The Reciprocal Principle of Selectand-Selector-Systems in Supramolecular Chromatography †
Abstract
:1. Introduction
2. Origin of the Reciprocal Principle in Chromatography
2.1. Capillary Electromigration Methods (CE)
2.2. Combinatorial Library Approaches in Achiral Supramolecular Chromatographic Systems
2.3. Combinatorial Cyclopeptide Library Approaches in Chiral Capillary Electrophoresis
2.4. Reciprocal Principle in Combinatorial Approaches Utilizing Cyclopeptides—A Failure and a Success
2.5. On-Bead Library Combinatorial Approaches
2.6. On-Bead Combinatorial Approach of Individual Library Members
2.7. Batch-Screening of Peptide Libraries and the Reciprocal Principle
3. Single-Walled Carbon Nanotubes, SWCNTs
4. Chromatography of Fullerenes and the Reciprocal Principle
5. The Reciprocal Selectand/Selector System of Fullerenes/Cyclodextrins
6. Chromatography of Calixarenes and the Reciprocal Principle
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Schurig, V. Supramolecular Chromatography. In Applications of Supramolecular Chemistry; Schneider, H.-J., Ed.; CRC-Press: Boca Raton, FL, USA, 2012; pp. 129–157. [Google Scholar]
- Ciogli, A.; Kotoni, D.; Gasparrini, F.; Pierini, M.; Villani, C. Chiral Supramolecular Selectors for Enantiomer Differentiation in Liquid Chromatography. In Differentiation of Enantiomers I; Schurig, V., Ed.; Springer: Heidelberg, Germany, 2013; Volume 340, pp. 73–106. [Google Scholar]
- Allenmark, S.; Schurig, V. Chromatography on chiral stationary phases. J. Mater. Chem. 1997, 7, 1955–1963. [Google Scholar] [CrossRef]
- Mikeš, F. The Resolution of Chiral Compounds by Modern Liquid Chromatography. Ph.D. Thesis, The Weizmann Institute of Science, Rehovot, Israel, 1975. [Google Scholar]
- Ashby, W.R. An Introduction to Cybernetics; Chapman & Hall Ltd.: London, UK, 1956; p. 10. [Google Scholar]
- Allenmark, S. Separation of Enantiomers by Protein Based Chiral Phases. In A Practical Approach to Chiral Separations by Liquid Chromatography; Subramanian, G., Ed.; Wiley-VCH: Weinheim, Germany, 1994; p. 183. [Google Scholar]
- Okamoto, Y.; Yashima, E. Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 1998, 37, 1020–1043. [Google Scholar] [CrossRef]
- Zeleke, Y.M.; Smith, G.B.; Hofstetter, H.; Hofstetter, O. Enantiomer separation of Amino Acids in immunoaffinity Micro LC-MS. Chirality 2006, 18, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Mikeš, F.; Boshart, G.; Gil-Av, E. Helicenes, Resolution on chiral charge-transfer complexing agents using high performance liquid chromatography. J. Chem. Soc. Chem. Commun. 1976, 99–100. [Google Scholar] [CrossRef]
- Mikeš, F.; Boshart, G.; Gil-Av, E. Resolution of optical isomers by high-performance liquid chromatography, using coated and bonded chiral charge-transfer complexing agents as stationary phases. J. Chromatogr. 1976, 122, 205–221. [Google Scholar] [CrossRef]
- Mikeš, F.; Boshart, G. Resolution of optical isomers by high-performance liquid chromatography—A comparison of two selector systems. J. Chromatogr. 1978, 149, 455–464. [Google Scholar] [CrossRef]
- Kim, Y.H.; Balan, A.; Tishbee, A.; Gil-Av, E. Chiral differentiation by the P-(+)-Hexahelicene-7,7′-dicarboxylic acid disodium salt. Resolution of N-2,4-Dinitrophenyl-α-amino-acid esters by high performance liquid chromatography. J. Chem. Soc. Chem. Commun. 1982, 1336–1337. [Google Scholar] [CrossRef]
- Pirkle, W.H. The nonequivalence of physical properties of enantiomers in optically active solvents. Differences in nuclear magnetic resonance spectra. I. J. Am. Chem. Soc. 1966, 88, 1837. [Google Scholar] [CrossRef]
- Pirkle, W.H.; Burlingame, T.G.; Beare, S.D. Optically Active NMR Solvents VI. The determination of optical purity and absolute configuration of amines. Tetrahedron Lett. 1968, 9, 5849–5852. [Google Scholar] [CrossRef]
- Pirkle, W.H.; Hoover, D.J. NMR chiral solvating agents. Top. Stereochem. 1982, 13, 263–331. [Google Scholar]
- Pirkle, W.H.; House, D.W.; Finn, J.M. Broad spectrum resolution of optical isomers using chiral high-performance liquid chromatographic bonded phases. J. Chromatogr. 1980, 192, 143–158. [Google Scholar] [CrossRef]
- Pirkle, W.H.; Däppen, R. Reciprocity in chiral recognition: Comparison of several chiral stationary phases. J. Chromatogr. A 1987, 404, 107–115. [Google Scholar] [CrossRef]
- Pirkle, W.H.; Hyun, M.H.; Bank, B. A rational approach to the design of highly-effective chiral stationary phases. J. Chromatogr. 1984, 316, 585–604. [Google Scholar] [CrossRef]
- Pirkle, W.H.; Pochapsky, T.C.; Burke, J.A., III; Deming, K.C. Systematic Studies of Chiral Recognition Mechanisms. In Chiral Separations; Stevenson, D., Wilson, I.D., Eds.; Plenum Press: New York, NY, USA, 1988; pp. 23–35. [Google Scholar]
- Pirkle, W.H.; Pochapsky, T.C. Considerations of chiral recognition relevant to the liquid chromatographic separation of enantiomers. Chem. Rev. 1989, 89, 347–362. [Google Scholar] [CrossRef]
- Pirkle, W.H.; Readnour, R.S. Chromatographic approach to the measurement of the interstrand distance for some chiral bonded phases. Anal. Chem. 1991, 63, 16–20. [Google Scholar] [CrossRef]
- Pirkle, W.H.; Welch, C.J.; Lamm, B. Design, synthesis, and evaluation of an improved enantioselective naproxen selector. J. Org. Chem. 1992, 57, 3854–3860. [Google Scholar] [CrossRef]
- Welch, C.J. Evolution of chiral stationary phase design in the Pirkle laboratories. J. Chromatogr. A 1994, 666, 3–26. [Google Scholar] [CrossRef]
- Taylor, D.R.; Clift, E. The Use of Reciprocal Interaction in the Design of Pyrethroid Specific Chiral Stationary Phases. In Recent Advances in Chiral Separations; Stevenson, D., Wilson, I.D., Eds.; Plenum Press: New York, NY, USA, 1990; pp. 39–41. [Google Scholar]
- Terabe, S. Electrokinetic chromatography: An interface between electrophoresis and chromatography. Trends Anal. Chem. 1984, 8, 129–134. [Google Scholar] [CrossRef]
- Chankvetadze, B. Principles of Enantiomer Separation in Electrokinetic Chromatography. In Electrokinetic Chromatography—Theory, Instrumentation and Applications; Pyell, U., Ed.; John Wiley & Sons: Chichester, UK, 2006; pp. 179–206. [Google Scholar]
- Jakubetz, H.; Juza, M.; Schurig, V. Electrokinetic Chromatography employing an anionic and a cationic β-cyclodextrin derivative. Electrophoresis 1997, 18, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Terabe, S.; Ozaki, H.; Otsuka, K.; Ando, T. Electrokinetic chromatography with 2-O-Carboxymethyl-β-cyclodextrin as a moving “Stationary” Phase. J. Chromatogr. 1985, 332, 211–217. [Google Scholar] [CrossRef]
- Mayer, S.; Schleimer, M.; Schurig, V. Dual chiral recognition system involving cyclodextrin derivatives in capillary electrophoresis. J. Microcolumn Sep. 1994, 6, 43–48. [Google Scholar] [CrossRef]
- Tait, R.J.; Thompson, D.O.; Stella, V.J.; Stobaugh, J.F. Sulfobutyl ether β-cyclodextrin as a chiral discriminator for use with capillary electrophoresis. Anal. Chem. 1994, 66, 4013–4018. [Google Scholar] [CrossRef]
- Chankvetadze, B.; Endresz, G.; Blaschke, G. About some aspects of the use of charged cyclodextrins for capillary electrophoresis enantioseparation. Electrophoresis 1994, 15, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B.; Blaschke, G. Enantioseparations in capillary electromigration techniques: Recent developments and future trends. J. Chromatogr. A 2001, 906, 309–363. [Google Scholar] [CrossRef]
- Guttman, A.; Paulus, A.; Cohen, A.S.; Grinberg, N.; Karger, B.L. Use of complexing agents for selective separation in high-performance capillary electrophoresis: Chiral resolution via cyclodextrins incorporated within polyacrylamide gel columns. J. Chromatogr. 1988, 448, 41–53. [Google Scholar] [CrossRef]
- Wistuba, D.; Bogdanski, A.; Larsen, K.L.; Schurig, V. δ-Cyclodextrin as novel chiral probe for enantiomeric separation by electromigration methods. Electrophoresis 2006, 27, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.; Schurig, V. Enantiomer separation by electrochromatography on capillaries coated with Chirasil-Dex. J. Sep. Sci. 1992, 15, 129–130. [Google Scholar]
- Mayer, S.; Schurig, V. Enantiomer separation by electrochromatography on open tubular columns coated with Chirasil-Dex. J. Liq. Chromatogr. 1993, 16, 915–931. [Google Scholar] [CrossRef]
- Trapp, O.; Trapp, G.; Schurig, V.; University of Tübingen, Tübingen, Germany. Unpublished work. 2003.
- Li, T. Peptide and peptidomimetic chiral selectors in liquid chromatography. J. Sep. Sci. 2005, 28, 1927–1931. [Google Scholar] [CrossRef] [PubMed]
- Li, T. Development of efficient chiral stationary phases from peptide libraries. LabPlus Int. 2005, 19, 15–18. [Google Scholar]
- Svec, F.; Wulff, D.; Fréchet, J.M. Combinatorial Approaches to Recognition of Chirality: Preparation and Use of Materials for the Separation of Enantiomers. In Chiral Separation Techniques, 2nd ed.; Subramanian, G., Ed.; Wiley-VCH: Weinheim, Germany, 2000; pp. 57–94. [Google Scholar]
- Huang, P.Y.; Carbonell, R.G. Affinity purification of proteins using ligands derived from peptide libraries. Biotechnol. Bioeng. 1995, 47, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.B.; Hentsch, M.E.; Baumbach, G.A.; Buettner, J.A.; Dadd, C.A.; Huang, P.Y.; Hammond, D.J.; Carbonell, R.G. Affinity purification of fibrinogen using a ligand from a peptide library. Biotechnol. Bioeng. 2002, 77, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.Y.; Carbonell, R.G. Affinity chromatographic screening of soluble combinatorial peptide libraries. Biotechnol. Bioeng. 1999, 63, 633–641. [Google Scholar] [CrossRef]
- Jung, G.; Hofstetter, H.; Feiertag, S.; Stoll, D.; Hofstetter, O.; Wiesmüller, K.-H.; Schurig, V. Cyclopeptide libraries as new chiral selectors in capillary electrophoresis. Angew. Chem. Int. Ed. 1996, 35, 2148–2150. [Google Scholar] [CrossRef]
- Chiari, M.; Desperati, V.; Manera, E.; Longhi, R. Combinatorial synthesis of highly selective cyclohexapeptides for separation of amino acid enantiomers by capillary electrophoresis. Anal. Chem. 1998, 70, 4967–4973. [Google Scholar] [CrossRef] [PubMed]
- Bluhm, L.; Huang, J.M.; Li, T.Y. Recent advances in peptide chiral selectors for electrophoresis and liquid chromatography. Anal. Bioanal. Chem. 2005, 382, 592–598. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzi, E.; Massolini, G.; Molinari, P.; Galbusera, C.; Longhi, R.; Marinzi, C.; Consonni, R.; Chiari, M. Chiral capillary electrophoresis and nuclear magnetic resonance investigation on the structure-enantioselectivity relationship in synthetic cyclopeptides as chiral selectors. Electrophoresis 2001, 22, 1373–1384. [Google Scholar] [CrossRef]
- Marinzi, C.; Longhi, R.; Chiari, M.; Consonni, R. Capillary electrophoresis investigation on the structure-enantioselectivity relationship in synthetic cyclopeptides as chiral selectors. Electrophoresis 2001, 22, 3257–3262. [Google Scholar] [CrossRef]
- Schurig, V.; Wistuba, D.; Jung, G.; Wiesmüller, K.-H.; University of Tübingen, Tübingen, Germany. Unpublished work. 2010.
- Wu, Y.; Wang, Y.; Yang, A.; Li, T. Screening of mixture combinatorial libraries for chiral selectors: A reciprocal chromatographic approach using enantiomeric libraries. Anal. Chem. 1999, 71, 1688–1691. [Google Scholar] [CrossRef] [PubMed]
- Weingarten, M.D.; Sekanina, K.; Still, W.C. Enantioselective resolving resins from a combinatorial library. Kinetic resolution of cyclic amino acid derivatives. J. Am. Chem. Soc. 1998, 120, 9112–9113. [Google Scholar] [CrossRef]
- Maier, N.; Franco, P.; Lindner, W. Separation of enantiomer: Needs, challenges, perspectives. J. Chromatogr. A 2001, 906, 3–33. [Google Scholar] [CrossRef]
- Murer, P.; Lewandowski, K.; Svec, F.; Fréchet, J.M.J. Combinatorial “Library on Bead” approach to polymeric materials with vastly enhanced chiral recognition. J. Chem. Soc. Chem. Commun. 1998, 2559–2560. [Google Scholar] [CrossRef]
- Murer, P.; Lewandowski, K.; Svec, F.; Fréchet, J.M.J. “On Bead” combinatorial approach to the design of chiral stationary phases. Anal. Chem. 1999, 71, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, K.; Murer, P.; Svec, F.; Fréchet, J.M.J. Highly selective chiral recognition on polymer supports: Preparation of a combinatorial library of dihydropyrimidines and its screening for novel Chiral HPLC ligands. J. Chem. Soc. Chem. Commun. 1998, 2237–2238. [Google Scholar] [CrossRef]
- Lewandowski, K.; Murer, P.; Svec, F.; Fréchet, J.M.J. A combinatorial approach to recognition of chirality: The preparation of highly enantioselective aryldihydropyrimidine selectors for chiral HPLC. J. Comb. Chem. 1999, 1, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Brahmachary, E.; Ling, F.H.; Svec, F.; Fréchet, J.M.J. Chiral recognition: Design and preparation of chiral stationary phases using selectors derived from Ugi multicomponent condensation reactions and a combinatorial approach. J. Comb. Chem. 2003, 5, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Pirkle, W.H.; Alessi, D.M.; Hyun, M.H.; Pochapsky, T.C. Separation of some enantiomeric dipeptides and tripeptides on chiral stationary phases. J. Chromatogr. 1987, 398, 203–209. [Google Scholar] [CrossRef]
- Welch, C.J.; Bhat, G.; Protopopova, M.N. Silica-based solid phase synthesis of chiral stationary phases. Enantiomer 1988, 3, 463–469. [Google Scholar]
- Welch, C.J.; Protopopova, M.N.; Bhat, G.A. Microscale synthesis and screening of chiral stationary phases. Enantiomer 1988, 3, 471–476. [Google Scholar]
- Welch, C.J.; Bhat, G.; Protopopova, M.N. Selection of an optimized adsorbent for preparative chromatographic enantioseparation by microscale screening of a second generation chiral phase library. J. Comb. Chem. 1999, 1, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.J.; Pollard, S.D.; Mathre, D.J.; Reider, P.J. Improved method for rapid evaluation of chiral stationary phase libraries. Org. Lett. 2001, 3, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, T. Screening of a parallel combinatorial library for selectors for chiral chromatography. Anal. Chem. 1999, 71, 4178–4182. [Google Scholar] [CrossRef] [PubMed]
- Bluhm, L.H.; Wang, Y.; Li, T. An alternative procedure to screen mixture combinatorial libraries for selectors for chiral chromatography. Anal. Chem. 2000, 72, 5201–5205. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bluhm, L.H.; Li, T. Identification of chiral selectors from a 200-member parallel combinatorial library. Anal. Chem. 2000, 72, 5459–5465. [Google Scholar] [CrossRef] [PubMed]
- Blodgett, J.; Wang, Y.; Li, T.; Polavarapu, P.L.; Drabowicz, J.; Pietrusiewicz, K.M.; Zygo, K. Resolution of tert-Butyl-1-(2-methylnaphthyl)phosphine oxide using selectors identified from a chemical combinatorial library. Anal. Chem. 2002, 74, 5212–5216. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, T. Efficient resolution of racemic 1,1′-Bi-2-naphthol with chiral selectors identified from a small library. J. Chromatogr. A 2005, 1062, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yang, Y.; Werner, S.; Wipf, P.; Weber, S.G. A screening method for chiral selectors that does not require covalent attachment. J. Am. Chem. Soc. 2006, 22, 2208–2209. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tanaka, T.; Kataura, H. Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography. Nano Lett. 2014, 14, 6237–6243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Khripin, C.Y.; Fagan, J.A.; McPhie, P.; Ito, Y.; Zheng, M. Single-step total fractionation of single-wall carbon nanotubes by countercurrent chromatography. Anal. Chem. 2014, 86, 3980–3984. [Google Scholar] [CrossRef] [PubMed]
- Sicoli, G.; Pertici, F.; Jiang, Z.; Jicsinszky, L.; Schurig, V. Gas-chromatographic approach to probe the absence of molecular inclusion in enantioseparations by carbohydrates. Investigation of linear dextrins (“acyclodextrins”) as novel chiral stationary phases. Chirality 2007, 19, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Raffaini, G.; Ganazzoli, F. Separation of chiral nanotubes with an opposite handedness by chiral oligopeptide adsorption: A molecular dynamics study. J. Chromatogr. A 2015, 1425, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Yajadda, M.M.A.; Han, Z.J.; Su, D.; Wang, G.; Ostrikov, K.K.; Ghanem, A. Single-walled carbon nanotube-based polymer monoliths for the enantioselective Nano-liquid chromatographic separation of racemic pharmaceuticals. J. Chromatogr. A 2014, 1360, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, H.; Antony, V.; Ghanem, A.; Yajadda, M.M.A.; Han, Z.J.; Ostrikov, K.K. Organic/Hybrid nanoparticles and single-walled carbon nanotubes: Preparation methods and chiral applications. Chirality 2014, 26, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.A.; Talio, M.C.; Luconi, M.O.; Fernandez, L.P. Evaluation of carbon nanotubes as chiral selectors for continuous-flow enantiomeric separation of carvedilol with fluorescent detection. J. Pharm. Biomed. Anal. 2012, 70, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Komatsu, N.; Bhattacharya, S.; Shimawaki, T.; Aonuma, S.; Kimura, T. Optically active single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ai, P.; Duan, A.-H.; Yuan, L.-M. Single-Walled carbon nanotubes for improved enantioseparations on a chiral ionic liquid stationary phase in GC. Anal. Bioanal. Chem. 2011, 399, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Jinno, K. Molecular Recognition for Fullerenes in Liquid Chromatography. In Chromatographic Separations Based on Molecular Recognition; Jinno, K., Ed.; Wiley-VCH: New York, NY, USA, 1997; pp. 147–237. [Google Scholar]
- Baena, J.R.; Gallego, M.; Valcárcel, M. Fullerenes in the analytical sciences. Trends Anal. Chem. TRAC 2002, 21, 187–198. [Google Scholar] [CrossRef]
- Hawkins, J.M.; Lewis, T.A.; Loren, S.D.; Meyer, A.; Heath, J.R.; Shibato, Y.; Saykally, R.J. Organic chemistry of C60 (Buckminsterfullerene): Chromatography and osmylation. J. Org. Chem. 1990, 55, 6250–6252. [Google Scholar] [CrossRef] [PubMed]
- Pirkle, W.H.; Welch, C.J. An unusual effect of temperature on the chromatographic behavior of buckminsterfullerene. J. Org. Chem. 1991, 56, 6973–6974. [Google Scholar] [CrossRef]
- Welch, C.J.; Pirkle, W.H. Progress in the design of selectors for buckminsterfullerene. J. Chromatogr. 1992, 609, 89–101. [Google Scholar] [CrossRef]
- Kawauchi, T.; Kitaura, A.; Kawauchi, M.; Takeichi, T.; Kumaki, J.; Lida, H.; Yashima, E. Separation of C-70 over C-60 and selective extraction and resolution of higher fullerenes by syndiotactic helical poly(methyl methacrylate). J. Amer. Chem. Soc. 2010, 132, 12191–12193. [Google Scholar] [CrossRef] [PubMed]
- Diack, M.; Compton, R.N.; Guiochon, G. Evaluation of stationary phases for the separation of buckminsterfullerenes by high-performance liquid chromatography. J. Chromatogr. 1993, 639, 129–140. [Google Scholar] [CrossRef]
- Gross, B.; Schurig, V.; Lamparth, I.; Hirsch, A. Enantiomer separation of [60]Fullerene derivatives by Micro-column-HPLC using (R)-(−)-TAPA as chiral stationary phase. J. Chromatogr. A 1997, 791, 65–69. [Google Scholar] [CrossRef]
- Gross, B.; Schurig, V.; Lamparth, I.; Herzog, A.; Djojo, F.; Hirsch, A. Enantiomeric separation of [60]Fullerene derivatives with an inherent chiral addition pattern. J. Chem. Soc. Chem. Commun. 1997, 1117–1118. [Google Scholar] [CrossRef]
- Saito, Y.; Ohta, H.; Terasaki, H.; Katoh, Y.; Nagashima, H.; Jinno, K. Separation of polycyclic aromatic hydrocarbons with a C60 bonded silica phase in microcolumn liquid chromatography. J. Sep. Sci. 1995, 18, 569–572. [Google Scholar] [CrossRef]
- Stalling, D.L.; Guo, C.; Kuo, K.C.; Saim, S. Fullerene-linked particles as LC chromatographic media and modification of their donor/acceptor properties by secondary chemical reactions. J. Microcolumn Sep. 1993, 5, 223–235. [Google Scholar] [CrossRef]
- Stalling, D.L.; Guo, C.Y.; Saim, S. Surface-linked C60/70-Polystyrene Divinylbenzene beads as a new chromatographic material for enrichment of Co-planar PCBs. J. Chromatogr. Sci. 1993, 31, 265–278. [Google Scholar] [CrossRef]
- Golovnya, R.V.; Terenina, M.B.; Ruchkina, E.L.; Karnatsevich, V.L. Fullerene c60 as a new stationary phase in capillary gas chromatography. Mendeleev Commun. 1993, 3, 231–233. [Google Scholar] [CrossRef]
- Schurig, V. Molecular Association in Complexation Gas Chromatography. In Chromatographic Separations Based on Molecular Recognition; Jinno, K., Ed.; Wiley-VCH: New York, NY, USA, 1997; pp. 371–418. [Google Scholar]
- Schurig, V. Elaborate treatment of retention in chemoselective chromatography—The retention increment approach and non-linear effects. J. Chromatogr. A 2009, 1216, 1723–1736. [Google Scholar] [CrossRef] [PubMed]
- Glausch, A.; Hirsch, A.; Lamparth, I.; Schurig, V. Retention Behaviour of polychlorinated biphenyls on Polysiloxane-Anchored C60 in gas chromatography. J. Chromatogr. A 1998, 809, 252–257. [Google Scholar] [CrossRef]
- Gross, B. Enantiomerentrennung chiraler Fullerenaddukte mittels LC-Bestimmung von Retentionsinkrementen an Cyclodextrin-, Calixaren- und Fulleren-Stationärphasen. Ph.D. Thesis, University of Tübingen, Tübingen, Germany, 1998. [Google Scholar]
- Andersson, T.; Nilsson, K.; Sundahl, M.; Westman, G.; Wennerström, O. C-60 embedded in γ-cyclodextrin: A water-soluble fullerene. J. Chem. Soc. Chem. Commun. 1992, 604–606. [Google Scholar] [CrossRef]
- Sundahl, M.; Andersson, T.; Nilsson, K.; Wennerström, O.; Westman, G. Clusters of C60-fullerene in a water solution containing γ-cyclodextrin—A photophysical study. Synth. Metals 1993, 55–57, 3252–3257. [Google Scholar] [CrossRef]
- Priyadarsini, K.I.; Mohan, H.; Tyagi, A.K.; Mittal, J.P. Inclusion complex of γ-cyclodextrin-C-60-formation, characterization, and photophysical properties in aqueous solutions. J. Phys. Chem. 1994, 98, 4756–4759. [Google Scholar] [CrossRef]
- Kanazawa, K.; Nakanishi, H.; Ishizuka, Y.; Nakamura, T.; Matsumoto, M. An NMR Study of the Buckminster Fullerene complex with Cyclodextrin in aqueous solution. Fuller. Sci. Technol. 1994, 2, 189–194. [Google Scholar] [CrossRef]
- Yoshida, Z.; Takekuma, H.; Takekuma, S.-I.; Matsubara, Y. Molecular recognition of C60 with γ-Cyclodextrin. Angew. Chem. Int. Ed. Engl. 1994, 33, 1597–1599. [Google Scholar] [CrossRef]
- Priyadarsini, K.I.; Mohan, H.; Mittal, J.P. Characterization and properties of γ-Cyclodextrin-C60 Complex in aqueous solution. Fuller. Sci. Technol. 1995, 479–493. [Google Scholar] [CrossRef]
- Wang, H.M.; Wenz, G. Molecular solubilization of Fullerene C60 in water by γ-Cyclodextrin thioethers. Beilstein. J. Org. Chem. 2012, 8, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.; Geckeler, K.E. Cyclodextrin-fullerenes: A new class of water-soluble fullerenes. J. Chem. Soc., Chem. Commun. 2000, 1101–1102. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, Z.; Zhao, Y.; Ma, Y.; Xue, M.; Ge, J. Highly Water-Soluble [60]Fullerene-ethylenediamino-beta-cyclodextrin inclusion complex: The synthesis and self-assembly with poly (acrylic acid). J. Supramol. Chem. 2008, 20, 295–299. [Google Scholar] [CrossRef]
- Cabrera, K.; Wieland, G.; Schäfer, M. High-performance liquid chromatographic separation of fullerenes (C-60 and C-70) using chemically bonded gamma-cyclodextrin as stationary phase. J. Chromatogr. A 1993, 644, 396–399. [Google Scholar] [CrossRef]
- Bianco, A.; Gasparrini, F.; Maggini, M.; Misiti, D.; Polese, A.; Prato, M.; Scorrano, G.; Toniolo, C.; Villani, C. Molecular recognition by a Silica-bound Fullerene derivative. J. Amer. Chem. Soc. 1997, 119, 7550–7554. [Google Scholar] [CrossRef]
- Larsen, K.L. Large Cyclodextrins. J. Inclusion Phenom. Macrocycl. Chem. 2002, 43, 1–13. [Google Scholar] [CrossRef]
- Ueda, H.; Endo, T. Large-Ring Cyclodextrins. In Cyclodextrin and Their Complexes: Chemistry, Analytical Methods, Applications; Dodziuk, H., Ed.; Wiley-VCH: Weinheim, Germany, 2008; pp. 370–380. [Google Scholar]
- Koizumi, K.; Sanbe, K.; Kubota, Y.; Terada, Y.; Takaha, T. Isolation and Characterization of cyclic alpha-(1 ->4)-Glucans having degrees of polymerization 9–31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. A 1999, 852, 407–416. [Google Scholar] [CrossRef]
- Bogdanski, A.; Larsen, K.L.; Bischoff, D.; Ruderisch, A.; Jung, G.; Süßmuth, R.; Schurig, V. Proceed. In Proceedings of the 12th International Cyclodextrin. Symposium, Montpellier, France, 16–19 May 2004; p. 171.
- Bogdanski, A.; Wistuba, D.; Larsen, K.L.; Hartnagel, U.; Hirsch, A.; Schurig, V. Reciprocal principle of molecular recognition in supramolecular chromatography—Highly selective analytical separations of cyclodextrin congeners on a Silica-bonded [60]Fullerene stationary phase. New J. Chem. 2010, 34, 693–698. [Google Scholar] [CrossRef]
- Braun, M.; Hartnagel, U.; Ravanelli, E.; Schade, B.; Böttcher, C.; Vostrowsky, O.; Hirsch, A. Amphiphilic [5:1]- and [3:3]-Hexakisadducts of C-60. Eur. J. Org. Chem. 2004, 9, 1983–2001. [Google Scholar] [CrossRef]
- Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S.M.; Takaha, T. Structures of the common cyclodextrins and their larger analogues-beyond the doughnut. Chem. Rev. 1998, 98, 1787–1802. [Google Scholar] [CrossRef] [PubMed]
- Diederich, F.; Whetten, R.L.; Thilgen, C.; Ettl, R.; Chao, I.; Alvarez, M.M. Fullerene isomerism: Isolation of c2v,-c78 and d3-c78. Science 1991, 254, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Gutsche, C.D. Calixarenes Revisited. In Monographs in Supramolecular Chemistry; Stoddart, J.F., Ed.; The Royal Society of Chemistry: Cambridge, UK, 1998; p. 190. [Google Scholar]
- Suzuki, T.; Nakashima, K.; Shinkai, S. Very convenient and efficient purification method for fullerene (C60) with 5, 11, 17, 23, 29, 35, 41, 47-Octa-tert-butylcalix (8) arene-49, 50, 51, 52, 53, 54, 55, 56-octol. Chem. Lett. 1994, 23, 699–702. [Google Scholar] [CrossRef]
- Atwood, J.L.; Koutsantonis, G.A.; Raston, C.L. Purification of C60 and C70 by selective complexation with calixarenes. Nature 1994, 368, 229–231. [Google Scholar] [CrossRef]
- Saito, Y.; Ohta, H.; Terasaki, H.; Katoh, Y.; Nagashima, H.; Jinno, H.; Itoh, K.; Trengove, R.D.; Harrowfield, J.M.; Li, S.F.Y. Separation of calixarenes with a chemically bonded C-60 silica stationary phase in microcolumn liquid chromatography. J. Sep. Sci. 1996, 19, 475–477. [Google Scholar]
- Brindl, R.; Albert, K.; Harris, S.J.; Tröltzsch, C.; Horne, E.; Glennon, J.D. Silica-bonded Calixarenes in chromatography I. Synthesis and characterization by solid-state NMR spectroscopy. J. Chromatogr. A 1996, 731, 41–46. [Google Scholar]
- Glennon, J.D.; Horne, E.; Hall, K.; Cocker, D.; Kuhn, A.; Harris, S.J.; McKervey, M.A. Silica-bonded calixarenes in chromatography. 2. Chromatographic retention of metal ions and amino acid ester hydrochlorides. J. Chromatogr. A 1996, 731, 47–55. [Google Scholar] [CrossRef]
- Sanchez-Peña, M.; Zhang, Y.; Warner, I.M. Enantiomeric separations by use of calixarene electrokinetic chromatography. Anal. Chem. 1997, 69, 3239–3242. [Google Scholar] [CrossRef]
- Healy, L.O.; McEnery, M.M.; McCarthy, D.G.; Harris, S.J.; Glennon, J.D. Silica-Bonded Calixarenes in chromatography: Enantioseparations on molecular basket phases for rapid Chiral LC. Anal. Lett. 1998, 31, 1543–1551. [Google Scholar] [CrossRef]
- Pfeiffer, J.; Schurig, V. Enantiomer separation of amino acid derivatives on a new polymeric chiral Calix[4]arene stationary phase by capillary gas chromatography. J. Chromatogr. A 1999, 840, 145–150. [Google Scholar] [CrossRef]
- Ruderisch, A.; Pfeiffer, J.; Schurig, V. Synthesis of an enantiomerically pure resorcinarene with pendant l-Valine Residues and its attachment to a Polysiloxane (Chirasil-Calix). Tetrahedron Asymmetry 2001, 12, 2025–2030. [Google Scholar] [CrossRef]
- Ruderisch, A.; Pfeiffer, J.; Schurig, V. Mixed chiral stationary phase containing modified resorcinarene and β-cyclodextrin selectors bonded to a polysiloxane for enantioselective gas chromatography. J. Chromatogr. A 2003, 994, 127–135. [Google Scholar] [CrossRef]
- Allenmark, S. A Note concerning chromatography on mixed stationary phases. Enantiomer 1999, 4, 67–69. [Google Scholar]
- Okamoto, Y.; Kawasaki, M.; Kawashima, M.; Hatada, K. Chromatographic resolution. 7. Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: Phenylcarbamates of polysaccharides coated on silica gel. J. Am. Chem. Soc. 1984, 106, 5357–5359. [Google Scholar] [CrossRef]
- Trapp, O.; Caccamese, S.; Schmidt, C.; Böhmer, V.; Schurig, V. Enantiomerization of an inherently chiral resorcarene derivative: Determination of the interconversion barrier by computer simulation of the dynamic HPLC experiment. Tetrahedron Asymmetry 2001, 12, 1395–1398. [Google Scholar] [CrossRef]
- Bürkle, W.; Karfunkel, H.; Schurig, V. Dynamic phenomena during enantiomer resolution by complexation gas chromatography. A kinetic study of enantiomerization. J. Chromatogr. 1984, 288, 1–14. [Google Scholar] [CrossRef]
- Welch, C. Imprintible brush-type chiral stationary phase. J. Chromatogr. 1995, 689, 189–193. [Google Scholar] [CrossRef]
- Reich, S.; Trapp, O.; Schurig, V. Enantioselective stopped-flow multidimensional gas chromatography—Determination of the inversion barrier of 1-Chloro-2,2-dimethylaziridine. J. Chromatogr. A 1999, 892, 487–498. [Google Scholar] [CrossRef]
- Gebauer, S.; Friebe, S.; Scherer, G.; Gübitz, G.; Krauss, G.J. High-performance liquid chromatography on Calixarene-bonded Silica Gels—Separation of cis/trans isomers of Proline-containing peptides. J. Chromatogr. Sci. 1998, 36, 388–394. [Google Scholar] [CrossRef]
- Schoetz, G.; Trapp, O.; Schurig, V. Determination of the cis-trans isomerization barrier of several l-Peptidyl-l-Proline dipeptides by dynamic capillary electrophoresis and computer simulation. Electrophoresis 2001, 22, 2409–2415. [Google Scholar] [CrossRef]
Numbering | Cyclohexapeptide Library |
---|---|
S.1.1: | cyclo(Arg-Lys-X-X-X-β-Ala) |
S.2.1: | cyclo(Arg-Lys-Pro-X-X-β-Ala) |
S.2.2: | cyclo(Arg-Lys-X-Pro-X-β-Ala) |
S.2.3: | cyclo(Arg-Lys-X-X-Pro-β-Ala) |
S.3.1: | cyclo(Arg-Lys-Val-Pro-X-β-Ala) |
S.3.2: | cyclo(Arg-Lys-Met-Pro-X-β-Ala) |
S.3.3: | cyclo(Arg-Lys-Ile-Pro-X-β-Ala) |
S.3.4: | cyclo(Arg-Lys-Leu-Pro-X-β-Ala) |
S.3.5: | cyclo(Arg-Lys-Tyr-Pro-X-β-Ala) |
S.3.6: | cyclo(Arg-Lys-Phe-Pro-X-β-Ala) |
S.4.1: | cyclo(Arg-Lys-Tyr-Pro-Val-β-Ala) |
S.4.2: | cyclo(Arg-Lys-Tyr-Pro-Met-β-Ala) |
S.4.3: | cyclo(Arg-Lys-Tyr-Pro-Ile-β-Ala) |
S.4.4: | cyclo(Arg-Lys-Tyr-Pro-Leu-β-Ala) |
S.4.5: | cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) |
S.4.6: | cyclo(Arg-Lys-Tyr-Pro-Phe-β-Ala) |
Amino Acid/Cyclopeptide | DNP-Glu | DNP-Norleu | DNP-Meth | DNP-Ala | DNP-Norval | DNP-Threo |
---|---|---|---|---|---|---|
cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) | 4.97 | 3.80 | 5.46 | 2.27 | 3.64 | 2.10 |
cyclo(Arg-Lys-Phe-Pro-Phe-β-Ala) | 2.33 | 1.63 | 1.96 | 1.03 | 1.66 | 0.59 |
cyclo(Arg-Lys-Trp-Pro-Trp-β-Ala) | 1.69 | 1.31 | 1.21 | 1.47 | 1.93 | 0.90 |
Amino Acid/Cyclopeptide | DNP-Glu | DNP-Norleu | DNP-Meth | DNP-Ala | DNP-Norval | DNP-Threo |
---|---|---|---|---|---|---|
cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) | 4.97 | 3.80 | 5.46 | 2.27 | 3.64 | 2.10 |
cyclo(Lys-Lys-Tyr-Tyr-Tyr-Tyr-Lys) | 0.36 | 1.41 | 1.53 | 1.05 | 1.46 | 0 |
cyclo(Lys-Tyr-Arg-Tyr-β-Ala) | 0 | 0.62 | 0 | 0.35 | 0.37 | 0 |
cyclo(Arg-Lys-Tyr-Tyr-β-Ala) | 0.23 | 0.73 | 0.43 | 0.34 | 0.55 | 0 |
Analyte | T (°C) | R′ = (k − k0)/k0 |
---|---|---|
1.2-Dichlorobenzene | 80 | 0.61 |
2.6-Dichlorotoluene | 80 | 0.69 |
Nitrobenzene | 80 | 0.95 |
2-Nitrotoluene | 80 | 0.91 |
Aniline | 80 | 1.58 |
Phenol | 90 | 0.50 |
Naphthalene | 90 | 0.73 |
1-Methylnaphthalene | 120 | 0.83 |
2-Methylnaphthalene | 120 | 0.70 |
Indole | 120 | 1.28 |
Quinoline | 120 | 1.87 |
Isoquinoline | 120 | 2.94 |
4-Chlorophenol | 120 | 0.34 |
2.4-Dichlorophenol | 120 | 0.77 |
2.4.6-Trichlorophenol | 120 | 1.29 |
CD6 | CD7 | CD8 | CD9 | CD10 | CD11 | CD12 | |
---|---|---|---|---|---|---|---|
Krel | 1 | 4.5 | 39 | 46 | 42 | 1 | 2 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schurig, V. The Reciprocal Principle of Selectand-Selector-Systems in Supramolecular Chromatography †. Molecules 2016, 21, 1535. https://doi.org/10.3390/molecules21111535
Schurig V. The Reciprocal Principle of Selectand-Selector-Systems in Supramolecular Chromatography †. Molecules. 2016; 21(11):1535. https://doi.org/10.3390/molecules21111535
Chicago/Turabian StyleSchurig, Volker. 2016. "The Reciprocal Principle of Selectand-Selector-Systems in Supramolecular Chromatography †" Molecules 21, no. 11: 1535. https://doi.org/10.3390/molecules21111535
APA StyleSchurig, V. (2016). The Reciprocal Principle of Selectand-Selector-Systems in Supramolecular Chromatography †. Molecules, 21(11), 1535. https://doi.org/10.3390/molecules21111535