Natural Terpenes as Penetration Enhancers for Transdermal Drug Delivery
Abstract
:1. Introduction
2. Skin Penetration Enhancement Effect
3. Mechanism of Action
3.1. Effect on SC Lipids
3.2. Effect on Hydrogen Bond Connection
3.3. Effect on SC Partition of Drugs
3.4. Effect on Physiological Reactions
4. Factors Affecting the Penetration Enhancement Effect
4.1. Lipophilicity of the Drug
4.2. Lipophilicity of the Terpene
4.3. Concentration of the Terpene
4.4. Chemical Structure of the Terpene
5. Skin Irritancy and Toxicity
6. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
References
- Trommer, H.; Neubert, R.H.H. Overcoming the stratum corneum: The modulation of skin penetration. Skin Pharmacol. Physiol. 2006, 19, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R.; Elias, P.M. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim. Biophys. Acta 2014, 1841, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta 2014, 1841, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Gooris, G.S.; van der Spek, J.A.; Bras, W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Investig. Dermatol. 1991, 97, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Moghadm, S.H.; Sailaj, E.; Wettig, S.D.; Dong, C.; Ivanova, M.V.; Huzil, J.T.; Foldvari, M. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability. Mol. Pharm. 2013, 10, 2248–2260. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Herman, A.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review. J. Pharm. Pharmacol. 2014, 67, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.C.; Barry, B.W. Skin absorption enhancers. Crit. Rev. Ther. Drug 1992, 9, 305–353. [Google Scholar]
- Aqil, M.; Ahad, A.; Sultana, Y.; Ali, A. Status of terpenes as skin penetration enhancers. Drug Discov. Today 2007, 12, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Sapra, B.; Jain, S.; Tiwary, A.K. Percutaneous permeation enhancement of terpenes: Mechanistic view. AAPS J. 2008, 10, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Anjos, J.L.; Neto Dde, S.; Alonso, A. Effects of 1,8-cineole on the dynamics of lipids and protein of stratum corneum. Int. J. Pharm. 2007, 345, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Teng, Y.; Wang, H.; Hou, H. Enhancement of skin permeation of bufalin by limonene via reservoir type transdermal patch: Formulation design and biopharmaceutical evaluation. Int. J. Pharm. 2013, 447, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Sammeta, M.S.; Repka, M.A.; Murthy, S.N. Magnetophoresis in combination with chemical enhancers for transdermal drug delivery. Drug Dev. Ind. Pharm. 2011, 37, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Green, C.R.; Alany, R.G.; Rupenthal, I.D. Synergistic effect of chemical penetration enhancer and iontophoresis on transappendageal transport of oligodeoxynucleotides. Int. J. Pharm. 2013, 441, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Joshi, A.; Hassanzadeth, H.; Juluru, R.; Stagni, G. Quantification of dermal and transdermal delivery of meloxicam gels in rabbits. Drug Dev. Ind. Pharm. 2011, 37, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Ahad, A.; Aqil, M.; Ali, A. Investigation of antihypertensive activity of carbopol valsartan transdermal gel containing 1,8-cineole. Int. J. Biol. Macromol. 2014, 64, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; He, S.; Yang, Y.; Jian, D.; Chen, X.; Ding, J. Formulation, characterization and clinical evaluation of propranolol hydrochloride gel for transdermal treatment of superficial infantile hemangioma. Drug Dev. Ind. Pharm. 2015, 41, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Ahad, A.; Aqil, M.; Ali, A. The application of anethole, menthone, and eugenol in transdermal penetration of valsartan: Enhancement and mechanistic investigation. Pharm. Biol. 2016, 54, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Tas, C.; Ozkan, Y.; Okyar, A.; Savaser, A. In vitro and ex vivo permeation studies of etodolac from hydrophilic gels and effect of terpenes as enhancers. Drug Deliv. 2007, 14, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, L.; Zhang, L.; Li, J.; Gu, J.; Gong, H.; Guo, P.; Tong, W. Enhancement and mechanism of transdermal absorption of terpene-induced propranolol hydrochloride. Arch. Pharm. Res. 2011, 34, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Yan, J.; Tang, S.; Huang, H.; Kang, L. Effect of borneol on the transdermal permeation of drugs with differing lipophilicity and molecular organization of stratum corneum lipids. Drug Dev. Ind. Pharm. 2016, 42, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Chai, J.; Hu, Q.; Yu, Y.; Ma, L.; Liu, L.; Zhang, X.; Li, B.; Zhang, D. Transdermal permeation of drugs with differing lipophilicity: Effect of penetration enhancer camphor. Int. J. Pharm. 2016, 507, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Chantasart, D.; Pongjanyakul, T.; Higuchi, W.I.; Li, S.K. Effects of oxygen-containing terpenes as skin permeation enhancers on the lipoidal pathways of human epidermal membrane. J. Pharm. Sci. 2009, 98, 3617–3632. [Google Scholar] [CrossRef] [PubMed]
- Chadha, G.; Sathigari, S.; Parsons, D.L.; Babu, R.J. In vitro percutaneous absorption of genistein from topical gels through human skin. Drug Dev. Ind. Pharm. 2011, 37, 498–505. [Google Scholar] [CrossRef] [PubMed]
- El-Kattan, A.F.; Asbill, C.S.; Michniak, B.B. The effect of terpene enhancer lipophilicity on the percutaneous permeation of hydrocortisone formulated in HPMC gel systems. Int. J. Pharm. 2000, 198, 179–189. [Google Scholar] [CrossRef]
- Lan, Y.; Li, H.; Chen, Y.; Zhang, Y.; Liu, N.; Zhang, Q.; Wu, Q. Essential oil from Zanthoxylum bungeanum Maxim. and its main components used as transdermal penetration enhancers: A comparative study. J. Zhejiang Univ. Sci. B 2014, 15, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Furuishi, T.; Kato, Y.; Fukami, T.; Suzuki, T.; Endo, T.; Nagase, H.; Ueda, H.; Tomono, K. Effect of terpenes on the skin permeation of lomerizine dihydrochloride. J. Pharm. Pharm. Sci. 2013, 16, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Can, A.S.; Erdal, M.S.; Güngör, S.; Özsoy, Y. Optimization and characterization of chitosan films for transdermal delivery of ondansetron. Molecules 2013, 18, 5455–5471. [Google Scholar] [CrossRef] [PubMed]
- Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M.; Ali, A. Role of novel terpenes in tanscutaneous permeation of valsartan: Effectiveness and mechanism of action. Drug Dev. Ind. Pharm. 2011, 37, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M.; Ali, A. Interactions between novel terpenes and main components of rat and human skin: Mechanistic view for transdermal delivery of propranolol hydrochloride. Curr. Drug Deliv. 2011, 8, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Erdal, M.S.; Peköz, A.Y.; Aksu, B.; Araman, A. Impacts of chemical enhancers on skin permeation and deposition of terbinafine. Pharm. Dev. Technol. 2014, 19, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dong, C.; Song, Z.; Zhang, W.; He, X.; Zhang, R.; Guo, C.; Zhang, C.; Li, F.; Wang, C.; et al. Monocyclic monoterpenes as penetration enhancers of ligustrazine hydrochloride for dermal delivery. Pharm. Dev. Technol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Wang, J.; Li, H.; Zhang, Y.; Chen, Y.; Zhao, B.; Wu, Q. Effect of menthone and related compounds on skin permeation of drugs with different lipophilicity and molecular organization of stratum corneum lipids. Pharm. Dev. Technol. 2016, 21, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Hoppel, M.; Baurecht, D.; Holper, E.; Mahrhauser, D.; Valenta, C. Validation of the combined ATR-FTIR/tape stripping technique for monitoring the distribution of surfactants in the stratum corneum. Int. J. Pharm. 2014, 472, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.; Dai, X.; Yin, Q.; Shi, X.; Qiao, Y. Interaction of menthol with mixed-lipid bilayer of stratum conrneum: A coarse-grained simulation study. J. Mol. Graph. Model. 2015, 60, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Narishetty, S.T.K.; Panchagnula, R. Effect of l-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J. Control. Release 2005, 102, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Ita, K.B. Chemical penetration enhancers for transdermal drug delivery—Success and challenges. Curr. Drug Deilv. 2015, 12, 645–651. [Google Scholar] [CrossRef]
- Drakulić, B.J.; Juranić, I.O.; Erić, S.; Zloh, M. Role of complexes formation between drugs and penetration enhancers in tansdermal delivery. Int. J. Pharm. 2008, 363, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Eccles, R. Menthol and related cooling compounds. J. Pharm. Pharmacol. 1994, 46, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.Z.; Shellock, F.G. Effects of a topically applied counterirritant (Eucalyptomint) on cutaneous blood flow and on skin and muscle temperatures. Am. J. Phys. Med. Rehab. 1991, 70, 29–33. [Google Scholar] [CrossRef]
- Bartosova, L.; Bajgar, J. Transdermal drug delivery in vitro using diffusion cells. Curr. Med. Chem. 2012, 19, 4671–4677. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2004, 56, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Mendanha, S.A.; Alonso, A. Effects of terpenes on fluidity and lipid extraction in phospholipid membranes. Biophys. Chem. 2015, 198, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Narishetty, S.T.K.; Panchagnula, R. Transdermal delivery of zidovudine: Effect of terpenes and their mechanism of action. J. Control. Release 2004, 95, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Wu, Q.; Mao, Y.Q.; Wang, Q.; An, J.; Chen, Y.Y.; Wang, W.P.; Zhao, B.C.; Liu, N.; Zhang, Y.W. Cytotoxicity and enhancement activity of essential oil from Zanthoxylum bungeanum Maxim. as a natural transdermal penetration enhancer. J. Zhejiang Univ. Sci. B 2014, 15, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Mendanha, S.A.; Moura, S.S.; Anjos, J.L.V.; Valadares, M.C.; Alonso, A. Toxicity of terpenes on fibroblast cells compared to their hemolytic potential and increase in erythrocyte membrane fluidity. Toxicol. In Vitro 2013, 27, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Wang, J.; Liu, Y.; Ru, Q.; Wang, Y.; Yu, J.; Wu, Q. Effect of terpene penetration enhancer and its mechanisms on membrane fluidity and potential of HaCaT keratinocytes. Chin. J. Chin. Mater. Med. 2015, 40, 643–648. [Google Scholar]
- Bråred Christensson, J.; Forsström, P.; Wennberg, A.M.; Karlberg, A.T.; Matura, M. Air oxidation increases skin irritation from fragrance terpenes. Contact Dermat 2009, 60, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K.; Singh, M.; Dubey, V.; Srivastava, S.; Luqman, S.; Bawankule, D.U. α-(−)-Bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation. Curr. Pharm. Biotechnol. 2014, 15, 173–181. [Google Scholar] [CrossRef] [PubMed]
Terpene | Type | Chemical Formula | MW a | Log P | Boiling Point (°C) | Chemical Structure | Ref. |
---|---|---|---|---|---|---|---|
Anethole | Monoterpene | C10H12O | 148.202 | 3.17 | 237.5 | [16,17,18] | |
α-Bisabolol | Sesquiterpene | C15H26O | 222.366 | 5.07 | 314.5 | [19] | |
Borneol | Monoterpene | C10H18O | 154.249 | 2.71 | 212 | [16,19,20] | |
Camphor | Monoterpene | C10H16O | 152.233 | 2.13 | 207.4 | [19,21] | |
Carvacrol | Monoterpene | C10H14O | 150.22 | 3.28 | 237.7 | [22] | |
Carvone | Monoterpene | C10H14O | 150.218 | 2.265 | 230.5 | [23,24] | |
1,8-Cineole | Monoterpene | C10H18O | 154.249 | 2.82 | 174 | [11,15,22,23,24,25,26,27,28,29] | |
1,4-Cineole | Monoterpene | C10H18O | 154.249 | 2.58 | 173.5 | [16,28,29] | |
Cymene | Monoterpene | C10H14 | 134.22 | 4.02 | 173.9 | [24] | |
Eugenol | Monoterpene | C10H12O2 | 164.201 | 2.2 | 255 | [17] | |
Farnesol | Sesquiterpene | C15H26O | 222.366 | 5.31 | 283.4 | [16] | |
Fenchone | Monoterpene | C10H16O | 152.23 | 2.13 | 193.5 | [24] | |
Geraniol | Monoterpene | C10H18O | 154.249 | 3.28 | 229.5 | [16,24] | |
Limonene | Monoterpenes | C10H16 | 136.234 | 4.45 | 175.4 | [11,16,23,24,25,27,30] | |
Linalool | Monoterpene | C10H18O | 154.25 | 3.28 | 198.5 | [26] | |
Menthol | Monoterpene | C10H20O | 156.265 | 3.2 | 215.4 | [11,16,22,23,26,31,32] | |
Menthone | Monoterpene | C10H18O | 154.249 | 2.63 | 205 | [17,22,26,31,32] | |
Nerolidol | Sesquiterpene | C15H26O | 222.366 | 5.32 | 276 | [16,24,26,27,32] | |
α-Pinene oxide | Monoterpene | C10H16O | 152.23 | 2.11 | 188.6 | [26] | |
Pulegone | Monoterpene | C10H16O | 152.233 | 2.56 | 224 | [32] | |
Rose oxide | Monoterpene | C10H18O | 154.249 | 3.13 | 196.7 | [28,29] | |
Safranal | Monoterpenes | C10H14O | 150.218 | 2.9 | 217.3 | [28,29] | |
Terpinen-4-ol (4-terpinenol) | Monoterpenes | C10H18O | 154.249 | 2.99 | 209 | [24,25] | |
α-Terpineol | Monoterpenes | C10H18O | 154.25 | 2.79 | 217.5 | [24] | |
Tetra-hydrogeraniol | Monoterpene | C10H22O | 158.281 | 3.64 | 212.5 | [16] | |
Thymol | Monoterpenes | C10H14O | 150.22 | 3.28 | 233 | [21,23] | |
Valen-cene | Sesquiterpene | C15H24 | 204.351 | 6.28 | 270.5 | [27,28] | |
Verbenon-e | Monoterpenes | C10H14O | 150.22 | 1.97 | 227.5 | [23] |
Terpene | Drug | Parameters | Vehicle (Terpene Concentration) | Skin | Receptor Liquid | ER a | Proposed Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|
Anethole | Propranolol hydrochloride | log P = 1.53, MW = 295.804 | hydroxypropyl methylcellulose (HPMC) gel (3%) | Piglet abdominal skin | pH 7.4 PBS | 1.8 | Enhancing diffusion through the intercellular lipids | [16] |
Valsartan | log P = 4.5, MW = 435.519 | Ethanol:pH 7.4 isotonic PBS = 40:60 (1%) | Rat abdominal skin | Ethanol:pH 7.4 isotonic PBS = 40:60 | 4.4 | Extracting stratum corneum (SC) lipids and breaking the hydrogen bonds | [17] | |
Etodolac | log P = 3.59, MW = 287.35 | Carboxyl methyl cellulose (CMC)-Na gel (1%) | Rat abdominal skin | pH 7.4 PBS | 1.52 | Interacting with lipid components of the SC | [18] | |
α-Bisabolol | Propranolol hydrochloride | log P = 1.53, MW = 295.804 | 66.7% ethanol (5%) | Rat dorsal skin | pH 7.4 PBS | 6.29 | Increasing lipid fluidity and improving the partition into the SC | [19] |
Borneol | 5-Fluorouracil | log P = −0.95, MW = 130.08 | PG:water = 70:30 (1%, 3%, 5%) | Rat abdominal skin | 1% Brij98 in isotonic PBS (pH 7.2) | 1% = 3.77 3% = 7.49 5% = 10.57 | Disrupting and extracting part of SC intercellular lipids | [20] |
Antipyrine | log P = 0.23, MW = 188.23 | 1% = 6.51 3% = 19.18 5% = 32.84 | ||||||
Aspirin | log P = 1.23, MW = 180.04 | 1% = 5.12 3% = 13.31 5% = 19.81 | ||||||
Salicyclic acid | log P = 2.25, MW = 138.12 | 1% = 2.40 3% = 8.10 5% = 12.76 | ||||||
Ibuprofen | log P = 3.51, MW = 206.28 | 1% = 1.55 3% = 5.18 5% = 9.78 | ||||||
Propranolol hydrochloride | log P = 1.53, MW = 295.804 | HPMC gel (3%) | Piglet abdominal skin | pH 7.4 PBS | 1.5 | Enhancing diffusion through the intercellular lipids | [16] | |
Propranolol hydrochloride | log P = 1.53, MW = 295.804 | 66.7% ethanol (5%) | Rat dorsal skin | pH 7.4 PBS | 5.01 | Increasing lipid fluidity and improving the partition into the SC | [19] | |
Camphor | Indometacin | log P = 3.80, MW = 357.79 | PG:water = 70:30 (3%) | Rat abdominal skin | Isotonic pH 7.2 PBS | 3.97 | Perturbing the regular organization of SC lipids or directly extracting part of the SC lipids; improving the partition into the SC | [21] |
Lidocaine | log P = 2.56, MW = 234.34 | 5.68 | ||||||
Aspirin | log P = 1.23, MW = 180.04 | 9.82 | ||||||
Antipyrine | log P = 0.23, MW = 188.23 | 17.80 | ||||||
Tegafur | log P = −0.48, MW = 200.17 | 15.98 | ||||||
5-Fluorouracil | log P = −0.95, MW = 130.08 | 11.87 | ||||||
Propranolol hydrochloride | log P = 1.53, MW = 295.804 | Ethanol:water = 2:1 (5%) | Rat dorsal skin | pH 7.4 PBS | 3.67 | Increasing lipid fluidity and improving the partition into the SC | [19] | |
Carvacrol | Corticosterone | log P = 1.76, MW = 346.46 | pH 7.4 PBS (1.2/1.8/3.0/3.5 mM) | Human epidermal membrane | pH 7.4 PBS | 3.9 (1.2 mM) 6.6 (1.8 mM) 9.5 (3.0 mM) 14.7 (3.5 mM) | SC intercellular lipid fluidization | [22] |
Carvone | Genistein | log P = 2.94, MW = 270.237 | MC gel (0.4%) | Human skin | 0.01 MPBS (pH 7.4):ethanol = 8:2 | 4.78 | Disrupting the SC lipid bilayers | [23] |
Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 13.1 | Disrupting the hydrophobic lipid packing of the SC | [24] | |
1,8-Cineole (eucalyptol) | Corticosterone | log P = 1.76, MW = 346.46 | pH 7.4 PBS (2.0/3.0/4.0 mM) | Human epidermal membrane | pH 7.4 PBS | 1.9 (2.0 mM) 3.2 (3.0 mM) 3.6 (4.0 mM) | SC intercellular lipid fluidization | [22] |
Genistein | log P = 2.94, MW = 270.237 | MC gel (0.4%) | Human skin | 0.01 MPBS (pH 7.4):ethanol = 8:2 | 7.41 | Disrupting the SC lipid bilayers | [23] | |
Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 14.5 | Disrupting the hydrophobic lipid packing of the SC | [24] | |
Osthole | log P = 3.85, MW = 244.34 | PG:water = 80:20 (3%) | Rat abdominal skin | pH 7.2 PBS, 3% Brij98 added for osthole | 2.27 | Perturbing and extracting the SC lipids; altering the keratin conformation to some extent | [25] | |
Tetramethylpyr-azine | log P = 2.34, MW = 136.20 | 2.16 | ||||||
Ferulic acid | log P = 1.26, MW = 194.18 | 1.22 | ||||||
Puerarin | log P = −0.35, MW = 432.38 | 0.60 | ||||||
Geniposide | log P = −1.01, MW = 388.37 | 2.80 | ||||||
Lomerizine dihydro-chloride | log P = 4.8, MW = 541.457 | PG (10%) | Hairless mouse dorsal skin | 0.5% Tween80 in 0.9% NaCl solution | Flux = 28.8 ± 8.5 µg/cm2/h control = 0 | Increasing the fluidity of SC lipids; causing disorder of the stacking arrangement of the lipid bilayers | [26] | |
Ondansetron hydrochloride | log P = 2.07, MW = 329.824 | Chitosan gel film (1%) | Porcine dorsal skin | 0.9% Saline solution | 3.23 | Increasing lipid fluidity of the SC | [27] | |
Valsartan | log P = 4.5, MW = 435.519 | Ethanol:isotonic IPB (pH 7.4) = 40:60 (0.5%, 0.75%, 1%, 3%, 5%) | Rat abdominal skin | Ethanol:isotonic IPB (pH 7.4) = 40:60 | 2.15 (0.5%) 2.34 (0.75%) 6.4 (1%) 4.2 (3%) 3.7 (5%) | Extraction of SC lipids and keratin denaturation in the SC | [28] | |
Valsartan | log P = 4.5, MW = 435.519 | Carbopol940 gel (1%) | Rat abdominal skin | ethanol:isotonic PBS (pH 7.4) = 40:60 | 4.53 | Disrupting the intercellular packing of the SC lipids | [15] | |
Propranolol hydrochloride | log P = 1.53, MW = 295.804 | Ethanol:isotonic PBS (pH 7.4) = 20:80 (0.5%, 0.75%, 1%) | Rat abdominal skin | PBS pH 7.4 | 1.11 (0.5%) 1.20 (0.75%) 2.07 (1%) | Extraction and disruption of SC lipid bilayers and keratin denaturation in the SC | [29] | |
Bufalin | log P = 2.78, MW = 386.5 | PG/water = 50/50 (5%) | Hairless mouse dorsal skin | PEG:PG:water = 40:30:30 | 17.1 | Modifying the intercellular packing and disrupting highly ordered structure of lipids | [13] | |
1,4-Cineole | Propranolol hydrochloride | log P = 1.53, MW = 295.804 | HPMC gel (3%) | Piglet abdominal skin | pH 7.4 PBS | 2.7 | Enhancing diffusion through the intercellular lipids | [16] |
Propranolol hydrochloride | log P = 1.53, MW = 295.804 | Ethanol:isotonic PBS (pH 7.4) = 20:80 (0.5%, 0.75%, 1%) | Rat abdominal skin | PBS pH 7.4 | 1.38 (0.5%) 1.95 (0.75%) 3.07 (1%) | Extraction and disruption of SC lipid bilayers and keratin denaturation in the SC | [29] | |
Valsartan | log P = 4.5, MW = 435.519 | Ethanol:isotonic PBS (pH 7.4) = 40:60 (0.5%, 0.75%, 1%, 3%, 5%) | Rat abdominal skin | Ethanol:isotonic PBS (pH 7.4) = 40:60 | 2.77 (0.5%) 3.39 (0.75%) 7.4 (1%) 6.1 (3%) 5.4 (5%) | Extraction of SC lipids and keratin denaturation in the SC | [28] | |
Cymene | Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 22.9 | Disrupting the hydrophobic lipid packing of the SC | [24] |
Eugenol | Valsartan | log P = 4.5, MW = 435.519 | Ethanol:pH 7.4 isotonic PBS = 40:60 (1%) | Rat abdominal skin | Ethanol:pH 7.4 isotonic PBS = 40:60 | 3.0 | Extracting SC lipids and breaking the hydrogen bonds | [17] |
Farnesol | Propranolol hydrochloride | log P = 1.53, MW = 295.804 | HPMC gel (3%) | Piglet abdominal skin | pH 7.4 PBS | 3.9 | Enhancing diffusion through the intercellular lipids | [16] |
Fenchone | Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 10.1 | Disrupting the hydrophobic lipid packing of the SC | [24] |
Geraniol | Propranolol hydrochloride | log P = 1.53, MW = 295.804 | HPMC gel (3%) | Piglet abdominal skin | pH 7.4 PBS | 2.8 | Enhancing diffusion through the intercellular lipids | [16] |
Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 16.9 | Disrupting the hydrophobic lipid packing of the SC | [24] | |
Limonene | Terbinafine | log P = 3.3, MW = 291.43 | Carbopol 934P gel (5%) | Porcine dorsal skin | pH 5.8 PBS | 1.36 | Lipid bilayer disruption in the SC | [30] |
Bufalin | log P = 2.78, MW = 386.5 | PG/water = 50/50 (5%) | Hairless mouse dorsal skin | PEG/PG/water = 40/30/30 | 22.2 | Increasing the skin diffusivity by modifying the intercellular packing and disrupting highly ordered structure of lipids | [11] | |
Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 28.4 | Disrupting the hydrophobic lipid packing of the SC | [24] | |
Osthole | log P = 3.85, MW = 244.34 | PG:water = 80:20 (3%) | Rat abdominal skin | pH 7.2 PBS, 3% Brij98 added for osthole | 10.55 | Perturbing and extracting the SC lipids | [25] | |
Tetramethylpyrazine | log P = 2.34, MW = 136.20 | 9.61 | ||||||
Ferulic acid | log P = 1.26, MW = 194.18 | 53.78 | ||||||
Puerarin | log P = −0.35, MW = 432.38 | 18.40 | ||||||
Geniposide | log P = −1.01, MW = 388.37 | 5.70 | ||||||
Ondansetron hydrochloride | log P = 2.07, MW = 329.824 | Chitosan gel film (1%) | Porcine dorsal skin | 0.9% Saline solution | 0.94 | - | [27] | |
Propranolol hydrochloride | log P = 1.53, MW = 295.804 | HPMC gel (3%) | Piglet abdominal skin | pH 7.4 PBS | 2.6 | Enhancing diffusion through the intercellular lipids | [16] | |
Genistein | log P = 2.94, MW = 270.237 | Methyl cellulose (MC) gel (0.4%) | Human skin | 0.01 MPBS (pH 7.4):ethanol = 8:2 | 1.73 | Disrupting the lipid bilayers of the SC | [23] | |
Linalool | Lomerizine dihydrochloride | log P = 4.8, MW = 541.457 | PG (10%) | Hairless mouse dorsal skin | 0.5% Tween80 in 0.9% NaCl solution | Flux = 16.6 ± 4.1 µg/cm2/h control = 0 | Increasing the fluidity of SC lipids; causing disorder of the stacking arrangement of the lipid bilayers | [26] |
Menthol | Ligustrazine hydrochloride | log P = 1.26, MW = 172.655 | Film composed of PVA and CMC-Na (3%) | Porcine dorsal skin | Water | Flux = 6.30 µg/cm2/h Azone = 0.74 µg/cm2/h | Disturbing and extracting SC lipids and hydrogen bond connection | [31] |
Osthole | log P = 3.85, MW = 244.34 | PG:water = 80:20 (3%) | Rat abdominal skin | Isotonic 0.01 M PBS (pH 7.2) | 1.21 | Disordering the ordered organization of SC lipids and extracting part of the SC lipids | [32] | |
Tetramethylpyrazine | log P = 2.34, MW = 136.20 | 3.92 | ||||||
Ferulic acid | log P = 1.26, MW = 194.18 | 35.32 | ||||||
Puerarin | log P = −0.35, MW = 432.38 | 66.40 | ||||||
Geniposide | log P = −1.01, MW = 388.37 | 32.20 | ||||||
Genistein | log P = 2.94, MW = 270.237 | MC gel (0.4%) | Human skin | 0.01 MPBS (pH 7.4):ethanol = 8:2 | 9.59 | Disrupting the lipid bilayers of the SC | [23] | |
Corticosterone | log P = 1.76, MW = 346.46 | pH 7.4 PBS (1.0/1.5/2.0 mM) | Human epidermal membrane | pH 7.4 PBS | 2.8 (1.0 mM) 3.8 (1.5 mM) 4.9 (2.0 mM) | SC intercellular lipid fluidization | [22] | |
Lomerizine dihydrochloride | log P = 4.8, MW = 541.457 | PG (10%) | Hairless mouse dorsal skin | 0.5% Tween80 in 0.9% NaCl solution | Flux = 28.4 ± 6.6 µg/cm2/h control = 0 | Increasing the fluidity of SC lipids; causing disorder of the stacking arrangement of the lipid bilayers | [26] | |
Propranolol hydrochloride | log P = 1.53, MW = 295.804 | HPMC gel (3%) | Piglet abdominal skin | pH 7.4 PBS | 3.7 | Enhancing diffusion through the intercellular lipids | [16] | |
Bufalin | log P = 2.78, MW = 386.5 | PG/water = 50/50 (5%) | Hairless mouse dorsal skin | PEG/PG/water = 40/30/30 | 15.3 | Increasing the skin diffusivity by modifying the intercellular packing and disrupting highly ordered structure of lipids | [11] | |
Menthone | Valsartan | log P = 4.5, MW = 435.519 | Ethanol:pH 7.4 isotonic PBS = 40:60 (1%) | Rat abdominal skin | Ethanol:pH 7.4 isotonic PBS = 40:60 | 4.0 | Extracting SC lipids and breaking the hydrogen bonds | [17] |
Osthole | log P = 3.85, MW = 244.34 | PG:water = 80:20 (3%) | Rat abdominal skin | Isotonic 0.01 M PBS (pH 7.2) | 5.82 | Disordering the ordered organization of SC lipids and extracting part of the SC lipids | [32] | |
Tetramethylpyrazine | log P = 2.34, MW = 136.20 | 8.54 | ||||||
Ferulic acid | log P = 1.26, MW = 194.18 | 20.42 | ||||||
Puerarin | log P = −0.35, MW = 432.38 | 293.80 | ||||||
Geniposide | log P = −1.01, MW = 388.37 | 31.60 | ||||||
Lomerizine dihydro-chloride | log P = 4.8, MW = 541.457 | PG (10%) | Hairless mouse dorsal skin | 0.5% Tween80 in 0.9% NaCl solution | Flux = 20.6 ± 2.5 µg/cm2/h control = 0 | Increasing the fluidity of SC lipids; causing disorder of the stacking arrangement of the lipid bilayers | [26] | |
Corticosterone | log P = 1.76, MW = 346.46 | pH7.4 PBS (2.0/2.6/3.0 mM) | Human epidermal membrane | pH 7.4 PBS | 3.8 (2.0 mM) | SC intercellular lipid fluidization | [22] | |
4.6 (2.6 mM) | ||||||||
5.9 (3.0 mM) | ||||||||
Ligustrazine hydrochloride | log P = 1.26, MW = 172.655 | Film composed of PVA and CMC-Na (3%) | Porcine dorsal skin | Water | Flux = 5.37 µg/cm2/h Azone = 0.74 µg/cm2/h | Disturbing and extracting SC lipids and hydrogen bond connection | [31] | |
Nerolidol | Terbinafine | log P = 3.3, MW = 291.43 | Carbopol 934P gel (5%) | Porcine dorsal skin | pH 5.8 PBS | 4.13 | Lipid bilayer disruption in the SC | [30] |
Lomerizine dihydrochloride | log P = 4.8, MW = 541.457 | PG (10%) | Hairless mouse dorsal skin | 0.5% Tween80 in 0.9% NaCl solution | Flux = 14.2 ± 3.0 µg/cm2/h control = 0 | Increasing the fluidity of SC lipids; causing disorder of the stacking arrangement of the lipid bilayers | [26] | |
Ondansetron hydrochloride | log P = 2.07, MW = 329.24 | Chitosan gel film (1%) | Porcine dorsal skin | 0.9% Saline solution | 0.85 | - | [27] | |
Propranolol hydrochloride | log P = 3.77, MW = 295.804 | HPMC gel (3%) | Piglet abdominal skin | pH 7.4 PBS | 3.4 | Enhancing diffusion through the intercellular lipids | [16] | |
Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 35.3 | Disrupting the hydrophobic lipid packing of the SC | [24] | |
α-Pinene oxide | Lomerizine dihydro-chloride | log P = 4.8, MW = 541.457 | PG (10%) | Hairless mouse dorsal skin | 0.5% Tween80 in 0.9% NaCl solution | Flux = 23.1 ± 1.9 µg/cm2/h control = 0 | Increasing the fluidity of SC lipids; causing disorder of the stacking arrangement of the lipid bilayers | [26] |
Pulegone | Osthole | log P = 3.85, MW = 244.34 | PG:water = 80:20 (3%) | Rat abdominal skin | Isotonic 0.01 M PBS (pH 7.2) | 2.87 | Extracting part of the SC lipids | [32] |
Tetra-methylpyrazine | log P = 2.34, MW = 136.20 | 2.67 | ||||||
Ferulic acid | log P = 1.26, MW = 194.18 | 3.07 | ||||||
Puerarin | log P = −0.35, MW = 432.38 | 2.60 | ||||||
Geniposide | log P = −1.01, MW = 388.37 | 2.70 | ||||||
Rose oxide | Valsartan | log P = 4.5, MW = 435.519 | Ethanol:isotonic PBS (pH 7.4) = 40:60 (0.5%, 0.75%, 1%, 3%, 5%) | Rat abdominal skin | Ethanol:isotonic PBS (pH 7.4) = 40:60 | 1.78 (0.5%) 2.11 (0.75%) 5.7 (1%) 6.1 (3%) 6.4 (5%) | Extraction of SC lipids and keratin denaturation in the SC | [28] |
Propranolol hydrochloride | log P = 3.77, MW = 295.804 | Ethanol:isotonic PBS (pH 7.4) = 20:80 (0.5%, 0.75%, 1%) | Rat abdominal skin | PBS pH 7.4 | 1.06 (0.5%) 1.13 (0.75%) 1.71 (1%) | Extraction and disruption of SC lipid bilayers and keratin denaturation in the SC | [29] | |
Safranal | Valsartan | log P = 4.5, MW = 435.519 | Ethanol:isotonic PBS (pH 7.4) = 40:60 (0.5%, 0.75%, 1%, 3%, 5%) | Rat abdominal skin | Ethanol:isotonic PBS (pH 7.4) = 40:60 | 1.49 (0.5%) 2.05 (0.75%) 3.7 (1%) 3.4 (3%) 3.0 (5%) | Extraction of SC lipids and keratin denaturation in the SC | [28] |
Propranolol hydrochloride | log P = 3.77, MW = 295.804 | Ethanol:isotonic PBS (pH7.4) = 20:80 (0.5%, 0.75%, 1%) | Rat abdominal skin | PBS pH 7.4 | 1.03 (0.5%) 1.08 (0.75%) 1.20 (1%) | Extraction and disruption of SC lipid bilayers and keratin denaturation in the SC | [29] | |
Terpinen-4-ol (4-terpinenol) | Osthole | log P = 3.85, MW = 244.34 | PG:water = 80:20 (3%) | Rat abdominal skin | pH 7.2 PBS, 3% Brij98 added for osthole | 1.90 | Perturbing and extracting the SC lipids | [25] |
Tetramethylpyrazine | log P = 2.34, MW = 136.20 | 1.64 | ||||||
Ferulic acid | log P = 1.26, MW = 194.18 | 2.02 | ||||||
Puerarin | log P = −0.35, MW = 432.38 | 0.40 | ||||||
Geniposide | log P = −1.01, MW = 388.37 | 2.00 | ||||||
Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 11.3 | Disrupting the hydrophobic lipid packing of the SC | [24] | |
α-Terpineol | Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 13.3 | Disrupting the hydrophobic lipid packing of the SC | [24] |
Tetra-hydrogeraniol | Propranolol hydrochloride | log P = 3.77, MW = 295.804 | HPMC gel (3%) | Piglet abdominal skin | pH 7.4 PBS | 3.3 | Enhancing diffusion through the intercellular lipids | [16] |
Thymol | Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 11.0 | Disrupting the hydrophobic lipid packing of the SC | [24] |
Corticosterone | log P = 1.76, MW = 346.46 | pH 7.4 PBS (1.0/1.8/3.0/4.0 mM) | Human epidermal membrane | pH 7.4 PBS | 3.1 (1.0 mM) 5.5 (1.8 mM) 10.9 (3.0 mM) 17.2 (4.0 mM) | SC intercellular lipid fluidization | [22] | |
Valencene | Valsartan | log P = 4.5, MW = 435.519 | Ethanol:isotonic PBS (pH 7.4) = 40:60 (0.5%, 0.75%, 1%, 3%, 5%) | Rat abdominal skin | Ethanol:isotonic PBS (pH 7.4) = 40:60 | 1.96 (0.5%) 2.14 (0.75%) 6.2 (1%) 4.3 (3%) 2.6 (5%) | Extraction of SC lipids and keratin denaturation in the SC | [28] |
Propranolol hydrochloride | log P = 3.77, MW = 295.804 | Ethanol:isotonic PBS (pH 7.4) = 20:80 (0.5%, 0.75%, 1%) | Rat abdominal skin | PBS pH 7.4 | 1.19 (0.5%) 1.26 (0.75%) 2.20 (1%) | Extraction and disruption of the SC lipid bilayers and keratin denaturation in the SC | [29] | |
Verbenone | Hydrocortisone | log P = 1.43, MW = 362.46 | HPMC gel (2%) | Hairless mouse abdominal skin | Isotonic PBS (pH 7.2) | 11.5 | Disrupting the hydrophobic lipid packing of the SC | [24] |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Jiang, Q.-D.; Chai, Y.-P.; Zhang, H.; Peng, P.; Yang, X.-X. Natural Terpenes as Penetration Enhancers for Transdermal Drug Delivery. Molecules 2016, 21, 1709. https://doi.org/10.3390/molecules21121709
Chen J, Jiang Q-D, Chai Y-P, Zhang H, Peng P, Yang X-X. Natural Terpenes as Penetration Enhancers for Transdermal Drug Delivery. Molecules. 2016; 21(12):1709. https://doi.org/10.3390/molecules21121709
Chicago/Turabian StyleChen, Jun, Qiu-Dong Jiang, Ya-Ping Chai, Hui Zhang, Pei Peng, and Xi-Xiong Yang. 2016. "Natural Terpenes as Penetration Enhancers for Transdermal Drug Delivery" Molecules 21, no. 12: 1709. https://doi.org/10.3390/molecules21121709
APA StyleChen, J., Jiang, Q. -D., Chai, Y. -P., Zhang, H., Peng, P., & Yang, X. -X. (2016). Natural Terpenes as Penetration Enhancers for Transdermal Drug Delivery. Molecules, 21(12), 1709. https://doi.org/10.3390/molecules21121709