Design of Heterogeneous Hoveyda–Grubbs Second-Generation Catalyst–Lipase Conjugates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Activity of Soluble Hoveyda–Grubbs Second-Generation Catalyst at Different Conditions
2.2. Preparation of Heterogeneous Catalyst and Application in RCM
3. Materials and Methods
3.1. Materials
3.2. Protein Determination by Bradford Method
3.3. Determination of Ruthenium Concentration
3.4. Ring-Closing Metathesis of Diethyldiallylmalonate (1) Catalyzed by Hoveyda–Grubbs Second-Generation and Derivatives in Organic Solvent
3.5. Immobilization of Hoveyda–Grubbs Second-Generation on Functionalized Sepabeads Resins
3.5.1. Preparation of Phenyl Boronic Functionalized Sepabeads
3.5.2. Preparation of CAL-B–Lipase functionalized Sepabeads
3.6. Cross-Linked Enzyme Aggregates (CLEA’s)
3.7. Sol–gel Preparations of Hoveyda–Grubbs Second-Generation
3.8. Preparation of the Different Lipase–Hoveyda–Grubbs Second-Generation Epoxy Sepharose Preparations
3.8.1. Strategy 1: Preparation of Epoxy-CAL-B–Hoveyda–Grubbs
3.8.2. Strategy 2: Preparation of CAL-B–Hoveyda–Grubbs-Epoxy
3.9. Ring-Closing Metathesis of Diethyldiallylmalonate (1) Catalyzed by Immobilized Lipase-Hoveyda–Grubbs Second-Generation Hybrids in Aqueous Media
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Potdar, M.K.; Kelso, G.F.; Schwarz, L.; Zhang, C.; Hearn, M.T.W. Recent developments in chemical synthesis with biocatalysts in ionic liquids. Molecules 2015, 20, 16788–16816. [Google Scholar]
- Palomo, J.M.; Filice, M. New emerging bio-catalysts design in biotransformations. Biotechnol. Adv. 2015, 33, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, K.; Numata, K. Recent advances in chemoenzymatic peptide syntheses. Molecules 2014, 19, 13755–13774. [Google Scholar] [CrossRef] [PubMed]
- Palomo, J.M. Click reactions in protein chemistry: From the preparation of semisynthetic enzymes to new click enzymes. Org. Biomol. Chem. 2012, 10, 9309–9310. [Google Scholar] [CrossRef]
- Mayer, C.; Gillingham, D.G.; Ward, T.R.; Hilvert, D. An artificial metalloenzyme for olefin metathesis. Chem. Commun. 2011, 47, 12068–12070. [Google Scholar] [CrossRef] [PubMed]
- Sauer, D.F.; Bocola, M.; Broglia, C.; Arlt, M.; Zhu, L.; Brocker, M.; Schwaneberg, U.; Okuda, J. Hybrid ruthenium ROMP catalysts based on an engineered variant of β-barrel protein FhuA ΔCVFtev: Effect of spacer length. Chem. Asian J. 2015, 10, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Kajetanowicz, A.; Ward, T.R. Carbonic anhydrase II as host protein for the creation of a biocompatible artificial metathesase. Org. Biomol. Chem. 2015, 13, 5652–5655. [Google Scholar] [CrossRef] [PubMed]
- Basauri-Molina, M.; Verhoeven, D.G.A.; Van Schaik, A.J.; Kleijn, H.; Klein Gebbink, R.J.M. Ring-closing and cross-metathesis with artificial metalloenzymes created by covalent active site-directed hybridization of a lipase. Chem. Eur. J. 2015, 21, 15676–15685. [Google Scholar] [CrossRef]
- Sauer, D.F.; Himiyama, T.; Tachikawa, K.; Fukumoto, K.; Onoda, A.; Mizohata, E.; Inoue, T.; Marco Bocola, M.; Schwaneberg, U.; Hayashi, T.; et al. A highly active biohybrid catalyst for olefin metathesis in water: Impact of a hydrophobic cavity in a β-barrel protein. ACS Catal. 2015, 5, 7519–7522. [Google Scholar] [CrossRef]
- Yang, L.; Xu, Y.; Qiu, S.; Zhang, Y. Polyacrylate/SiO nanocomposites prepared by combining non-aqueous sol-gel process and miniemulsion polymerization. J. Polym. Res. 2012, 19, 30. [Google Scholar] [CrossRef]
- Yang, H.; Ma, Z.; Wang, Y.; Fang, L. Hoveyda-Grubbs catalyst confined in the nanocages of SBA-1: Enhanced recyclability for olefin metathesis. Chem. Commun. 2010, 46, 8659–8661. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.O.; Lubbad, S.H.; Nuyken, O.; Buchmeiser, M.R. Heterogenization of a modified Grubbs-Hoveyda catalyst on a ROMP-derived monolithic support. Macromol. Rapid Commun. 2003, 24, 875–878. [Google Scholar] [CrossRef]
- Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 2013, 42, 6406–6436. [Google Scholar] [PubMed]
- Filice, M.; Marciello, M.; Morales, M.D.P.; Palomo, J.M. Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C–C bond formation and tandem catalysis. Chem. Commun. 2013, 49, 6876–6878. [Google Scholar] [CrossRef] [PubMed]
- Van Koten, G. Pincer ligands as powerful tools for catalysis in organic synthesis. J. Organomet. Chem. 2013, 730, 156–164. [Google Scholar] [CrossRef]
- Filice, M.; Romero, O.; Gutierrez-Fernandez, J.; de Las Rivas, B.; Hermoso, J.A.; Palomo, J.M. Synthesis of a heterogeneous artificial metallolipase with chimeric catalytic activity. Chem. Commun. 2015, 51, 9324–9327. [Google Scholar] [CrossRef] [PubMed]
- Engstrom, K.; Johnston, E.V.; Verho, O.; Gustafson, K.P.; Shakeri, M.; Tai, C.W.; Backvall, J.E. Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis: An artificial metalloenzyme. Angew. Chem. Int. Ed. 2013, 52, 14006–14010. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Marx, V.M.; Grubbs, R.H.; Bertrand, G.A. Ruthenium catalyst for olefin metathesis featuring an anti-bredt N-heterocyclic carbene ligand. Adv. Synth. Catal. 2016, 358, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.P.; Grubbs, R.H. Small-molecule N-heterocyclic carbene containing olefin-metathesis catalysts for use in water. Angew. Chem. Int. Ed. 2007, 46, 5152–5155. [Google Scholar]
- Hong, S.H.; Grubbs, R.H. Highly active water-soluble olefin metathesis catalyst. J. Am. Chem. Soc. 2006, 128, 3508–3509. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.-H.; Lee, I.S.; Choi, T.-L. Ultrafast cyclopolymerization for polyene synthesis: Living polymerization to dendronized polymers. J. Am. Chem. Soc. 2011, 133, 11904–11907. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Sanders, D.P.; Lee, C.W.; Grubbs, R.H. Prevention of Undesirable Isomerization during Olefin Metathesis. J. Am. Chem. Soc. 2005, 127, 17160–17161. [Google Scholar] [CrossRef]
- Grubbs, R.H.; Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 1998, 54, 4413–4450. [Google Scholar] [CrossRef]
- Miro, J.; Sánchez-Roselló, M.; Sanz, A.; Rabasa, F.; del Pozo, C.; Fustero, S. Tandem cross enyne metathesis (CEYM)-intramolecular Diels-Alder reaction (IMDAR). An easy entry tolinear bicyclic scaffolds. Beilstein J. Org. Chem. 2015, 11, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Mennecke, K.; Grela, K.; Kunz, U.; Kirschning, A. Immobilization of the Grubbs III olefin metathesis catalyst with polyvinylpyridine (PVP). Synlett 2005, 19, 2948–2952. [Google Scholar]
- Ivry, E.; Ben-Asuly, A.; Goldberg, I.; Lemcoff, N.G. Amino acids as chiral anionic ligands for ruthenium based asymmetric olefin metathesis. Chem. Commun. 2015, 51, 3870–3873. [Google Scholar] [CrossRef] [PubMed]
- Gutarra, M.L.; Mateo, C.; Freire, D.M.G.; Torres, F.A.G.; Castro, A.M.; Guisan, J.M.; Palomo, J.M. Oriented irreversible immobilization of a glycosylated Candida antarctica B lipase on heterofunctional organoborane-aldehyde support. Catal. Sci. Technol. 2011, 1, 260–266. [Google Scholar] [CrossRef]
- Ireland, B.J.; Dobigny, B.T.; Fogg, D.E. Decomposition of a phosphine-free metathesis catalyst by amines and other bronsted bases: Metallacyclobutane deprotonation as a major deactivation pathway. ACS Catal. 2015, 5, 4690–4698. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Shao, S.; Wu, H.; Wu, P. Grubbs-type catalysts immobilized on SBA-15: A novel heterogeneous catalyst for olefin metathesis. J. Mol. Catal. A Chem. 2013, 372, 35–43. [Google Scholar] [CrossRef]
- Groves, J.T.; Han, Y.; Van Engen, D. Co-ordination of styrene oxide to a sterically hindered ruthenium(II) porphyrin. J. Chem. Soc. Chem. Commun. 1990, 5, 436–437. [Google Scholar] [CrossRef]
- Mateo, C.; Palomo, J.M.; Van Langen, L.M.; Van Rantwijk, F.; Sheldon, R. A new mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol. Bioeng. 2004, 86, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Ursoiu, A.; Paul, C.; Kurtán, T.; Péter, F. Sol-gel entrapped Candida antarctica lipase B—A biocatalyst with excellent stability for kinetic resolution of secondary alcohols. Molecules 2012, 17, 13045–13061. [Google Scholar] [CrossRef] [PubMed]
- Uppenberg, J.; Hansen, M.T.; Patkar, S.; Jones, T.A. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 1994, 2, 293–308. [Google Scholar] [CrossRef]
- Kniesea, M.; Meier, M.A.R. A simple approach to reduce the environmental impact of olefin metathesis reactions: A green and renewable solvent compared to solvent-free reactions. Green Chem. 2010, 12, 169–173. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
Entry | Additives | Conversion 2 (%) | Relative Activity (%) 3 |
---|---|---|---|
1 | - | 80 2 | 100 |
3 | BF3-Et2O | 60 | 75 |
4 | TMSOTf | 50 | 62 |
5 | Pyridine | 32 | 40 |
6 | Adenosine | 44 | 55 |
7 | 1-butyl-3-methylimidazolium tetrafluoroborate | 87 | 109 |
8 | 1-ethyl-3-methylimidazolium methyl sulphate | 88 | 110 |
9 | 1-ethyl-3-methylimidazolium tetrafluoroborate | 87 | 109 |
10 | PEG400 | 90 | 112 |
11 | PEG600 | 76 | 95 |
12 | PEG6000 | 85 | 106 |
13 | phenyl-boronic acid | 100 | 125 |
14 | dl–Asp–(OMe)–OMe | 25 | 31 |
15 | NHAc–Cys–Phe–Phe–CONH2 | 85 | 106 |
16 | NHAc–Asp–Gly–Asp–Cys–Asp–CONH2 | 69 | 86 |
17 | Modified with BOC–Ala–Gly–COOH | 15 | 19 |
Entry | Support | Ru Loading (mg) | Time (h) | Conversion 2 (%) 2 |
---|---|---|---|---|
1 | Amino-Sepabeads | 1 | 24 | <2 |
2 | Butyl-Sepabeads | 0.49 | 24 | <2 |
3 | Epoxy-Sepabeads | 0.5 | 24 | 53 |
4 | Phenyl Boronic acid-Sepabeads | 0.6 | 96 | 50 |
5 | Lipase-Butyl-Sepabeads | 0.54 | 24 | <2 |
Entry | Catalyst | Lipase Loading (mg) | Ru Loading (mg) | Time (h) | Conversion 2 (%) |
---|---|---|---|---|---|
1 | Hoveyda–Grubbs | - | 1 | 1 | 100 |
2 | CLEA–CAL-B | 1 | 0 | 1 | 0 |
2 | CLEA–Ru–CAL-B | 1 | <0.1 | 1 | 10 |
3 | CLEA–Ru–CAL-B | 5 | <0.1 | 1 | 2 |
Entry | Sol–Gel Conjugate | Time (h) | Conversion 2 (%) |
---|---|---|---|
1 | - 2 | 2 | 65 |
2 | Hoveyda–Grubbs | 2 | <2 |
3 | CAL-B | 2 | 0 |
4 | CAL-B–Hoveyda–Grubbs | 2 | 60 (36) 3 |
Entry | Catalyst | Time (h) | Conversion 2 (%) |
---|---|---|---|
1 | Hoveyda–Grubbs 2 | 2 | 30 |
2 | CAL-B sol–gel | 2 | 0 |
3 | CAL-B–Hoveyda–Grubbs sol–gel | 2 (24) | 50 (90) |
Entry | Catalyst | Time (h) | Conversion 2 (%) |
---|---|---|---|
1 | Epoxy-CAL-B–Hoveyda–Grubbs 2 | 2 | 100 |
2 | CAL-B–Hoveyda–Grubbs-Epoxy 3 | 2 | 100 (60) 4 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neville, A.; Iniesta, J.; Palomo, J.M. Design of Heterogeneous Hoveyda–Grubbs Second-Generation Catalyst–Lipase Conjugates. Molecules 2016, 21, 1680. https://doi.org/10.3390/molecules21121680
Neville A, Iniesta J, Palomo JM. Design of Heterogeneous Hoveyda–Grubbs Second-Generation Catalyst–Lipase Conjugates. Molecules. 2016; 21(12):1680. https://doi.org/10.3390/molecules21121680
Chicago/Turabian StyleNeville, Anthony, Javier Iniesta, and Jose M. Palomo. 2016. "Design of Heterogeneous Hoveyda–Grubbs Second-Generation Catalyst–Lipase Conjugates" Molecules 21, no. 12: 1680. https://doi.org/10.3390/molecules21121680
APA StyleNeville, A., Iniesta, J., & Palomo, J. M. (2016). Design of Heterogeneous Hoveyda–Grubbs Second-Generation Catalyst–Lipase Conjugates. Molecules, 21(12), 1680. https://doi.org/10.3390/molecules21121680