Enhanced Antimicrobial and Anticancer Activity of Silver and Gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterisation of the Sargassum incisifolium Aqueous Extracts and Fucoidans Used in the Synthesis of the NPs
2.1.1. Sample Preparation
2.1.2. Determination of the Antioxidant Activity, Polyphenolic Content and Total Reducing Power of the Aqueous Extracts of S. incisifolium and Fucoidans
2.2. Synthesis and Characterisation of the AgNPs and AuNPs
2.2.1. Preparation of AgNPs Using Sodium Borohydride and S. incisifolium Aqueous Extracts
2.2.2. Preparation of AgNPs Using Commercially Available Fucoidans
2.2.3. Preparation of AuNPs Using Sodium Citrate and S. incisifolium Aqueous Extracts
2.3. Characterization of the Synthesised Nanoparticles
2.3.1. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray (EDX) Analyses
2.3.2. Characterization of the Synthesised Nanoparticles Using Dynamic Light Scattering (DLS) and Zeta Potential Measurements
2.3.3. Characterization of Synthesised Nanoparticles Using Inductively Coupled Plasma—Atomic Emission Spectroscopy (ICP-AES)
2.3.4. Characterization of the Synthesised Nanoparticles Using Powder X-ray Diffraction (XRD)
2.4. Antimicrobial and Cytotoxicity Studies
2.4.1. Antimicrobial Assays
2.4.2. Cytotoxic Activity of the Synthesised Silver and Gold Nanoparticles
3. Materials and Methods
3.1. Synthesis of Silver Nanoparticles (AgNPs)
3.1.1. AgNPs Synthesised Using NaBH4 (SB-AgNP)
3.1.2. AgNP Synthesis Using Commercially Available Fucoidans
3.1.3. AgNP Synthesis Using S. incisifolium Aqueous Extracts
3.2. Synthesis of Gold Nanoparticles (AuNPs)
3.2.1. Synthesis of AuNPs Using Sodium Citrate (SC-AuNPs)
3.2.2. Synthesis of AuNPs using S. incisifolium AC and AR Aqueous Extracts
3.3. The Rate of Nanoparticle Formation
3.4. Determination of the Total Polyphenolic Content, Reducing Power and the Radical Scavenging Power of the Aqueous Extracts and Fucoidans
3.5. Equipment
3.6. Antimicrobial and Cytotoxicity Studies
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ramteke, C.; Chakraborty, T.; Sarangi, B.K.; Pandey, R.-A. Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J. Chem. 2013, 2013, 278925. [Google Scholar] [CrossRef]
- Rickerby, D.G.; Morrison, M. Nanotechnology and the environment: A European perspective. Sci. Technol. Adv. Mater. 2007, 8, 19–24. [Google Scholar] [CrossRef]
- Le, A.-T.; Huy, P.T.; Tam, P.D.; Huy, T.Q.; Cam, P.D.; Kudrinskiy, A.A.; Krutyakov, Y.A. Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique. Curr. Appl. Phys. 2010, 10, 910–916. [Google Scholar] [CrossRef]
- Sironmani, A.; Daniel, K. Silver nanoparticles-universal multifunctional particles for bio sensing, imaging for diagnostics and targeted drug delivery for therapeutic applications. In Drug Discovery and Development—Present and Future; Kapetanovic, I., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Tandel, K.; Sheter, V.; Rathi, K.R. Burden of extensively drug-resistant and pandrug-resistant gram-negative bacteria at a tertiary-care centre. New Microbes New Infect. 2015, 8, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotic resistant era. J. Control. Release 2011, 156, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Botelho, C.; Oliveira, R. Nanotechnology applied to medical biofilms. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2011; Volume 3, pp. 878–888. [Google Scholar]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.C.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.L.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical applications. Toxicol. Lett. 2008, 176, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef]
- Kannan, R.R.R.; Stirk, W.A.; van Staden, J. Synthesis of silver nanoparticles using seaweed Codium capitulum P.C. Silva (Chlorophyceae). S. Afr. J. Bot. 2013, 86, 1–4. [Google Scholar] [CrossRef]
- Mollick, M.M.R.; Rana, D.; Dash, S.K.; Chattopadhyay, S.; Bhowmick, B.; Maity, D.; Mondal, D.; Pattanayak, S.; Roy, S.; Chakraborty, M.; et al. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab. J. Chem. 2015. [Google Scholar] [CrossRef]
- Salem, W.M.; Haridy, M.; Sayed, W.F.; Hassan, N.H. Antibacterial activity of silver nanoparticles synthesised from latex and leaf extract of Ficus sycomorus. Ind. Crops Prod. 2014, 62, 228–234. [Google Scholar] [CrossRef]
- Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using leaf extracts. Bioprocess Biosyst. Eng. 2009, 32, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Zargar, M.; Hamid, A.A.; Barkar, F.A.; Shamsudin, M.N.; Shameli, K.; Jahanshiri, F.; Farahani, F. Green synthesis and antibacterial effect of silver nanoparticles using Vitex Negundo L. Molecules 2011, 16, 6667–6676. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanoparticles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 2006, 22, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Leela, A.; Vivekanandan, M. Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr. J. Biotechnol. 2008, 7, 3162–3165. [Google Scholar]
- Gnanojobitha, G.; Paulkumar, K.; Vanaja, M.; Rajeshkumar, S.; Malarkodi, C.; Annadurai, G.; Kannan, C. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their microbial efficacy. J. Nanostruct. Chem. 2013, 3, 67. [Google Scholar] [CrossRef]
- Vivek, M.; Kumar, P.S.; Steffi, S.; Sudha, S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J. Med. Biotechnol. 2011, 3, 143–148. [Google Scholar] [PubMed]
- Wu, S.; Yan, S.; Qi, W.; Huang, R.; Cui, J.; Su, R.; He, Z. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Nanoscale Res. Lett. 2015, 10, 213. [Google Scholar] [CrossRef] [PubMed]
- Rajathi, F.A.A.; Parthiban, C.; Kumar, V.G.; Anantharaman, P. Biosynthesis of antibacterial gold nanoparticles using brown algae, Stoechospermum marginatum (Kützing). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 99, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, R.M.; Shrivastav, A.; Shrivastav, B.R. Biofabrication of gold nanoparticles using leaf of Ficus benghalensis and their characterization. Int. J. Pharm. Biol Sci. 2012, 3, 551–558. [Google Scholar]
- Sathishkumar, G.; Pradeep, K.J.; Vignesh, V.; Rajkuberan, C.; Jeyaraj, M.; Selvakumar, M.; Rakhi, J.; Sivaramakrishnan, S. Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. J. Mol. Liq. 2016, 215, 229–236. [Google Scholar]
- Singaravelu, G.; Arockiamary, J.S.; Kumar, V.G.; Govindaraju, K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum Wightii Greville. Colloids Surf. B Biointerfaces 2007, 57, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Gamal, A.A.E. Biological importance of marine algae. Saudi Pharm. J. 2010, 18, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, K.; Kim, S.-K. Anticancer effects of fucoidan. Adv. Food Nutr. Res. 2004, 72, 195–213. [Google Scholar]
- Tengdelius, M.; Gurav, D.; Konradsson, P.; Pahlsson, P.; Griffith, M.; Oommen, O.P. Synthesis and anticancer properties of fucoidan-mimetic glycopolymer coated gold nanoparticles. Chem. Commun. 2015, 51, 8532–8535. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.; Valentão, P.; Andrade, P.B. Bioactive compounds from macroalgae in the new millennium: Implications for neurodegenerative diseases. Mar. Drugs 2014, 12, 4934–4972. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-L.; Wang, B.-G. Antioxidant capacity and lipophilic content of seaweeds collected from the Qingdao coastline. J. Agric. Food Chem. 2004, 52, 4993–4997. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Cheung, P.C.K.; Ooi, V.E.C.; Ang, P.O. Evaluation of antioxidant activity of extracts from a brown seaweed, Sargassum siliquastrum. J. Agric. Food Chem. 2002, 50, 3862–3866. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, S.; Hodges, T.W.; Rajbhandari, I.; Gerwick, W.H.; Hamann, M.T.; Nagle, D.G. Marine natural products as novel antioxidant prototypes. J. Nat. Prod. 2003, 66, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Topiwala, S.; Fan, W.; Hines, C.J.; Folk, W.R.; Ercal, N. Antioxidative potential of Sutherlandia frutescenes and its protective effects against oxidative stress in various cell cultures. BMS Complement. Altern. Med. 2014, 14, 271. [Google Scholar] [CrossRef] [PubMed]
- Al-Amoudi, O.; Mutawie, H.H.; Patel, A.V.; Blunden, G. Chemical composition and antioxidant activities of Jeddah corniche algae, Saudi Arabia. Saudi J. Biol. Sci. 2009, 16, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Ananthi, S.; Raghavendran, H.R.B.; Sunil, A.G.; Gayathri, V.; Ramakrishnan, G.; Vasanthi, H.R. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (marine brown alga). Food Chem. Toxicol. 2010, 48, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Stegenga, H.; Bolton, J.J.; Anderson, R.J. Seaweeds of the South African West Coast; Hall, A.V., Ed.; Bolus Herbarium, University of Cape Town: Cape Town, South Africa, 1997. [Google Scholar]
- Mattio, L.; Bolton, J.J.; Anderson, R.J. A revision of the genus Sargassum (Fucales, Phaeophyceae) in South Africa. S. Afr. J. Bot. 2015, 98, 95–107. [Google Scholar] [CrossRef]
- Maghin, F.; Ratti, S.; Carino, C. Biological functions and health promoting effects of brown seaweed in swine nutrition. J. Dairy Vet. Anim. Res. 2014. [Google Scholar] [CrossRef]
- Shon, M.-Y.; Kim, T.-H.; Sung, N.-J. Antioxidant and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem. 2003, 82, 593–597. [Google Scholar] [CrossRef]
- Ojea-Jiménez, I.; Romero, F.M.; Bastús, N.G.; Puntes, V. Small gold nanoparticles synthesized with sodium citrate and heavy water: Insights into the reaction mechanism. J. Phys. Chem. C 2010, 114, 1800–1804. [Google Scholar] [CrossRef]
- Soisuwan, S.; Warisnoichareen, W.; Lirdpropamongkol, K.; Svast, J. Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles. Am. J. Appl. Sci. 2010, 7, 1038–1042. [Google Scholar]
- Ohnogi, H.; Nakade, Y.; Takimoto, Y.; Sekiya, A.; Kawashima, T.; Schneider, A.; Arai, T.; Uebab, K.; Suzuki, N. Safety of fucoidan from Gagome kombu (Kjellmaniella crassifolia) in health adult volunteers. Jpn. J. Complement. Altern. Med. 2011, 8, 45–53. [Google Scholar] [CrossRef]
- Kato, H.; Suzuki, M.; Fujita, K.; Horie, M.; Endoh, S.; Yoshida, Y.; Iwahashi, H.; Takeshi, K.; Nakamura, A.; Kinugasa, S. Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol. In Vitro 2009, 23, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Pyell, U.; Jalil, A.H.; Urban, D.A.; Pfeiffer, C.; Palez, B.; Parak, W.J. Determination of hydrodynamic radius distribution-comparison with asymmetric flow fled-flow fractionation. J. Colloid Interface Sci. 2015, 457, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Bhatterjee, S. DLS and zeta potential—What they are what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Koteswari, P.; Krishna, S.R.; Reddy, V.P.; Nasaru, L.M. Formulation and preparation of felodipine nanoemulsion. Asian J. Pharm. Clin. Res. 2011, 4, 116–117. [Google Scholar]
- Liu, X.; Jin, X.; Cao, B.; Tang, C.Y. Bactericidal activity of silver nanoparticles in environmentally relevant freshwater matrices: Influences of organic matter and chelating agent. Environ. Chem. Eng. 2014, 2, 525–531. [Google Scholar] [CrossRef]
- Mittal, A.K.; Tripathy, D.; Choudhary, A.; Aili, P.K.; Chatterjee, A.; Singh, I.P.; Banarjee, U.C. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. Ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng. C 2015, 53, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Denyer, S.P.; Maillard, J.-Y. Cellular impermeability and uptake of biocides and antibiotics in gram-negative bacteria. J. Appl. Microbiol. 2002, 9, 35S–45S. [Google Scholar] [CrossRef]
- Park, S.; Cha, S.-H.; Cho, I.; Park, S.; Park, Y.; Cho, S.; Park, Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater. Sci. Eng. C 2016, 58, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Duo, D.; Ge, L.; Huang, Z.; Wang, L.; Gu, N. Caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids Surf. B Biointerfaces 2015, 134, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C. Synthesis and study of silver nanoparticles. Chem. Ed. 2007, 84, 322–325. [Google Scholar]
- Mahdavi, M.; Namvar, F.; Ahmad, M.D.; Mohamad, R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed, Sargassum muticum aqueous extract. J. Mol. 2013, 18, 5954–5964. [Google Scholar] [CrossRef] [PubMed]
- Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Caffea Arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C 2016, 58, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Nune, S.K.; Chanda, N.; Shukla, R.; Katti, K.; Kulkarni, R.R.; Thikavathi, S.; Mekapothula, S.; Kannan, R.; Katti, K.V. Green nanotechnology from tea: Phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. Mater. Chem. 2009, 19, 2912–2920. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds: S. Incisfolium aqueous extracts, AgNPs and AuNPs prepared from: the extracts, fucoidans, NaHB4 and sodium citrate are available from the authors.
Extract | Total Polyphenolic Content (GAE in µg/mg of Dried Seaweed/Fucoidan) * | Total Reducing Power (AAE, in µg/mg of Dried Seaweed/Fucoidan) * |
---|---|---|
AC | 235 ± 0.013 | 95 ± 0.008 |
AR | 150 ± 0.019 | 75 ± 0.003 |
Fv | 1 ± 0.0007 | 10 ± 0.001 |
Mp | 10 ± 0.007 | 15 ± 0.001 |
Up | 10 ± 0.048 | 15 ± 0.003 |
Sample | TEM Size (nm) | XRD Size (nm) | DLS Size (nm) | Zeta Potential (mV) $ | % Metal Salt # | ||
---|---|---|---|---|---|---|---|
Mean Size | Range | dH | PDI | ||||
SB-AgNP | 13.90 ± 9.56 | 2.04–29.72 | 25.71 | 83.65 | 0.320 | −26.4 ± 17.8 | 0.02 |
AC-AgNP | 22.44 ± 11.85 | 6.67–53.08 | 7.29 | 82.56 | 0.264 | −35.0 ± 4.95 | 38.2 |
AR-AgNP | 22.94 ± 8.41 | 3.36–50.99 | 9.54 | 76.29 | 0.568 | −40.0 ± 7.62 | 31.3 |
Mp-AgNP | 20.03 ± 10.97 | 1.65–46.31 | 15.28 | 316.3 | 0.515 | −32.9 ± 3.95 | 32.1 |
Fv-AgNP | 8.69 ± 3.85 | 2.35–20.44 | - * | 126.6 | 0.326 | −44.1 ± 11.0 | 38.8 |
Sample | TEM Size (nm) | XRD Size (nm) | DLS Size (nm) | Zeta Potential (mV) $ | % Metal Salt # | ||
---|---|---|---|---|---|---|---|
Mean Size | Range | dH | PDI | ||||
SC-AuNP | 12.38 ± 0.94 | 3.00–21.38 | 10.96 | 37.46 | 0.158 | −56.3 ± 13.9 | 0.12 |
AC-AuNP | 5.35 ± 3.13 | 2.17–16.38 | 22.39 | 89.62 | 0.551 | −39.3 ± 13.5 | 14.0 |
AR-AuNP | 66.13 ± 58.30 | 7.91–268.67 | 40.12 | 92.85 | 0.512 | −39.3 ± 14.8 | 13.6 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mmola, M.; Roes-Hill, M.L.; Durrell, K.; Bolton, J.J.; Sibuyi, N.; Meyer, M.E.; Beukes, D.R.; Antunes, E. Enhanced Antimicrobial and Anticancer Activity of Silver and Gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts. Molecules 2016, 21, 1633. https://doi.org/10.3390/molecules21121633
Mmola M, Roes-Hill ML, Durrell K, Bolton JJ, Sibuyi N, Meyer ME, Beukes DR, Antunes E. Enhanced Antimicrobial and Anticancer Activity of Silver and Gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts. Molecules. 2016; 21(12):1633. https://doi.org/10.3390/molecules21121633
Chicago/Turabian StyleMmola, Mokone, Marilize Le Roes-Hill, Kim Durrell, John J. Bolton, Nicole Sibuyi, Mervin E. Meyer, Denzil R. Beukes, and Edith Antunes. 2016. "Enhanced Antimicrobial and Anticancer Activity of Silver and Gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts" Molecules 21, no. 12: 1633. https://doi.org/10.3390/molecules21121633
APA StyleMmola, M., Roes-Hill, M. L., Durrell, K., Bolton, J. J., Sibuyi, N., Meyer, M. E., Beukes, D. R., & Antunes, E. (2016). Enhanced Antimicrobial and Anticancer Activity of Silver and Gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts. Molecules, 21(12), 1633. https://doi.org/10.3390/molecules21121633