang, Fenfei Gao, Peihong Chen, Yicun Chen, and Ganggang Shi. 2015. "Optimized Extraction of Polysaccharides from Grateloupia livida (Harv.) Yamada and Biological Activities" Molecules 20, no. 9: 16817-16832. https://doi.org/10.3390/molecules200916817
APA StyleYe, D., Jiang, Z., Zheng, F., Wang, H., Zhang, Y., Gao, F., Chen, P., Chen, Y., & Shi, G. (2015). Optimized Extraction of Polysaccharides from Grateloupia livida (Harv.) Yamada and Biological Activities. Molecules, 20(9), 16817-16832. https://doi.org/10.3390/molecules200916817