Peptide KSL-W-Loaded Mucoadhesive Liquid Crystalline Vehicle as an Alternative Treatment for Multispecies Oral Biofilm
Abstract
:1. Introduction
2. Results and Discussion
2.1. Peptide KSL-W Synthesis
2.2. Phase Behavior Studies
2.3. Polarized Light Microscopy (PLM) and Small-Angle X-ray Scattering (SAXS)
Sample | q1 (Å−1) | q2 (Å−1) | q3 (Å−1) | d2/d1 (Å) | d3/d1 (Å) | nm |
---|---|---|---|---|---|---|
F1 | 0.08 | - | - | - | - | - |
F2 | 0.08 | 0.16 | 0.24 | 2 | 3 | 7.85 |
2.4. Rheological Analysis
Sample | N | K | G’ | G’’ |
---|---|---|---|---|
F1 | 0.986 | 0.150 | 0.29 | 2.49 |
F2 | 0.616 | 3.690 | 342.56 | 109.12 |
2.5. Bioadhesion Studies
2.6. Determination of Activity against Multispecies Oral Biofilm
Samples | Growth CFU (%) |
---|---|
Positive control | 100 (5.1) |
Negative control | 0 (0) |
P | 9.98 (1.2) |
F2-P | 0 (0) |
F2 | 14.37 (1.8) |
3. Experimental Section
3.1. Materials
3.2. Peptide Synthesis
3.3. Ternary Phase Diagram Construction
Composition % (w/w) | ||
---|---|---|
Components | F1 | F2 |
Oleic Acid | 30 | 20 |
PPG-5-CETETH-20 | 50 | 50 |
Dispersion Poloxamer 407 1% | 20 | 30 |
3.4. PLM
3.5. SAXS
3.6. Rheological Analysis
3.7. Bioadhesion Studies
3.8. Determination of Activity against Multispecies Oral Biofilm
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sixou, M.; Diouf, A.; Alvares, D. Biofilm buccal et pathologies buccodentaires. Antibiotiques 2007, 9, 181–188. [Google Scholar] [CrossRef]
- Kolenbrander, P.E.; Palmer Junior, R.J.; Rickard, A.H.; Jakubovics, N.S.; Chalmers, N.I.; Diaz, P.I. Bacterial interactions and successions during plaque development. Periodontol. 2000 2006, 42, 47–79. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, N.K.; Ferina, N.; Amirulhusni, A.N.; Mohd-zain, Z.; Hussaini, J.; Ping, L.J.; Durairaj, R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J. Nanobiotechnol. 2014, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.; Das, J.; Foley, I. Biofilm susceptibility to antimicrobials. Adv. Dent. Res. 1997, 11, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Taweechaisupapong, S.; Pinsuwan, W.; Suwannarong, W.; Kukhetpitakwong, R.; Luengpailin, S. Effects of Streblus asper leaf extract on the biofilm formation of subgingival pathogens. S. Afr. J. Bot. 2014, 94, 1–5. [Google Scholar] [CrossRef]
- Devine, D.A.; Cosseau, C. Host defense peptides in the oral cavity. Adv. Appl. Microbiol. 2008, 63, 282. [Google Scholar]
- Southard, G.L.; Godowski, K.C. Subgingival controlled release of antimicrobial agents in the treatment of periodontal disease. Int. J. Antimicrob. Agents 1998, 9, 239–253. [Google Scholar] [CrossRef]
- Hong, S.Y.; Oh, J.E.; Kwon, M.; Choi, M.J.; Lee, J.H.; Lee, B.L.; Moon, H.M.; Lee, K.H. Identification and characterization of novel antimicrobial decapeptides generated by combinational chemistry. Antimicrob. Agents Chemother. 1998, 42, 2534–2541. [Google Scholar] [PubMed]
- Na, D.H.; Faraj, J.; Capan, Y.; Leung, K.P.; Deluca, P.P. Chewing gum of antimicrobial decapeptide (KSL) as a sustained antiplaque agent: Preformulation study. J. Control. Release 2005, 107, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Faraj, J.A.; Dorati, R.; Schoubben, A.; Worthen, D.; Selmin, F.; Capan, Y.; Leung, K.; Deluca, P.P. Development of a peptide-containing chewing gum as a sustained release antiplaque antimicrobial delivery system. AAPS PharmSciTech 2007, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Na, D.H.; Faraj, J.; Capan, Y.; Leung, K.P.; Deluca, P.P. Stability of antimicrobial decapeptide (KSL) and its analogues for delivery in the oral cavity. Pharm. Res. 2007, 24, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Zhou, X.; Hu, S.; Zhang, S.; Wu, H. Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm. Int. J. Antimicrob. Agents. 2011, 37, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Dresselhuis, D.M.; Stuart, M.A.; van Aken, G.A.; Schipper, R.G.; de Hoog, E.H. Fat retention at the tongue and the role of saliva: Adhesion and spreading of “protein-poor” vs. “protein-rich” emulsions. J. Colloid Interface Sci. 2008, 1, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.L.; Cho, C.S.; Yoo, H.S. Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol. Adv. 2009, 27, 857–886. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.K.; Oyafuso, M.H.; Kiill, C.P.; Gremião, M.P.D.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems for Treatment of Hyperproliferative Skin Diseases—A Review. Curr. Nanosci. 2013, 9, 159–167. [Google Scholar]
- Calixto, G.; Yoshii, A.C.; Silva, H.R.; Stringhetti, F.C.B.; Chorilli, M. Polyacrylic acid polymers hydrogels intended to topical drug delivery: preparation and characterization. Pharm. Dev. Technol. 2014, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.B.; Ramos, M.A.S.; Bonifácio, B.V.; Negri, K.M.S.; Sato, M.R.; Bauab, T.M.; Chorilli, M. Nanotechnological Strategies for Vaginal Administration of Drugs—A Review. J. Biomed. Nanotechnol. 2014, 10, 2218–2243. [Google Scholar] [CrossRef] [PubMed]
- Bernegossi, J.; Calixto, G.M.F.; Santos, B.F.; Aida, K.L.; Negrini, T.C.; Duque, C.; Gremião, M.P.D.; Chorilli, M. Highlights in Peptide Nanoparticle Carriers Intended to Oral Diseases. Curr. Top. Med. Chem. 2015, 15, 345–355. [Google Scholar] [CrossRef]
- Lestini, B.J.; Sagnella, S.M.; Xu, Z.; Shive, M.S.; Richter, N.J.; Jayaseharan, J.; Case, A.J.; Kottke-Marchant, K.; Anderson, J.M.; Marchant, R.E. Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J. Control. Release 2002, 78, 235–247. [Google Scholar] [CrossRef]
- Kubik, T.; Bogunia-kubik, K.; Sugisaka, M. Nanotechnology on duty in medical application. Curr. Pharm. Biotechnol. 2005, 6, 17–33. [Google Scholar] [PubMed]
- Stevenson, C.L.; Bennett, D.B.; Leghuga-Ballesteros, D. Pharmaceutical liquid crystals: The relevance of partially ordered systems. J. Pharm. Sci. 2005, 94, 1861–1880. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, K.B.; Russell-Jones, G.J.; Yandrapu, S.K.; Diwan, P.V.; Jain, S.K. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J. Control. Release 2007, 117, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Mohanraj, V.J.; Chen, Y. Nanoparticles—A review. Trop. J. Pharm. Res. 2006, 5, 561–573. [Google Scholar] [CrossRef]
- Chorilli, M.; Prestes, O.S.; Rigon, R.B.; Leonardi, G.R.; Chiavacci, L.A.; Scarpa, M.V. Desenvolvimento de sistemas líquido-cristalinos empregando silicone fluído de co-polímero glicol e poliéter funcional siloxano. Quím. Nova 2009, 32, 1036–1040. [Google Scholar] [CrossRef]
- Calixto, G.; Bernegossi, J.; Fonseca-Santos, B.; Chorilli, M. Nanotechnology-based drug delivery systems for treatment of oral cancer: A review. Int. J. Nanomed. 2014, 9, 3719–3735. [Google Scholar] [CrossRef] [PubMed]
- Prestes, O.S.; Chorilli, M.; Chiavacci, L.A.; Scarpa, M.V.; Leonardi, G.R. Physicochemical characterization and rheological behavior evaluation of the liquid crystalline mesophases developed with different silicones. J. Disper. Sci. Technol. 2010, 31, 117–123. [Google Scholar] [CrossRef]
- Chorilli, M.; Prestes, P.S.; Rigon, R.B.; Leonardi, G.R.; Chiavacci, L.A.; Sarmento, V.H.V.; Oliveira, A.G.; Scarpa, M.V. Structural characterization and in vivo evaluation of retinyl palmitate in non-ionic lamellar liquid crystalline system. Colloids Surf. B Biointerfaces 2011, 85, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Oyafuso, M.H.; Carvalho, F.C.; Chiavacci, L.A.; Gremião, M.P.D.; Chorilli, M. Design and Characterization of silicone and surfactant based systems for topical drug delivery. J. Nanosci. Nanotechnol. 2015, 15, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.C.C.; Landgraf, D.S.; Oyafuso, M.H.; Chiavacci, L.A.; Sarmento, V.H.V.; Chorilli, M.; Corrêa, M.A.; Gremião, M.P.D. Development and in vitro skin delivery of dexamethasone acetate-loaded surfactant-based systems. J. Nanopharm. Drug Deliv. 2013, 1, 323–334. [Google Scholar] [CrossRef]
- Carvalho, F.C.; Sarmento, V.H.V.; Chiavacci, L.A.; Barbi, M.S.; Gremião, M.P.D. Development and in vitro evaluation of surfactant systems for controlled release of zidovudine. J. Pharm. Sci. 2010, 99, 2367–2374. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.C.; Silva, H.R.; Luz, G.M.; Barbi, M.S.; Landgraf, D.S.; Chiavacci, L.A.; Sarmento, V.H.V.; Gremião, M.P.D. Rheological, mechanical and adhesive properties of surfactant-containing systems designed as a potential platform for topical drug delivery. J. Biomed. Nanotechnol. 2012, 8, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.C.; Campos, M.L.; Peccinini, R.G.; Gremião, M.P.D. Nasal administration of liquid crystal precursor mucoadhesive vehicle as an alternative antiretroviral therapy. Eur. J. Pharm. Biopharm. 2013, 84, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.C.; Chorilli, M.; Gremião, M.P.D. Plataformas bio(muco)adesivas poliméricas baseadas em nanotecnologia para liberação controlada de fármacos propriedades, metodologias e aplicações. Polímeros 2014, 24, 203–213. [Google Scholar] [CrossRef]
- Bruschi, M.L.; Freitas, O.; Lara, E.H.G.; Panzeri, H.; Gremião, M.P.D.; Jones, D.S. Precursor system of liquid crystalline phase containing propolis microparticles for the treatment of periodontal disease: Development and characterization. Drug Dev. Ind. Pharm. 2008, 34, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.S.; Bruschi, M.L.; Freitas, O.; Gremião, M.P.D.; Lara, E.H.G.; Gavin, P.A. Rheological, mechanical and mucoadhesive properties of thermoresponsive, bioadhesive binary mixtures composed of poloxamer 407 and carbopol 974P designed as platforms for implantable drug delivery systems for use in the oral cavity. Int. J. Pharm. 2009, 372, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Albertini, B.; Passerini, N.; Di Sabatino, M.; Monti, D.; Burgalassi, S.; Chetoni, P.; Rodriguez, L. Poloxamer 407 microspheres for orotransmucosal drug delivery. Part I: Formulation, manufacturing and characterization. Int. J. Pharm. 2010, 399, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.C.; Barbi, M.S.; Sarmento, V.H.; Chiavacci, L.A.; Netto, F.M.; Gremião, M.P. Surfactant systems for nasal zidovudine delivery: Structural, rheological and mucoadhesive properties. J. Pharm. Pharmacol. 2010, 62, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Savic, S.; Lukic, M.; Jaksic, I.; Reichl, S.; Tamburic, S.; Goymann, C.M. An alkyl polyglucoside-mixed emulsifier as stabilizer of emulsion systems: The influence of colloidal structure on emulsions skin hydration potential. J. Colloid Interface Sci. 2011, 358, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.L.; Freitas, O. Oral bioadhesive drug delivery systems. Drug Dev. Ind. Pharm. 2005, 31, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Penzes, T.; Csóka, I.; Erős, I. Rheological analysis of the structural properties effecting the percutaneous absorption and stability in pharmaceutical organogels. Rheologica Acta. 2004, 43, 457–463. [Google Scholar] [CrossRef]
- Bontorim, G. Estudo de estabilidade de emulsão cosmética utilizando reologia e técnicas convencionais de análise. Dissertação de Mestrado-Universidade Federal do Paraná, Faculdade de Química (Curitiba-Brasil). Available online: http://dspace.c3sl.ufpr.br/dspace/handle/1884/23728 (accessed on 26 November 2015).
- Bruschi, M.L.; Jones, D.S.; Panzeri, H.; Gremião, M.P.; de Freitas, O.; Lara, E.H. Semisolid systems containing propolis for the treatment of periodontal disease: in vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties. J. Pharm. Sci. 2007, 96, 2074–2089. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.P.; Abercrombie, J.J.; Campbell, T.M.; Gilmore, K.D.; Bell, C.A.; Faraj, J.A.; Deluca, P.P. Antimicrobial peptides for plaque control. J. Adv. Dent. Res. 2009, 21, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Glover, R.E.; Smith, R.R.; Jones, M.V.; Jackson, S.K.; Rowlands, C.C. An EPR investigation of surfactant action on bacterial membranes. FEMS Microbiol. Lett. 1999, 177, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, R.B. Solid phase peptide synthesis. I. Synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154. [Google Scholar] [CrossRef]
- Crusca, E., Jr.; Rezende, A.A.; Marchetto, R.; Mendes-Giannini, M.J.; Fontes, W.; Castro, M.S.; Cilli, E.M. Influence of N-terminus modifications onthe biological activity, membrane interaction, and secondary structure of the antimicrobial peptide hylin-a. Biopolymers 2011, 96, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Manaia, E.B.; Kaminski, R.C.K.; Soares, C.P.; Meneau, F.; Pulcinelli, S.H.; Santilli, C.V.; Chiavacci, L.A. Liquid crystalline formulations containing modified surface TiO2 nanoparticles obtained by sol-gel process. J. Sol-Gel Sci. Technol. 2012, 63, 251–257. [Google Scholar] [CrossRef]
- Silva, S.A.M.; Valarini, M.F.C.; Chorilli, M.; Friberg, S.E.; Leonardi, G.R. Minimum evaporation model of dermatological delivery systems. Lamellar liquid crystal formulations containing Brazilian nut (Bertholletia excelsa HBK) vegetable oil and guarana glycolic extract. J. Dispers. Sci. Technol. 2014, 35, 1191–1199. [Google Scholar] [CrossRef]
- Joshi, M.; Patravale, V. Formulation and evaluation of nanostructured lipid carrier (NLC)-based gel of valdecoxib. Drug Dev. Ind. Pharm. 2006, 32, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.B.; Prado, A.H.; Bernegossi, J.; Sato, C.S.; Brunetti, I.L.; Scarpa, M.V.; Leonardi, G.R.; Friberg, S.E.; Chorilli, M. Topical application of retinyl palmitate-loaded nanotechnology-based drug delivery systems for the treatment of skin aging. J. Biomed. Biotechnol. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.B.; Calixto, G.M.F.; Graminha, M.A.; Cerecetto, H.; Gonzalez, M.; Chorilli, M. Development, characterization and in vitro biological performance of fluconazole-loaded microemulsions for the topical treatment of cutaneous leishmaniasis. J. Biomed. Biotechnol. 2015, 2015. [Google Scholar] [CrossRef]
- Gonçalez, M.L.; Marcussi, D.G.; Calixto, G.M.F.; Correa, M.A.; Chorilli, M. Structural characterization and in vitro antioxidant activity of kojic dipalmitate loaded W/O/W multiple emulsions intended to skin disorders. J. Biomed. Biotechnol. 2015, 2015. [Google Scholar] [CrossRef]
- Peros, W.J.; Gibbons, R.J. Influence of growth medium on adsorption of Streptococcus mutans, Actinomyces viscosus, and Actinomyces naeslundii to salivatreated hydroxyapatite surfaces. Infect. Immun. 1981, 32, 111–117. [Google Scholar] [PubMed]
- Hägerström, H.; Bergström, C.A.; Edsman, K. The importance of gel properties for mucoadhesion measurements: A multivariate data analysis approach. J. Pharm. Pharmacol. 2004, 56, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Fontana, C.R.; Abernethy, A.D.; Som, S.; Ruggiero, K.; Douucette, S.; Marcantonio, R.C.; Boussios, C.I.; Kent, R.; Goodson, J.M.; Tanner, A.C.R.; Soukos, N.S. The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J. Periodontal Res. 2009, 44, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the KSL-W peptide are not available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernegossi, J.; Calixto, G.M.F.; Sanches, P.R.d.S.; Fontana, C.R.; Cilli, E.M.; Garrido, S.S.; Chorilli, M. Peptide KSL-W-Loaded Mucoadhesive Liquid Crystalline Vehicle as an Alternative Treatment for Multispecies Oral Biofilm. Molecules 2016, 21, 37. https://doi.org/10.3390/molecules21010037
Bernegossi J, Calixto GMF, Sanches PRdS, Fontana CR, Cilli EM, Garrido SS, Chorilli M. Peptide KSL-W-Loaded Mucoadhesive Liquid Crystalline Vehicle as an Alternative Treatment for Multispecies Oral Biofilm. Molecules. 2016; 21(1):37. https://doi.org/10.3390/molecules21010037
Chicago/Turabian StyleBernegossi, Jéssica, Giovana Maria Fioramonti Calixto, Paulo Ricardo da Silva Sanches, Carla Raquel Fontana, Eduardo Maffud Cilli, Saulo Santesso Garrido, and Marlus Chorilli. 2016. "Peptide KSL-W-Loaded Mucoadhesive Liquid Crystalline Vehicle as an Alternative Treatment for Multispecies Oral Biofilm" Molecules 21, no. 1: 37. https://doi.org/10.3390/molecules21010037
APA StyleBernegossi, J., Calixto, G. M. F., Sanches, P. R. d. S., Fontana, C. R., Cilli, E. M., Garrido, S. S., & Chorilli, M. (2016). Peptide KSL-W-Loaded Mucoadhesive Liquid Crystalline Vehicle as an Alternative Treatment for Multispecies Oral Biofilm. Molecules, 21(1), 37. https://doi.org/10.3390/molecules21010037