Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Kinetics of Essential Oils Extracted by SFME and HD
2.2. Evaluation of Physical and Organoleptic Properties
Extraction Methods | ||
---|---|---|
SFME-EO | HD-EO | |
Physical Properties | ||
Specific gravity (20 °C) | 0.926 | 0.917 |
Refractive index (20 °C) | 1.486 | 1.480 |
Solubility | Water insoluble. Soluble in alcohol and other organic liquids | |
Organoleptic Properties | ||
Color | Pale yellow | Yellow-greenish |
Odor | Sweet minty pleasant odor | Strong and pungent minty odor |
Aspect | Mobile liquid | Mobile liquid |
2.3. Chemical Composition of the Essential Oils Obtained by SFME and HD
No | Compounds 1 | LRIHP1 2 | LRIINNO 2 | HD-EO (% ± SD) | SFME-EO (% ± SD) | Identification Methods |
---|---|---|---|---|---|---|
Monoterpenes Hydrocarbons | 1.9 | 1.3 | ||||
1 | Tricyclene | 915 | 1017 | tr | tr | LRI, MS |
2 | α-Thujene | 919 | 1030 | 0.1 | 0.1 | LRI, MS |
3 | α-Pinene | 929 | 1070 | 0.2 | 0.1 | LRI, MS, Std |
4 | Camphene | 940 | 1072 | 0.1 | 0.1 | LRI, MS, Std |
5 | Sabinene | 962 | 1125 | 0.2 | 0.2 | LRI, MS, Std |
6 | β-Pinene | 969 | 1114 | 0.4 | 0.3 | LRI, MS, Std |
7 | β-Phellandrene | 981 | 1167 | 0.3 | 0.2 | LRI, MS, Std |
8 | (E)-β-Ocimene | 1034 | 1249 | 0.2 | 0.1 | LRI, MS, Std |
9 | γ-Terpinene | 1048 | 1245 | 0.4 ± 0.1 | 0.2 | LRI, MS, Std |
10 | Terpinolene | 1075 | 1285 | tr | tr | LRI, MS, Std |
Oxygenated Monoterpenes | 83.2 | 82.9 | ||||
11 | 1,8-cineole | 1026 | 1212 | 7.3 ± 0.3 | 6.8 ± 0.2 | LRI, MS, Std |
12 | Linalool | 1095 | 1552 | 48.4 ± 0.9 | 43.5 ± 0.8 | LRI, MS, Std |
13 | Camphor | 1130 | 1523 | 0.3 | 0.4 ± 0.1 | LRI, MS, Std |
14 | Menthone | 1145 | 1480 | 0.3 ± 0.1 | 0.1 | LRI, MS, Std |
15 | Borneol | 1160 | 1700 | 0.8 ± 0.1 | 1.0 ± 0.1 | LRI, MS, Std |
16 | Methyl chavicol | 1181 | 1167 | 14.3 ± 0.4 | 13.3 ± 0.2 | LRI, MS, Std |
17 | Fenchyl acetate | 1198 | 1480 | 0.2 | 0.1 | LRI, MS |
18 | Citronellol | 1210 | 1760 | tr | tr | LRI, MS, Std |
19 | Cuminaldehyde | 1213 | 1780 | tr | tr | LRI, MS |
20 | Neral | 1215 | 1670 | tr | tr | LRI, MS |
21 | Carvone | 1217 | 1732 | 0.1 | tr | LRI, MS, Std |
22 | Chavicol | 1231 | 2325 | 0.1 | tr | LRI, MS |
23 | Geraniol | 1235 | 1841 | 0.2 | 0.1 | LRI, MS, Std |
24 | Linalyl acetate | 1241 | 1556 | 0.1 | tr | LRI, MS, Std |
25 | Anethol | 1264 | 1825 | 0.7 | 0.6 | LRI, MS, Std |
26 | Bornyl acetate | 1271 | 1590 | 1.5 ± 0.1 | 1.1 | LRI, MS, Std |
27 | (Z)-Methyl cinnamate | 1274 | 1969 | 0.5 ± 0.1 | 0.4 ± 0.1 | LRI, MS, Std |
28 | Myrtenyle acetate | 1299 | 1688 | tr | tr | LRI, MS |
29 | Eugenol | 1330 | 2155 | 2.4 ± 0.1 | 2.9 ± 0.1 | LRI, MS |
30 | (E)-Methylcinnamate | 1356 | 2091 | 2.3 ± 0.1 | 6.5 ± 0.1 | LRI, MS, Std |
31 | Methyl eugenol | 1371 | 1989 | 3.7 ± 0.1 | 6.1 ± 0.1 | LRI, MS, Std |
Sesquiterpenes Hydrocarbons | 7.3 | 8.4 | ||||
32 | α-Cubebene | 1342 | 1463 | tr | tr | LRI, MS |
33 | β-Bourbonene | 1378 | 1542 | 0.2 | 0.2 ± 0.1 | LRI, MS |
34 | β-Elemene | 1380 | 1589 | 0.7 ± 0.1 | 0.9 ± 0.1 | LRI, MS |
35 | α-Copaene | 1381 | 1490 | 0.1 | 0.2 | LRI, MS, Std |
36 | β-Caryophyllene | 1411 | 1602 | 0.1 | 0.1 | LRI, MS, Std |
37 | α-Cedrene | 1412 | 1589 | tr | tr | LRI, MS |
38 | β-Cubebene | 1413 | 1545 | 0.1 | tr | LRI, MS |
39 | α-Bergamotene | 1430 | 1568 | 2.5 ± 0.1 | 2.7 ± 0.2 | LRI, MS |
40 | α-Humulene | 1445 | 1667 | 0.2 ± 0.1 | 0.3 ± 0.1 | LRI, MS, Std |
41 | α-Guaiene | 1447 | 1597 | tr | tr | LRI, MS |
42 | β-Farnesene | 1457 | 1698 | 0.4 | 0.4 ± 0.1 | LRI, MS |
43 | α-Curcumene | 1470 | 1782 | tr | tr | LRI, MS |
44 | γ-Muurolene | 1473 | 1669 | 0.1 | 0.2 | LRI, MS |
45 | Alloaromadendrene | 1475 | 1637 | 0.3 | 0.4 ± 0.1 | LRI, MS |
46 | Germacrene D | 1478 | 1705 | 0.8 | 0.9 ± 0.1 | LRI, MS |
47 | δ-Guaiene | 1492 | 1715 | 0.2 ± 0.1 | 0.1 | LRI, MS |
48 | γ-Cadinene | 1505 | 1757 | 1.1 ± 0.1 | 1.3 ± 0.1 | LRI, MS |
49 | Calamenene | 1508 | 1830 | 0.5 | 0.7 ± 0.1 | LRI, MS |
Oxygenated Sesquiterpenes | 6.5 | 6.6 | ||||
50 | β-Ionone | 1455 | 1920 | 0.1 | tr | LRI, MS, Std |
51 | Nerolidol | 1538 | 2009 | 0.3 ± 0.1 | 0.4 ± 0.2 | LRI, MS, Std |
52 | Spathulenol | 1561 | 2131 | 0.4 ± 0.1 | 0.6 ± 0.1 | LRI, MS |
53 | Caryophyllene oxide | 1565 | 1981 | 0.2 | 0.3 | LRI, MS |
54 | Carotol | 1592 | 2006 | 0.5 | 0.8 ± 0.1 | LRI, MS |
55 | Cadinol 3 | 1615 | 2147 | 0.8 ± 0.1 | 0.9 ± 0.2 | LRI, MS |
56 | τ-Cadinol | 1629 | 2165 | 0.1 | 0.1 | LRI, MS |
57 | α-Cadinol | 1637 | 2201 | tr | tr | LRI, MS |
58 | α-Bisabolol | 1650 | 2215 | 4.1 ± 0.1 | 3.5 ± 0.1 | LRI, MS |
59 | Phytol | 2080 | - | tr | tr | LRI, MS |
Other Oxygenated Compounds | 0.1 | 0.1 | ||||
60 | Methyl 2-methylbutyrate | 758 | 1008 | tr | - | LRI, MS |
61 | Hexanal | 773 | 1090 | tr | tr | LRI, MS, Std |
62 | (Z)-2-Hexenal | 823 | 1120 | tr | tr | LRI, MS, Std |
63 | Benzyl benzoate | 1710 | 2571 | tr | tr | LRI, MS, Std |
64 | 6,10,14-Trimethyl pentadecan-2-one | 1816 | - | 0.1 | 0.1 | LRI, MS |
65 | Farnesyl acetone | 1867 | 2382 | tr | tr | LRI, MS |
Extraction time | 60 min | 30 min | ||||
Yields % | 0.48% ± 0.02% | 0.48% ± 0.02% | ||||
Total oxygenated compound | 89.8 | 89.6 | ||||
Total non-oxygenated compound | 9.2 | 9.7 | ||||
Total identified compound | 99.0 | 99.3 |
Country | Part Used | Major Constituents (%) | Reference |
---|---|---|---|
Oman | Plants | Linalool (69.9), geraniol (10.9), 1,8-cineole (6.4), α-bergamotene (1.6), geranyl acetate (1.4) | [5] |
Italy | Fresh aerial parts | Linalool (41.17–76.20), methyl chavicol (18.01–41.40), eugenol (1.16–3.89), 1,8-cineole (0.94–12.91) | [10] |
Reunion | Fresh plants | Linalool (25.3–39.1), eugenol (11.0–43.2), trans-α-bergamotene (6.0–7.6) | [18] |
Brazil | Dried leaves | Linalool (72.14), geraniol (12,95), 1,8-cineole (7.90) | [23] |
Poland | Dried plants | Linalool (64.7), geraniol (12.6), 1,8-cineole (4.1), epi-α-cadinol (3.8) | [24] |
Czech Republic | Fresh leaves | Linalool (15.6–32.2), eugenol (9.1–22.2), 1,8-cineole (3.1–20.2), bergamotene (1–20.2) | [25] |
Guinea | Plants | Linalool (69.0), eugenol (10.0), (E)-α-bergamotene (3.0), thymol (2.0) | [26] |
Austria | Dried leaves | Linalool (28.6), methyl chavicol (21.7), (E)-methyl cinnamate (14.3), α-cadinol (7.1), eugenol (5.9), 1,8-cineole (4.0) | [27] |
Bulgaria | Dried leaves | Linalool (54.95), methyl chavicol (11.98), methyl cinnamate (7.24) | [28] |
USA | Dried leaves | Linalool (3.94), methyl chavicol (2.03), methyl cinnamate (1.28) | [29] |
Romania | Dried plants | Linalool (46.95), β-elemene (7.84), farnesene (6.86), epi-bicyclosesquiphellandrene (5.92), α-guaiene (5.26) | [30] |
Algeria | Dried leaves | Linalool (32.83), linalyl acetate (16), elemol (7.44), geranyl acetate (6.18), myrcene (6.12), allo-ocimene (5.02), α-terpineol (4.9), (E)-β-ocimene (3.68), neryl acetate (3.45) | [31] |
French Polynesia | Fresh leaves | (E)-methyl cinnamate (43.4–62.3), (Z)-methyl cinnamate (8.1–8.6), linalool (4.6–21.9) | [32] |
Pakistan | Dried aerial parts | Linalool (56.7–60.6), epi-α-cadinol (8.6–11.4), α-bergamotene (7.4–9.2),γ-cadinene (3.2–5.4) | [33] |
Egypt | Aerial parts | Linalool (44.18), 1,8-cineole (13.65), eugenol (8.59), methyl cinnamate (4.26), iso-caryophyllene (3.10), α-cubebene (4.97) | [34] |
Turkey | Flower, leaves, stem | Methyl chavicol (58.26, 52.60, 15.91), limonene (19.41, 13.64, 2.40), p-cymene (0.38, 2.32, 2.40) | [35] |
Madagascar | Plants | Methyl chavicol (74–87), 1,8-cineole (2.55–4.43), linalool (0.97–2.72), methyl eugenol (0.87–4.16) | [36] |
Iran | Dried leaves | Methyl chavicol (46.9), geranial (19.1), neral (15.15), geraniol (3.0), nerol (3.0), caryophyllene (2.4) | [37] |
Thailand | Aerial parts | Methyl chavicol (92.48), β-ocimene (2.27), trans-α-bergamotene (2.14) | [38] |
India | Aerial parts | Camphor (42.1), limonene (7.6), β-selinene (5.6) | [39] |
2.4. Antioxidant Activity
2.5. Oil Enrichment and Heating Test
2.6. Antimicrobial Activity
Tested Microorganisms | Inhibition Diameter 1 (mm ± Standard Deviation 2) | Minimum Inhibitory Concentration (µL/mL) | ||
---|---|---|---|---|
SFME-EO | HD-EO | SFME-EO | HD-EO | |
Gram-Positive Bacteria | ||||
Staphylococcus aureus (ATCC 6538) | 38 ± 1.5 | 33 ± 2.5 | 18 | 25 |
Bacillus subtilis (ATCC 6633) | 37 ± 2.9 | 34 ± 1.2 | 18 | 25 |
Gram-Negative Bacteria | ||||
Escherichia coli (ATCC 25922) | 26 ± 2.1 | 22 ± 2.0 | 25 | 30 |
Pseudomonas aeruginosa (ATCC 14028) | 29 ± 2.3 | 20 ± 3.2 | 20 | 30 |
Yeast | ||||
Candida albicans (ATCC 10231) | 34 ± 2.3 | 31 ± 2.3 | 30 | 40 |
3. Materials and Methods
3.1. Plant Materials
3.2. Extraction Methods
3.2.1. Solvent-Free Microwave Apparatus and Procedure
3.2.2. Hydro-Distillation Apparatus and Procedure
3.3. GC and GC-MS Identification
3.3.1. Gas Chromatography by Flame Ionic Detector (FID)
3.3.2. Gas Chromatography-Mass Spectrometry Analysis
3.3.3. Identification of the Components
3.4. Physical Constants and Organoleptic Properties
3.5. Antioxidant Activity
3.6. Heating Conditions
3.7. Antimicrobial Activity
3.7.1. Disc Diffusion Method
3.7.2. Determination of the Minimum Inhibitory Concentration (MIC)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effect essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Teles Andrade, B.F.M.; Barbosa, L.N.; da Silva Probst, I.; Fernandes Júnior, A. Antimicrobial activity of essential oils. J. Essent. Oil Res. 2014, 26, 34–40. [Google Scholar] [CrossRef]
- Burt, S. Essentials oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Delille, L. Les Plantes Médicinales D'Algérie; BERTI: Algiers, Algeria, 2007; pp. 47–48. [Google Scholar]
- Hanif, M.A.; Al-Maskari, M.Y.; Al-Maskari, A.; Al-Shukaili, A.; Al-Maskari, A.Y.; Al-Sabahi, J.N. Essential oil composition antimicrobial and antioxidant activities of unexplored Omani basil. J. Med. Plants Res. 2011, 5, 751–757. [Google Scholar]
- Simon, J.E.; Morales, M.R.; Phippen, W.B.; Vieira, R.F.; Hao, Z. Basil: A source of aroma compounds and a popular culinary and ornamental herb. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1999; pp. 499–505. [Google Scholar]
- Simon, J.E.; Quinn, J.; Murray, R.G. Basil: A source of essential oils. In Advances in New Crops; Janick, J., Simon, J.E., Eds.; Timber Press: Portland, OR, USA, 1990; pp. 484–489. [Google Scholar]
- Duke, J.A.; Bogenschutz-Godwin, M.J.; DuCellier, J.; Duke, P.A.K. Handbook of Medicinal Herbs, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 60–62. [Google Scholar]
- Khalid, Kh.A.; Hendawy, S.F.; El-Gezawy, E. Ocimum basilicum L. production under organic farming. Res. J. Agric. Biol. Sci. 2006, 2, 25–32. [Google Scholar]
- Marotti, M.; Piccaglia, R.; Giovanelli, E. Differences in essential oil composition of basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics. J. Agric. Food Chem. 1996, 44, 3926–3929. [Google Scholar] [CrossRef]
- Grayer, R.J.; Kite, G.C.; Goldstone, F.J.; Bryan, S.E.; Paton, A.; Putiesky, E. Intraspecific taxonomy and essential oil chemotypes in Sweet Basil, Ocimum basilicum. Phytochemistry 1996, 43, 1033–1039. [Google Scholar] [CrossRef]
- Chalchat, J.C.; Garry, R.P.; Sidibe, L.; Marama, M. Aromatic plants of Mali (I): Chemical composition of essential oils of Ocimum basilicum L. J. Essent. Oil Res. 1999, 11, 375–380. [Google Scholar] [CrossRef]
- Lawrence, B.M. Progress in Essential oils: Basil oil. Perfum. Flavor. 1998, 23, 35–52. [Google Scholar]
- Franz, C.; Novak, J. Sources of essential oils. In Handbook of Essential Oils: Science, Technology, and Applications; Baser, K.C.H., Buchbauer, G., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 39–81. [Google Scholar]
- Chemat, F. Techniques for oil extraction. In Citrus Essential Oils: Flavor and Fragrance; Sawamura, M., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 9–20. [Google Scholar]
- Chemat, F.; Smadja, J.; Lucchesie, M.E. Solvent Free Microwave Extraction of Volatile Natural Compound. EP Patent 1,439,218 B1, 28 July 2004. [Google Scholar]
- Chemat, F.; Lucchesie, M.E.; Smadja, J. Solvent free microwave extraction: An innovative tool for rapid extraction of essential oil from aromatic herbs and spices. Int. Microw. Power Inst. 2004, 39, 135–139. [Google Scholar]
- Lucchesie, M.E.; Chemat, F.; Smadja, J. Solvent free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydrodistillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef]
- Asghari, J.; Touli, C.K.; Mazaheritehrani, M.; Aghdasi, M. Comparison of the Microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Ferulago angulate (Schelcht.) boiss. Eur. J. Med. Plants 2012, 2, 324–334. [Google Scholar] [CrossRef]
- Filly, A.; Fernandez, X.; Minuti, M.; Visinoni, F.; Cravotto, G.; Chemat, F. Solvent free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food Chem. 2014, 150, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Figueredo, G.; Ünver, A.; Chalchat, J.C.; Arsalan, D.; Özcan, M.M. A research on the compostion of essential oil isolated from some aromatic plants by microwave and hydroditillation. J. Food Biochem. 2012, 6, 334–343. [Google Scholar] [CrossRef]
- Pandey, A.K.; Singh, P.; Tripathi, N.N. Chemistry and bioactivities of essential oils of some Ocimum species: An Overview. Asian Pac. J. Trop. Biomed. 2014, 4, 682–694. [Google Scholar] [CrossRef]
- Oliveira, J.S.; Porto, L.A.; Estevam, C.S.; Siqueira, R.S.; Alves, P.B.; Niculau, E.S.; Blank, A.F.; Reinaldo, N.; Almeida, R.N.; Marchioro, M.; et al. Phytochemical screening and anticonvulsant property of Ocimum basilicum leaf essential oil. Bol. Latinoam. Caribe Plantas Med. Aromát. 2009, 8, 195–202. [Google Scholar]
- Nurzyńska-Wierdak, R.; Borowski, B.; Dzida, K.; Zawiślak, G.; Kowalski, R. Essential oil composition of sweet basil cultivars as affected by nitrogen and potassium fertilization. Turk. J. Agric. For. 2013, 37, 427–436. [Google Scholar] [CrossRef]
- Klimankova, E.; Holadova, K.; Hajslova, J.; Cajka, T.; Poustka, J.; Koudela, M. Aroma profiles of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. Food Chem. 2008, 107, 464–472. [Google Scholar] [CrossRef]
- Keita, S.M.; Vincent, C.; Schmit, J.P.; Belanger, A. Essential oil composition of Ocimum basilicum L., O. gratissium L. and O. suave L. in the Republic of Guinea. Flavour Fragr. J. 2000, 15, 339–341. [Google Scholar] [CrossRef]
- Politeo, O.; Jukic, M.; Milos, M. Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food Chem. 2007, 101, 379–385. [Google Scholar] [CrossRef]
- Opalchenova, G.; Obreshkova, D. Comparative studies on the activity of basil—An essential oil from Ocimum basilicum L. against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. J. Microbiol. Methods 2003, 54, 105–110. [Google Scholar] [CrossRef]
- Lee, S.J.; Umano, K.; Shibamoto, T.; Lee, K.G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91, 131–137. [Google Scholar] [CrossRef]
- Benedec, D.; Oniga, I.; Oprean, R.; Tamas, M. Chemical composition of the essential oils of Ocimum basilicum L. cultivated in Romania. Farmacia 2009, 57, 625–629. [Google Scholar]
- Hadj-Khelifa, L.; Brada, M.; Brahmi, F.; Achour, D.; Fauconnier, M.L.; Lognay, G. Chemical composition and antioxidant activity of essential oil of Ocimum basilicum leaves from the northern region of Algeria. Topcl. J. Herb. Med. 2012, 1, 25–30. [Google Scholar]
- Adam, F.; Vahirua-Lechat, I.; Deslandes, E.; Bessiere, J.M.; Menut, C. Aromatic plants of French Polynesia. III. Constituents of the essential oil of leaves of Ocimum basilicum L. J. Essent. Oil Res. 2009, 21, 237–240. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M. Central properties and chemical composition of Ocimum basilicum essential oil. Pharm. Biol. 2006, 44, 619–626. [Google Scholar] [CrossRef]
- Chalchat, J.C.; Özcan, M.M. Comparative essential oil composition of flowers, leaves and stems of basil (Ocimum basilicum L.) used as herb. Food Chem. 2008, 110, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Ramdriamiharisoa, R.; Gaydou, E.M.; Bianchini, J.P.; Ravelojaona, G.; Vernin, G. Study of the variation in the chemical composition and classification of Basil essential oils from Madagascar. Sci. Aliments 1986, 6, 221–231. [Google Scholar]
- Shirazi, M.T.; Gholami, H.; Kavoosi, G.; Rowshan, V.; Tafsiry, A. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. Food Sci. Nutr. 2014, 2, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Bunrathep, S.; Palanuvej, C.; Ruangrungsi, N. Chemical compositions and antioxidative activities of essential oils from four Ocimum Species endemic to Thailand. J. Health Res. 2007, 21, 201–206. [Google Scholar]
- Purkayastha, J.; Nath, S.C. Composition of the camphor-rich essential oil of Ocimum basilicum L. native to Northeast India. J. Essent. Oil Res. 2006, 18, 332–344. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 1998, 28, 25–30. [Google Scholar] [CrossRef]
- Shafique, M.; Khan, S.J.; Khan, N.H. Study of antioxidant and antimicrobial activity of sweet basil (Ocimum basilicum) essential oil. Pharmacologyonline 2011, 1, 105–111. [Google Scholar]
- Taie, H.A.A.; Salama, Z.A.R.; Radwan, S. Potential activity of Basil plants as a source of antioxidants and anticancer agents as affected by organic and bio-organic fertilization. Not. Bot. Hortic Agrobot. Cluj 2010, 38, 119–127. [Google Scholar]
- Bassole, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef] [PubMed]
- Vlase, L.; Benedec, D.; Daniela Hanganu, D.; Damian, G.; Sevastre, B.; Mot, A.C.; Silaghi-Dumitrescu, R.; Ioan Csillag, I.; Tilea, I. Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014, 19, 5490–5507. [Google Scholar] [CrossRef] [PubMed]
- Bayala, B.; Bassole, I.H.N.; Gnoula, C.; Nebie, R.; Yonli, A. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS ONE 2014, 9, e92122. [Google Scholar] [CrossRef] [PubMed]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackovj, G. Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, G.I. Biological effects, antioxidant and anticancer activities of marigold and basil essential oils. J. Med. Plants Res. 2013, 7, 561–572. [Google Scholar]
- Dawidowicz, A.L.; Olszowy, M. Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components. Nat. Prod. Res. 2014, 28, 1952–1963. [Google Scholar] [CrossRef] [PubMed]
- Mimica-Dukic, N.; Bugarin, D.; Grbovic, S.; Mitic-Culafic, D.; Vukovic-Gacic, B.; Orcic, D.; Jovin, E.; Couladis, M. Essential oil of Myrtus communis L. as a potential antioxidant and antimutagenic agents. Molecules 2010, 15, 2759–2770. [Google Scholar] [CrossRef] [PubMed]
- Nagababu, E.; Lakshmaiah, N. Inhibitory effect of eugenol on non-enzymatic lipid peroxidation in rat liver mitochondria. Biochem. Pharmacol. 1992, 43, 2393–2400. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Supriyanto, E. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 2012, 17, 6290–6304. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Prasad, R.; Mahmood, A.; Routray, I.; Shinkafi, T.S.; Sahin, K.; Kucuk, O. Eugenol-rich fraction of Syzygium aromaticum (clove) reverses biochemical and histopathological changes in liver cirrhosis and inhibits hepatic cell proliferation. J. Cancer Prev. 2014, 19, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Pripdeevech, P.; Chumpolsri, W.; Suttiarporn, P.; Wongpornchai, S. The chemical composition and antioxidant activities of basil from Thailand using retention indices and comprehensive two-dimensional gas chromatography. J. Serbian Chem. Soc. 2010, 75, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Dabire, C.; Roger, H.C.; Nebie, R.H.C.; Belanger, A.; Nacro, M.; Sib, F.S. Effet du séchage de la matière végétale sur la composition chimique de l’huile essentielle et l’activité antioxydante d’extraits d’Ocimum basilicum L. Int. J. Biol. Chem. Sci. 2011, 5, 1082–1095. [Google Scholar]
- Achat, S.; Tomao, V.; Madani, K.; Chibane, M.; Elmaataoui, M.; Dangles, O.; Chemat, F. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason. Sonochem. 2012, 19, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.P.; Pereira, J.A. Olive oil stability under deep-frying conditions. Food Chem. Toxicol. 2010, 48, 2972–2979. [Google Scholar] [CrossRef] [PubMed]
- Mnayer, D.; Fabiano-Tixier, A.S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 2014, 19, 20034–20053. [Google Scholar] [CrossRef] [PubMed]
- Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Antimicrobial properties of Basil and its possible application in food packaging. J. Agric. Food Chem. 2003, 51, 3197–3207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.W.; Li, S.K.; Wu, W.J. The Main chemical composition and in vitro antifungal activity of the essential oils of Ocimum basilicum Linn. Var. pilosum (Willd.) Benth. Molecules 2009, 14, 273–278. [Google Scholar] [PubMed]
- Ouibrahim, A.; Tlili-Ait-kaki, Y.; Bennadja, S.; Amrouni, S.; Djahoudi, A.G.; Djebar, M.R. Evaluation of antibacterial activity of Laurus nobilis L., Rosmarinus officinalis L. and Ocimum basilicum L. from Northeast of Algeria. Afr. J. Microbiol. Res. 2013, 7, 4968–4973. [Google Scholar]
- Sienkiewicz, M.; Lysakowska, M.; Pastuszka, M.; Bienias, W.; Kowalczyk, E. The potential of use Basil and Rosemary essential oils as effective antibacterial agents. Molecules 2013, 18, 9334–9351. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.; Alymanesh, M.R.; Mehdizadeh, L.; Mirzaei, H.; Pirbalouti, A.G. Chemical composition and antibacterial activity of essential oil of Ocimum ciliatum, as a new source of methyl chavicol, against ten phytopathogens. Ind. Crops Prod. 2014, 59, 144–148. [Google Scholar] [CrossRef]
- Lopez, P.; Sanchez, C.; Batlle, R.; Nerin, C. Solid- and Vapor-phase antimicrobial activities of six essential oils: Susceptibility of selected foodborne bacterial and fungal strains. J. Agric. Food Chem. 2005, 53, 6939–6946. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, K.J.; Jones, G.P.; Briggs, D.R.; Bienvenu, F.E.; Wan, J.; Wilcock, A.; Coventry, M.J. The synergistic preservative effects of the essential oils of sweet basil (Ocimum basilicum L.) against acid-tolerant food micro flora. Lett. Appl. Microbiol. 1998, 26, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Bassole, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [PubMed]
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; E.B-Verlag: Hamburg, Germany, 1998; p. 658. [Google Scholar]
- Joulain, D.; König, W.; Hochmuth, D.H. Terpenoids and Related Constituents of Essential Oils; Library of Mass Finder 2.1; Institute of Organic Chemistry: Hamburg, Germany, 2001. [Google Scholar]
- McLafferty, F.W.; Stauffer, D.B. The Wiley/Nbs Registry of Mass Spectral Data; Wiley J & Sons: New York, NY, USA, 1989; p. 7872. [Google Scholar]
- BACIS. ESO 2000 the Complete Database of Essential Oils; Boelens Aroma Chemical Information Service: Huizen, The Netherlands, 1999. [Google Scholar]
- AFNOR (Association Française de Normalisation). Huiles Essentielles; AFNOR: Paris, France, 2007. [Google Scholar]
- Sanli, H.; Canakci, M.; Alptekin, E. Characterization of waste frying oils obtained from different facilities. In Proceedings of the World Renewable Energy Congress, Linköping, Sweden, 8–13 May 2011; Bioenergy Technology: Linköping, Sweden, 2011; pp. 479–485. [Google Scholar]
- Berghe, D.A.V.; Vlietinck, A.J. Screening methods for antibacterial and antiviral agents from higher plants. Plant Biochem. 1991, 6, 47–69. [Google Scholar]
- Cappuccino, J.G.; Sherman, N. Microbiology: A Laboratory Manual, 5th ed.; Benjamin/Cumming Science Publishing: San Francisco, CA, USA, 1998; p. 254. [Google Scholar]
- Chemat, F.; Fabiano-Tixier, A.S.; Hellal, A.; Boutekedjiret, C.; Fernandez, X. Activités chimiques et biologiques des huiles essentielles. In La Chimie des Huiles Essentielles: Tradition et Innovation; Fernandez, X., Chemat, F., Eds.; Vuibert: Paris, France, 2012; pp. 229–232. [Google Scholar]
- Sample Availability: Not Available.
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chenni, M.; El Abed, D.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction. Molecules 2016, 21, 113. https://doi.org/10.3390/molecules21010113
Chenni M, El Abed D, Rakotomanomana N, Fernandez X, Chemat F. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction. Molecules. 2016; 21(1):113. https://doi.org/10.3390/molecules21010113
Chicago/Turabian StyleChenni, Mohammed, Douniazad El Abed, Njara Rakotomanomana, Xavier Fernandez, and Farid Chemat. 2016. "Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction" Molecules 21, no. 1: 113. https://doi.org/10.3390/molecules21010113
APA StyleChenni, M., El Abed, D., Rakotomanomana, N., Fernandez, X., & Chemat, F. (2016). Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction. Molecules, 21(1), 113. https://doi.org/10.3390/molecules21010113